FCC 47 CFR PART 15 Subpart C & INDUSTRY CANADA RSS-210

Report No.: T121012J06-RP

TEST REPORT

For

WIRELESS DIMMABLE TRANSLATOR

Model Number: 6105, 7105, 8105

Trade Name: SEICHE

Issued to

RISE LIGHTING CO., LTD.
No.7, Wu Chuan 1st road., Hsin Chuang City., New Taipei City, Taiwan

Issued by

Compliance Certification Services Inc.
No. 11, Wu-Gong 6th Rd., Wugu Industrial Park,
Taipei Hsien 248, Taiwan (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: November 30, 2012

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Report No.: T121012J06-RP

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	November 30, 2012	Initial Issue	ALL	Kelly Cheng

Page 2 Rev. 00

TABLE OF CONTENTS

Report No.: T121012J06-RP

1. TI	EST RESULT CERTIFICATION	4
2. EU	UT DESCRIPTION	5
3. TI	EST METHODOLOGY	6
3.1	EUT CONFIGURATION	6
3.2	EUT EXERCISE.	
3.3	GENERAL TEST PROCEDURES.	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	7
4. IN	STRUMENT CALIBRATION	8
4.1	MEASURING INSTRUMENT CALIBRATION	8
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	
5. FA	ACILITIES AND ACCREDITATIONS	10
5.1	FACILITIES	10
5.2	EQUIPMENT	
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	11
6. SE	ETUP OF EQUIPMENT UNDER TEST	12
6.1	SETUP CONFIGURATION OF EUT	12
6.2	SUPPORT EQUIPMENT	
7. Al	PPLICABLE RULES	13
8. FC	CC PART 15.249 REQUIREMENTS & RSS-210 REQUIREMENTS	22
8.1	99% BANDWIDTH	22
8.2	20 DB BANDWIDTH	25
8.3	BAND EDGES MEASUREMENT	
8.4	SPURIOUS EMISSION	
8.5	POWERLINE CONDUCTED EMISSIONS	42
APPEN	NDIX I PHOTOGRAPHS OF TEST SETUP	43
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

Rev. 00

1. TEST RESULT CERTIFICATION

Applicant: RISE LIGHTING CO., LTD.

No.7, Wu Chuan 1st road., Hsin Chuang City., New Taipei City,

Report No.: T121012J06-RP

Taiwan

Manufacturer: RISE LIGHTING CO., LTD

No.7, Wu Chuan 1st road., Hsin Chuang City., New Taipei City,

Taiwan

Equipment Under Test: WIRELESS DIMMABLE TRANSLATOR

Trade Name: SEICHE

Model Number: 6105, 7105, 8105

Date of Test: October 8 ~ November 29, 2012

APPLICABLE STANDARDS					
STANDARD	TEST RESULT				
FCC 47 CFR Part 15 Subpart C					
&	No non-compliance noted				
Industry Canada RSS-210 Issue 8 December, 2010					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements emission limits of FCC Rules Part 15.107, 15.109,15.207, 15.209 and 15.249 and Industry Canada RSS-210.

The test results of this report relate only to the tested sample identified in this report.

Approved by: Reviewed by:

Miller Lee Gina Lo

Willer Los

Section Manager Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 4 Rev. 00

2. EUT DESCRIPTION

Product	oduct WIRELESS DIMMABLE TRANSLATOR				
Trade Name	ZEICHE				
Model Number	6105, 7105, 8105				
Model Discrepancy	6105: R/G/B dimmable translator Flicker-free R/G/B dimming from 0% to 100% 8 preset color combinations. 8 default color transition speed and a"auto-rim"function. 7105: Six zones dimmable translator Dimming ranges from 0% to 100% with flicker-free quality. Built-in 10/60/100% brightness for user selection. 8105: Brightness and Color Temperature dimmable translator Flicker-free dimming from 5% to 100% Built in default color temperature 2700/4000/5500° K				
Power Supply	DC 12V				
Received Date	October 12, 2012				
		Channel	Frequency (MHz)		
Ewaguanay Danga		1 2 3	2411.5 2413.5 2419.5		
Frequency Range		4	2421.5		
		5	2427.5		
		6	2437.5		
		7	2443.5		
		8	2458.5		
Modulation Technique	GFSK				
Antenna Gain	4.63dBi				
Antenna Designation	PCB Antenna				
Antenna Manufacturer	AMICCOM				

Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>Q7HRFTR001</u> filing to comply with Section 15.107 & 15.109 (FCC Part 15, Subpart B) and Section 15.207, 15.209, 15.249.

Page 5 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.249.

Report No.: T121012J06-RP

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, and ANSI C63.4.

This submittal(s) (test report) is intended for IC Certification with Industry Canada RSS-210.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.107 and 15.109 under the FCC Rules Part 15 Subpart B and Section 15.207, 15.209,15.249 under the FCC Rules Part 15 Subpart C.

