

VDA MULTIMEDIA SPA
Viale Lino Zanussi, 3, 33170 Pordenone (PN) - Italy

Federal Communications Commission
Authorization and Evaluation Division
Equipment Authorization Branch
7435 Oakland Mills Road
Columbia, MD 21046

Applicant's declaration concerning RF Radiation Exposure

We hereby indicate that the product
Product description: IP Set top box
Model No: Onair+ SBB

The equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. The integral antennas used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter within the host device.

A safety statement concerning minimum separation distances from enclosure of the
Product : IP Set top box
will be integrated in the user's manual to provide end-users with transmitter operating
conditions for satisfying RF exposure compliance.

The appropriate information can be drawn from the test report no: W6M21307-13349-C-1
and the accompanying calculations.

Company: VDA MULTIMEDIA SPA
Address: Viale Lino Zanussi, 3, 33170 Pordenone (PN) - Italy

Date: July 16, 2013

Signature

VDA **Multimedia s.p.A.**
Viale L. Zanussi, 3 - 33170 PORDENONE
Tel. 0434-516111
P.I. e C.F. 00632290938 - Reg. Imp. PN n. 125793

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21307-13349-FCC
FCC ID: Q7A66000W00

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)

EIRP = max. conducted output power + antenna gain (Directional gain)

$$\begin{aligned} \text{EIRP} &= 23.45 \text{ dBm} + 4.9 \text{ dBi} \\ &= 28.35 \text{ dBm} \end{aligned}$$

Limit: EIRP = +36 dBm for Antenna gain <6dBi

Test equipment used: ETSTW-RE 055

3.3 RF Exposure Compliance Requirements

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a “worst case” or conservative prediction.

$$S = \frac{P G}{4 \pi R^2}$$

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain

Item	Unit	Value	Remarks
P	mW	221.31	Peak value
D	dB		
AG	dBi	4.9	
G		3.09	Calculated Value
R	cm	20	Assumed value
S	mW/cm^2	0.136	Calculated value

Limits:

Limit for General Population / Uncontrolled Exposure	
Frequency (MHz)	Power Density (mW/cm^2)
1500 – 100.000	1.0