

RF EXPOSURE REPORT

REPORT NO.: SA110117E07

MODEL NO.: E3200

FCC ID: Q87-E3200

ACCORDING: FCC Guidelines for Human Exposure

IEEE C95.1

APPLICANT: Cisco Consumer Products LLC

ADDRESS: 121 Theory Drive Irvine, CA 92617(USA)

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

Report No.: SA110117E07 1 Report Format Version 4.0.0

1. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	•		AVERAGE TIME (minutes)		
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE						
300-1500			F/1500	30		
1500-100,000			1.0	30		

F = Frequency in MHz

2. MPE CALCULATION FORMULA

Pd = (Pout*G) / (4*pi*r2)

where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

3. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

4. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For 15.247(2.4GHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
2412-2462	914.4	4.0	20	0.457	1.00

For 15.247(5GHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5745-5825	957.5	4.5	20	0.537	1.00

For 15.407(5GHz):

FREQUENCY BAND (MHz)	MAX POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/ cm ²)	LIMIT (mW/cm²)
5180-5240	43.3	4.5	20	0.024	1.00

CONCLUSION:

Both of the 2.4GHz and 5GHz can transmit simultaneously, the formula of calculated the MPE is:

 $CPD_1/LPD_1 + CPD_2/LPD_2 + \dots etc. < 1$

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.457 / 1 + 0.537 / 1 = 0.994, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

--- END ---