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-Gen, IC RSS-102, and ANSI C63.4.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 6 Rev. 00

3.4FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Report No.: T121012J06-RP

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5DESCRIPTION OF TEST MODES

The EUT (model: 6105) had been tested under operating condition.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

Page 7 Rev. 00

² Above 38.6

4. INSTRUMENT CALIBRATION

4.1MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T121012J06-RP

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/21/2013		

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	trum Analyzer Agilent		US42510268	11/15/2012		
EMI Test Receiver	R&S	ESCI	100064	03/01/2013		
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/13/2013		
Pre-Amplifier	MITEQ	AFS44-00102650- 42-10P-44	1415367	11/20/2012		
Bilog Antenna	Sunol Sciences	JB3	A030105	10/02/2013		
Horn Antenna	EMCO	3117	00055165	02/14/2013		
Turn Table	CCS	CC-T-1F	N/A	N.C.R		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R		
Site NSA	CCS	N/A	N/A	12/23/2012		
Test S/W	EZ-EMC (CCS-3A1RE)					

Page 8 Rev. 00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	N/A
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 Rev. 00

5. FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at

5.1FACILITIES

	No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
	No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
	No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The	e sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and

Report No.: T121012J06-RP

CISPR Publication 22. **5.2EQUIPMENT**

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 10 Rev. 00

5.3TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Report No.: T121012J06-RP

Page 11 Rev. 00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

Report No.: T121012J06-RP

6.2SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Power Supply	ABM	8301HD	D011531	FCC DoC	N/A	Shielded, 1.5m

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 12 Rev. 00

7. APPLICABLE RULES

RSS-210 §2 General Certification Requirements and Specifications

RSS-210 §2.1 RSS-Gen Compliance

In addition to RSS-210, the requirements in RSS-Gen, *General Requirements and Information for the Certification of Radio Apparatus*, must be met.

Report No.: T121012J06-RP

RSS-210 §2.2 Emissions Falling Within Restricted Frequency Bands

Category I licence-exempt equipment is required to comply with the provisions in RSS-Gen with respect to emissions falling within restricted frequency bands. These restricted frequency bands are listed in RSS-Gen.

RSS-210 §2.3 Receivers

Category I equipment receivers for use with transmitters subject to RSS-210 must comply with the applicable requirements set out in RSS-Gen and be certified under RSS-210. Category II equipment receivers for use with transmitters subject to RSS-210 are exempt from certification, but are subject to compliance with RSS-Gen and RSS-310.

RSS-210 §2.5 General Field Strength Limits

RSS-Gen includes the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this standard. Unwanted emissions of transmitters and receivers are permitted to fall within the restricted bands listed in RSS-Gen, and including the TV bands, but fundamental emissions are prohibited in the restricted bands.

RSS-210 §2.5.1 Transmitters with Wanted Emissions that are Within the General Field Strength Limits

Whether or not their operation is addressed by published RSS standards, transmitters whose wanted and unwanted emissions are within the general field strength limits shown in RSS-Gen, they may operate in any of the frequency bands, other than the restricted bands listed in RSS-Gen and including the TV bands, and shall be certified under RSS-210. Under no conditions may the level of any unwanted emissions exceed the level of the fundamental emission.

Note: Devices operating below 490 kHz in which all emissions are at least 40 dB below the limit listed in RSS-Gen (*General Field Strength Limits for Transmitters at Frequencies below 30 MHz*) are Category II devices and are subject to RSS-310.

Page 13 Rev. 00

RSS-210 §2.7 Tables

RSS-210 §Annex A2.9: Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands

Report No.: T121012J06-RP

This section applies to systems that employ frequency hopping (FH) and digital modulation technology in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. Systems in these bands may employ frequency hopping, digital modulation and or a combination (hybrid) of both techniques.

A frequency hopping system that synchronizes with another or several other systems (to avoid frequency collision among them) via off-air sensing or via connecting cables is not hopping randomly and therefore is not in compliance with RSS-210.

RSS-210 §A8.1 Frequency Hopping Systems

Frequency hopping systems are spread spectrum systems in which the carrier is modulated with coded information in a conventional manner causing a conventional spreading of the RF energy about the carrier frequency. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence.

Frequency hopping systems are not required to employ all available hopping frequencies during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream.

Incorporation of intelligence into a frequency hopping system that enables it to recognize other users of the band and to avoid occupied frequencies is permitted, provided that the frequency hopping system does it individually, and independently chooses or adapts its hopset. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The following applies to frequency hopping systems in each of the three bands.

(a) The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system RF bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The hopset shall be such that the near term distribution of frequencies appears random, with sequential hops randomly distributed in both direction and magnitude of change in the hopset while the long term distribution appears evenly distributed.

Page 14 Rev. 00

(b) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: T121012J06-RP

(d) Frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

RSS-210 §A8.2 Digital Modulation Systems

These include systems employing digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to all three bands.

RSS-210 §A8.4 Transmitter Output Power and e.i.r.p. Requirements

- (4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands, the maximum peak conducted power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen)
- (5) Point-to-point systems in the bands 2400-2483.5 MHz and 5725-5850 MHz are permitted to have an e.i.r.p. higher than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p. However, remote stations of point-to-multipoint systems shall be allowed to operate at greater than 4 W e.i.r.p, under the same conditions as for point-to-point systems.

Note: "Fixed, point-to-point operation", excludes point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information.

Page 15 Rev. 00

RSS-210 §A8.5 Out-of-band Emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

Report No.: T121012J06-RP

RSS-Gen §2 General Information

RSS-Gen §2.1.2 Category II Equipment

Category II equipment comprises radio devices where a standard has been prescribed but for which a TAC is not required, that is, equipment certification by Industry Canada or a Certification Body (CB) is not required (certification exempt), pursuant to subsection 4(3) of the Radiocommunication Act. The manufacturer or importer shall nevertheless ensure that the standards are complied with. A test report shall be available on request and the device shall be properly labelled.

RSS-Gen §2.2 Receivers

Receivers that are used for radiocommunication other than broadcasting are defined as Category I equipment or Category II equipment, subject to compliance with applicable Industry Canada standards.

Receivers shall be capable of operation only with transmitters for which RSSs are published. Receivers are classified as described in sections 2.2.1 and 2.2.2.

RSS-Gen §2.2.1 Category I Equipment Receivers

A receiver is classified as Category I equipment if it meets one of the following conditions: (a) a stand-alone receiver (see Note 1, below), which operates on any frequency in the band 30-960 MHz, and is used for the reception of signals in that frequency band from a transmitter classified as Category I equipment;

- (b) a Citizen's Band (CB) receiver (26.96-27.410 MHz);
- (c) a scanner receiver.

Note 1: A *stand-alone receiver* is defined as any receiver that is not permanently combined together with a transmitter in a single case (transceiver), in which it functions as the receiver component of the transceiver.

Receivers classified as Category I equipment shall comply with the limits for receiver spurious emissions set out in RSS-Gen; however, equipment certification is granted under the applicable RSS standard along with the associated transmitter classified as Category I equipment. Scanner receivers are covered under their own specific RSS.

RSS-Gen §2.2.2 Category II Equipment Receivers

A receiver is classified as Category II equipment if it does not meet any of the conditions of Section 2.2.1.

Category II receivers shall comply with the applicable testing, labelling and user manual requirements in RSS-310.

Page 16 Rev. 00

RSS-Gen §5.6 Exposure of Humans to RF Fields

Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

RSS-Gen §6 Receiver Spurious Emission Standard

Receivers shall comply with the limits of spurious emissions set out in this section, measured over the frequency range determined in accordance with Section 4.10.

Report No.: T121012J06-RP

RSS-Gen §6.1 Radiated Limits

Radiated spurious emission measurements shall be performed with the receiver antenna connected to the receiver antenna terminals.

Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

RSS-Gen Table 2 - Spurious Emission Limits for Receivers

Frequency (MHz)	Field Strength microvolts/m at 3 metres
30-88	100
88-216	150
216-960	200
Above 960	500

^{*}Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

Page 17 Rev. 00

RSS- Gen Table 3: Restricted Frequency Bands (Note)

MHz	MHz	MHz	MHz	GHz
0.090-0.110	8.37625-8.38675		1718.8-1722.2	9.0-9.2
	8.41425-8.41475	156.52475-156.52525	2200-2300	9.3-9.5
2.1735-2.1905	12.29-12.293	156.7-156.9	2310-2390	10.6-12.7
3.020-3.026	12.51975-12.52025			13.25-13.4
4.125-4.128	12.57675-12.57725		2655-2900	14.47-14.5
4.17725-4.17775	13.36-13.41	240-285	3260-3267	15.35-16.2
4.20725-4.20775	16.42-16.423	322-335.4	3332-3339	17.7-21.4
5.677-5.683	16.69475-16.69525	399.9-410	3345.8-3358	22.01-23.12
6.215-6.218	16.80425-16.80475	608-614	3500-4400	23.6-24.0
6.26775-6.26825	25.5-25.67	960-1427	4500-5150	31.2-31.8
6.31175-6.31225	37.5-38.25	1435-1626.5	5350-5460	36.43-36.5
8.291-8.294	73-74.6; 74.8-75.2	1645.5-1646.5	7250-7750	Above 38.6
8.362-8.366	108-138	1660-1710	8025-8500	

Report No.: T121012J06-RP

Note: Certain frequency bands listed in Table 2 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as RSS-310.

RSS- Gen Table 5: General Field Strength Limits for Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (microvolt/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500

Note: Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands(54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).

Page 18 Rev. 00

RSS- Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Report No.: T121012J06-RP

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in Hz)	300
490-1.705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Page 19 Rev. 00

RSS-Gen §7.1.2 Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was approved. Transmitter may be approved with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest gain antenna of each combination of transmitter and antenna type for which approval is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type having equal or lesser gain as an antenna that had been successfully tested with the transmitter, will also be considered approved with the transmitter, and may be used and marketed with the transmitter. For Category I transmitters, the manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

Report No.: T121012J06-RP

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer.

For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power limits. User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

The above notice may be affixed to the device instead of displayed in the user manual.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number, or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi) and required impedance for each.

Page 20 Rev. 00

RSS-Gen §7.2.4 Transmitter and Receiver AC Power Lines Conducted Emission Limits

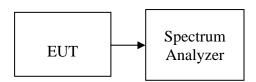
Report No.: T121012J06-RP

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The more stringent limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 ohm/50 microhenry line impedance stabilization network (LISN).

RSS-Gen Table 4 – AC Power Line Conducted Emission Limits

Frequency Range	Conducted limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.5	66 to 56*	56 to 46*	
0.5 to 5	56	46	
5 to 30	60	50	


^{*}Decreases with the logarithm of the frequency.

Page 21 Rev. 00

8. FCC PART 15.249 REQUIREMENTS & RSS-210 REQUIREMENTS

8.199% BANDWIDTH

Test Configuration

TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold.

TEST RESULTS

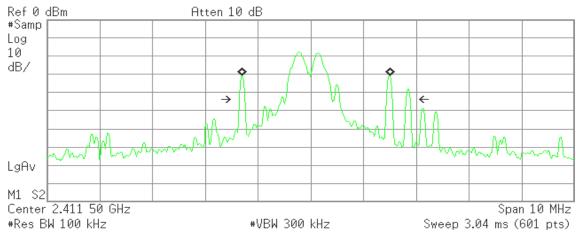
No non-compliance noted.

Test Data

Frequency (MHz)	99% Bandwidth (MHz)
Low	2.7997
Mid	2.7998
High	2.8370

Page 22 Rev. 00

Compliance Certification Services Inc.


FCC ID: Q7HRFTR001 IC: 10692A-RFTR001 Report No.: T121012J06-RP

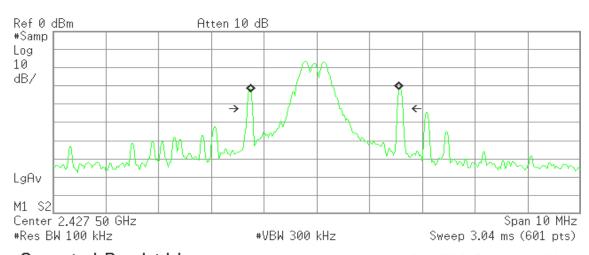
Test Plot

CH Low

* Agilent 10:23:25 Nov 1, 2012

R T

Occupied Bandwidth 2.7997 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 100.990 kHz x dB Bandwidth 3.234 MHz*

CH Mid

* Agilent 10:31:32 Nov 1, 2012

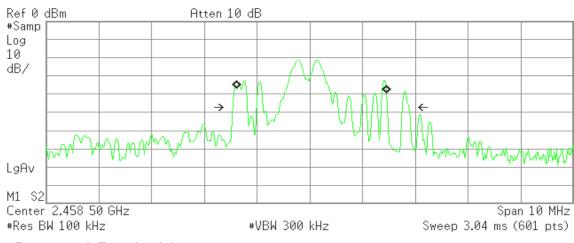
R T

Occupied Bandwidth 2.7998 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 158.028 kHz x dB Bandwidth 2.948 MHz*

Page 23 Rev. 00



Compliance Certification Services Inc.

CH High

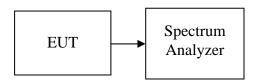
* Agilent 09:29:51 Nov 1, 2012

R T

Occupied Bandwidth 2.8370 MHz

0cc BW % Pwr 99.00 % **x dB** -26.00 dB

Transmit Freq Error 33.885 kHz x dB Bandwidth 3.336 MHz*


Page 24 Rev. 00

8.220 DB BANDWIDTH

LIMIT

None; for reporting purposes only.

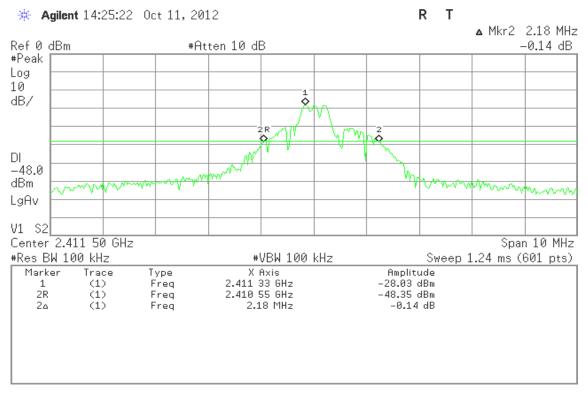
Test Configuration

TEST PROCEDURE

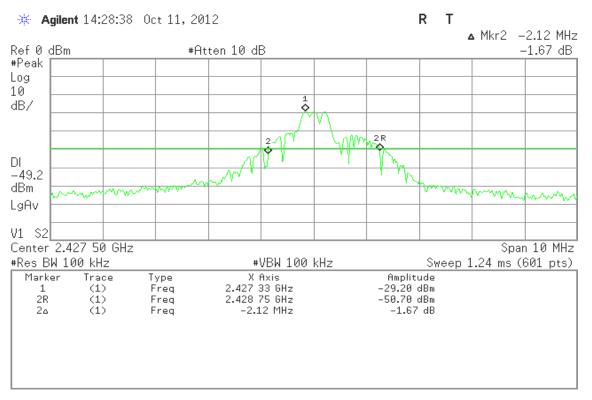
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100kHz, VBW = 100kHz, Span = 10MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

No non-compliance noted

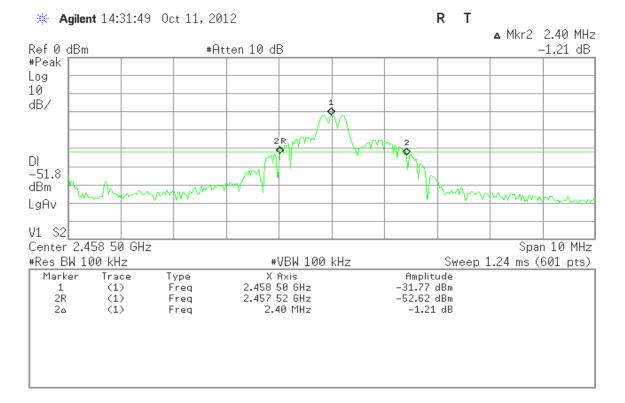

Test Data

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2411.5	2.18
Mid	2427.5	2.12
High	2458.5	2.40


Page 25 Rev. 00

Test Plot

CH Low



CH Mid

Page 26 Rev. 00

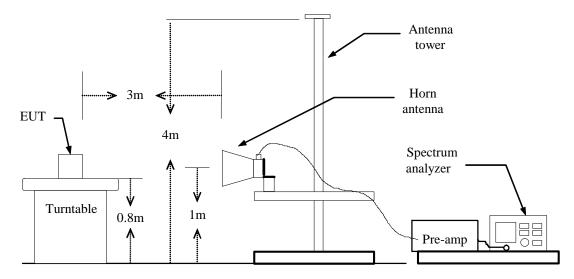
CH High

Page 27 Rev. 00

FCC ID: Q

8.3BAND EDGES MEASUREMENT

LIMIT


1. In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

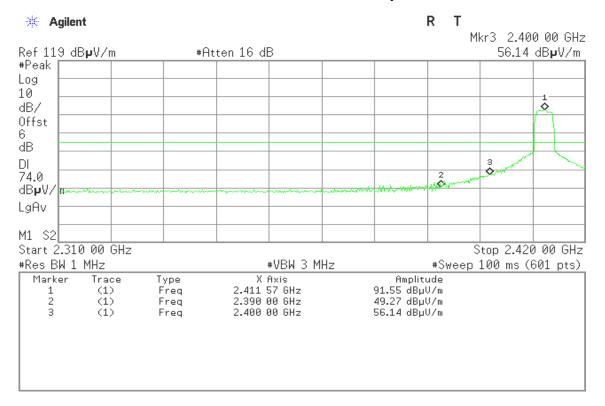
Report No.: T121012J06-RP

2. As shown in Section 15.35(b), for frequencies above 1000 MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

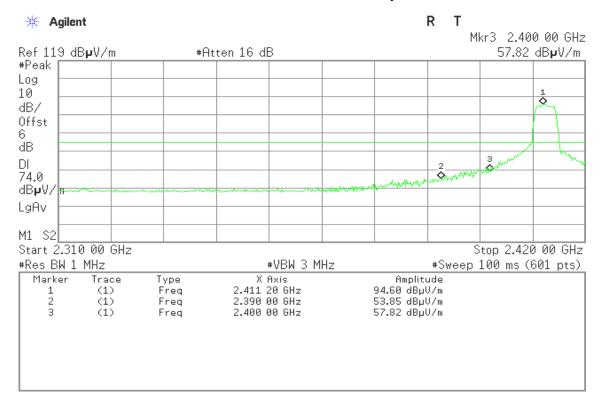

TEST RESULTS

Refer to attach spectrum analyzer data chart.

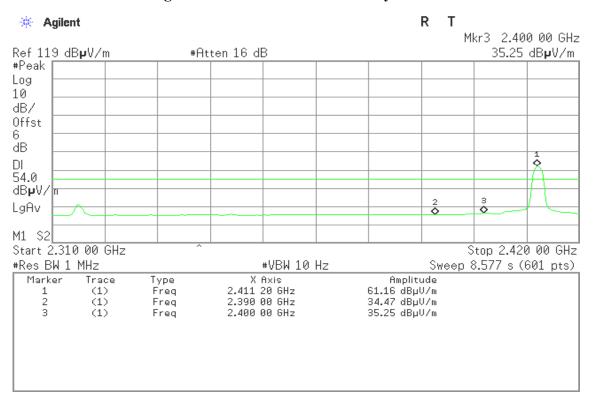
Page 28 Rev. 00

Band Edges (CH Low)

Detector mode: Peak Polarity: Vertical

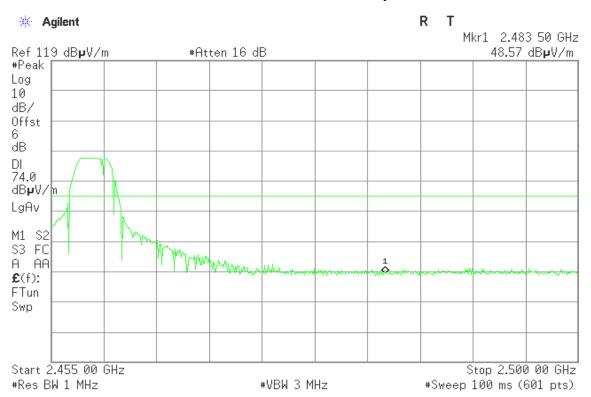


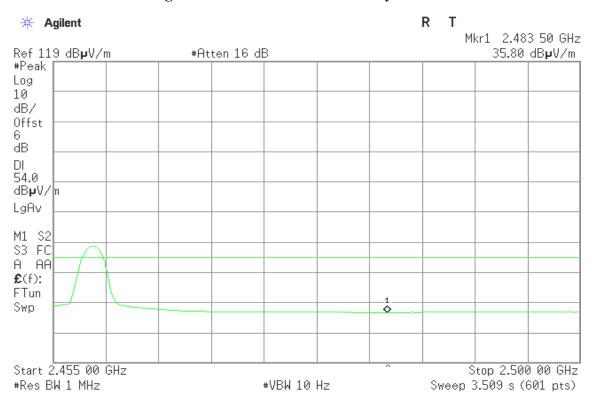
Detector mode: Average Polarity: Vertical



Page 29 Rev. 00

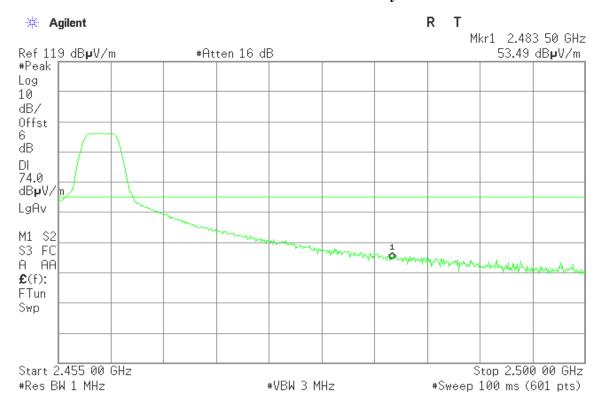
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal


Page 30 Rev. 00

Band Edges (CH High)

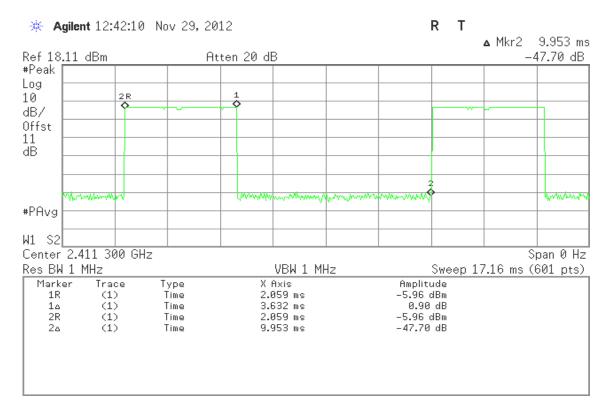
Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical

Page 31 Rev. 00

Detector mode: Peak Polarity: Horizontal


Polarity: Horizontal

Detector mode: Average

R 🔆 Agilent Mkr1 2.483 50 GHz Ref 119 dB**µ**V/m #Atten 16 dB 35.76 dB**µ**V/m #Peak Log 10 dB/ Offst ďΒ DΙ 54.0 dB**µ**V∕n LgAv M1 S2 S3 FC a aal £(f): FTun Swp Start 2.455 00 GHz Stop 2.500 00 GHz #Res BW 1 MHz **#VBW 10 Hz** Sweep 3.509 s (601 pts)

Page 32 Rev. 00

Duty cycle

	Peak	Duty	Average			
Frequency	Reading	cycle	Result	Limit	Margin	Ant.Pol.
(MHz)	(dBuV/m)	(ms)	(dBuV/m)	(dBuV/m)	(dB)	(H/V)
2390	49.27	0.365	17.98	54	-36.02	V
2400	56.14	0.365	20.49	39.17	-18.68	V
2390	53.85	0.365	19.66	54	-34.34	Н
2400	57.82	0.365	21.10	41.16	-20.06	Н

remark:

- 1.Duty cycle(ms)=Ton/(Ton+Toff)
- 2.Avg Result(dBuV/m)=Peak Reading(dBuV/m)*Duty Cycle(ms)

Page 33 Rev. 00

8.4SPURIOUS EMISSION

LIMIT

1. In the section 15.249(a) & RSS-210 §A2.9: Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Report No.: T121012J06-RP

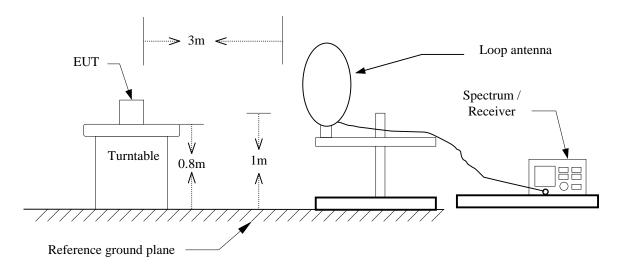
Fundamental Frequency (MHz)	Field Strength of Fundamental Field Strength (mV/m)	Field Strength of Harmonics (μV/m)
902-928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

2. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

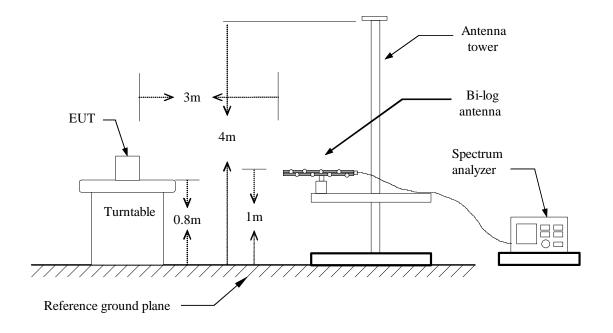
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

3. In the above emission table, the tighter limit applies at the band edges.

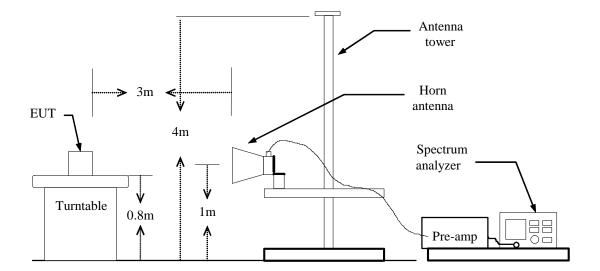

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBμV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Page 34 Rev. 00



Test Configuration

$9kHz \sim 30MHz$


$30MHz \sim 1GHz$

Page 35 Rev. 00

Above 1 GHz

Page 36 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Report No.: T121012J06-RP

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

Page 37 Rev. 00

Below 1 GHz

Operation Mode: Normal Link **Test Date:** October 23, 2012

Report No.: T121012J06-RP

Temperature: 27°C **Tested by:** Shawn Wu **Humidity:** 53% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
47.7833	50.37	-16.96	33.41	40.00	-6.59	peak	V
83.3500	52.19	-18.28	33.91	40.00	-6.09	peak	V
149.6333	45.06	-12.97	32.09	43.50	-11.41	peak	V
354.9500	36.34	-10.22	26.12	46.00	-19.88	peak	V
448.7167	38.34	-8.66	29.68	46.00	-16.32	peak	V
848.0333	31.28	-3.63	27.65	46.00	-18.35	peak	V
138.3167	48.44	-12.69	35.75	43.50	-7.75	peak	Н
149.6333	51.06	-12.97	38.09	43.50	-5.41	peak	Н
162.5667	52.58	-13.36	39.22	43.50	-4.28	peak	Н
342.0167	45.53	-10.42	35.11	46.00	-10.89	peak	Н
600.6833	32.70	-7.13	25.57	46.00	-20.43	peak	Н
757.5000	35.21	-4.69	30.52	46.00	-15.48	peak	Н

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin(dB) = Remark result(dBuV/m) Quasi-peak limit(dBuV/m).

Page 38 Rev. 00

Above 1 GHz

Operation Mode: Tx / CH Low **Test Date:** October 8, 2012

Report No.: T121012J06-RP

Temperature:27°CTested by:Shawn WuHumidity:53% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2410.000	103.42	-12.99	90.43	114.00	-23.57	peak	V
2410.000	72.28	-12.99	59.29	94.00	-34.71	AVG	V
2676.667	62.83	-12.32	50.51	74.00	-23.49	peak	V
4825.000	71.42	-6.32	65.10	74.00	-8.90	peak	V
4825.000	53.65	-6.32	47.33	54.00	-6.67	AVG	V
7233.333	61.65	-1.30	60.35	74.00	-13.65	peak	V
7233.333	48.81	-1.30	47.51	54.00	-6.49	AVG	V
2410.000	106.54	-12.99	93.55	114.00	-20.45	peak	Н
2410.000	73.56	-12.99	60.57	94.00	-33.43	AVG	Н
2123.333	66.73	-13.74	52.99	74.00	-21.01	peak	Н
2123.333	55.10	-13.74	41.36	54.00	-12.64	AVG	Н
2156.667	65.68	-13.65	52.03	74.00	-21.97	peak	Н
2156.667	53.95	-13.65	40.30	54.00	-13.70	AVG	Н
2186.667	66.43	-13.57	52.86	74.00	-21.14	peak	Н
2186.667	55.18	-13.57	41.61	54.00	-12.39	AVG	Н
2316.667	66.26	-13.23	53.03	74.00	-20.97	peak	Н
2316.667	56.37	-13.23	43.14	54.00	-10.86	AVG	Н
4825.000	68.98	-6.32	62.66	74.00	-11.34	peak	Н
4825.000	53.47	-6.32	47.15	54.00	-6.85	AVG	Н
7233.333	61.80	-1.30	60.50	74.00	-13.50	peak	Н
7233.333	48.86	-1.30	47.56	54.00	-6.44	AVG	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result\ (dBuV/m) Average\ limit\ (dBuV/m)$. Peak detector mode and average detector mode of the emission shown in Result column.

Page 39 Rev. 00

Operation Mode: Tx / CH Mid

Test Date: October 8, 2012

Report No.: T121012J06-RP

Temperature: 27°C

Tested by: Shawn Wu

Humidity: 53% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2426.667	102.15	-12.94	89.21	114.00	-24.79	peak	V
2426.667	71.73	-12.94	58.79	94.00	35.81	AVG	V
2330.000	63.51	-13.20	50.31	74.00	-23.69	peak	V
4858.333	71.96	-6.23	65.73	74.00	-8.27	peak	V
4858.333	53.63	-6.23	47.40	54.00	-6.60	AVG	V
7283.333	62.27	-1.24	61.03	74.00	-12.97	peak	V
7283.333	49.17	-1.24	47.93	54.00	-6.07	AVG	V
2426.667	110.05	-12.94	97.11	114.00	-16.89	peak	Н
2426.667	75.16	-12.94	62.22	94.00	-31.87	AVG	Н
2140.000	66.57	-13.69	52.88	74.00	-21.12	peak	Н
2140.000	55.25	-13.69	41.56	54.00	-12.44	AVG	Н
2170.000	66.02	-13.61	52.41	74.00	-21.59	peak	Н
2170.000	55.98	-13.61	42.37	54.00	-11.63	AVG	Н
2203.333	67.31	-13.53	53.78	74.00	-20.22	peak	Н
2203.333	55.65	-13.53	42.12	54.00	-11.88	AVG	Н
2330.000	65.96	-13.20	52.76	74.00	-21.24	peak	Н
2330.000	54.17	-13.20	40.97	54.00	-13.03	AVG	Н
4858.333	71.36	-6.23	65.13	74.00	-8.87	peak	Н
4858.333	53.60	-6.23	47.37	54.00	-6.63	AVG	Н
7283.333	62.70	-1.24	61.46	74.00	-12.54	peak	Н
7283.333	50.56	-1.24	49.32	54.00	-4.68	AVG	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark \ result(dBuV/m) Average \ limit(dBuV/m)$. Peak detector mode and average detector mode of the emission shown in Result column.

Page 40 Rev. 00

Operation Mode: Tx / CH High Test Date: October 8, 2012

Report No.: T121012J06-RP

Temperature: 27°C **Tested by:** Shawn Wu

Humidity: 53% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
2456.667	99.86	-12.86	87.00	114.00	-27.00	peak	V
2456.667	70.62	-12.86	57.76	94.00	-36.24	AVG	V
1746.667	67.87	-16.53	51.34	74.00	-22.66	peak	V
4916.667	72.06	-6.08	65.98	74.00	-8.02	peak	V
4916.667	53.43	-6.08	47.35	54.00	-6.65	AVG	V
7375.000	63.51	-1.13	62.38	74.00	-11.62	peak	V
7375.000	47.96	-1.13	46.83	54.00	-7.17	AVG	V
2456.667	108.14	-12.86	95.28	114.00	-18.72	peak	Н
2456.667	74.28	-12.86	61.42	94.00	-32.58	AVG	Н
2170.000	67.23	-13.61	53.62	74.00	-20.38	peak	Н
2170.000	56.29	-13.61	42.68	54.00	-11.32	AVG	Н
2203.333	65.33	-13.53	51.80	74.00	-22.20	peak	Н
2203.333	53.91	-13.53	40.38	54.00	-13.62	AVG	Н
2233.333	66.93	-13.45	53.48	74.00	-20.52	peak	Н
2233.333	55.42	-13.45	41.97	54.00	-12.03	AVG	Н
2363.333	64.74	-13.11	51.63	74.00	-22.37	peak	Н
4916.667	73.66	-6.08	67.58	74.00	-6.42	peak	Н
4916.667	55.88	-6.08	49.80	54.00	-4.20	AVG	Н
7375.000	64.98	-1.13	63.85	74.00	-10.15	peak	Н
7375.000	49.22	-1.13	48.09	54.00	-5.91	AVG	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result\ (dBuV/m) Average\ limit\ (dBuV/m)$. Peak detector mode and average detector mode of the emission shown in Result column.

Page 41 Rev. 00

8.5 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a) & RSS-Gen §7.2.4, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Report No.: T121012J06-RP

Frequency Range (MHz)	Limits (dBµV)			
(WIIIZ)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

Not applicable, because EUT not connect to AC Main Source direct.

Page 42 Rev. 00