

Report No.: RZA2010-0952



# OET 65 TEST REPORT

Product Name

GSM Dual-Mode Digital Mobile Phone

ZTE-G S316

FCC ID

Q78-ZTEGS316

ZTE CORPORATION

TA Technology (Shanghai) Co., Ltd. 报告专用章

## **GENERAL SUMMARY**

| Product Name             | GSM Dual-Mode Digital Mobile Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Model      | ZTE-G S316   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| FCC ID                   | Q78-ZTEGS316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Report No. | RZA2010-0952 |
| Client                   | ZTE CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |
| Manufacturer             | ZTE CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |              |
| Reference<br>Standard(s) | IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.  Supplement C Edition 01-01 To OET Bulletin 65 Edition 97-01 June 2001 Including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.  IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. |            |              |
| Conclusion               | Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.  General Judgment: Pass  (Stamp)  Date of issue: June 25 <sup>th</sup> , 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |
| Comment                  | The test result only responds to the measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sample.    |              |

Approved by // !

Revised by\_

Performed by\_

Xue Chaofeng

Yang Weizhong

Ling Minbao

# **TABLE OF CONTENT**

| 1.1. Notes of the test report                                                     | 5  |
|-----------------------------------------------------------------------------------|----|
| The state of the took report                                                      |    |
| 1.2. Testing laboratory                                                           | 5  |
| 1.3. Applicant Information                                                        | 6  |
| 1.4. Manufacturer Information                                                     | 6  |
| 1.5. Information of EUT                                                           | 7  |
| 1.6. The Maximum SAR <sub>1g</sub> Values and Conducted Power of each tested band | 8  |
| 1.7. Test Date                                                                    | 8  |
| 2. Operational Conditions during Test                                             | g  |
| 2.1. General description of test procedures                                       | ç  |
| 2.2. GSM Test Configuration                                                       | 9  |
| 3. SAR Measurements System Configuration                                          | 10 |
| 3.1. SAR Measurement Set-up                                                       | 10 |
| 3.2. DASY 4 E-field Probe System                                                  | 11 |
| 3.2.1. EX3DV4 Probe Specification                                                 | 11 |
| 3.2.2. E-field Probe Calibration                                                  | 12 |
| 3.3. Other Test Equipment                                                         | 12 |
| 3.3.1. Device Holder for Transmitters                                             | 12 |
| 3.3.2. Phantom                                                                    | 13 |
| 3.4. Scanning procedure                                                           | 13 |
| 3.5. Data Storage and Evaluation                                                  | 15 |
| 3.5.1. Data Storage                                                               | 15 |
| 3.5.2. Data Evaluation by SEMCAD                                                  | 15 |
| 3.6. System check                                                                 | 18 |
| 3.7. Equivalent Tissues                                                           | 19 |
| 4. Laboratory Environment                                                         | 20 |
| 5. Characteristics of the Test                                                    | 20 |
| 5.1. Applicable Limit Regulations                                                 | 20 |
| 5.2. Applicable Measurement Standards                                             | 20 |
| 6. Conducted Output Power Measurement                                             | 21 |
| 6.1. Summary                                                                      |    |
| 6.2. Conducted Power Results                                                      | 21 |
| 7. Test Results                                                                   | 22 |
| 7.1. Dielectric Performance                                                       | 22 |
| 7.2. System Check Results                                                         | 23 |
| 7.3. Summary of Measurement Results                                               |    |
| 7.3.1. GSM850                                                                     |    |
| 7.3.2. GSM1900                                                                    | 25 |
| 8. Measurement Uncertainty                                                        | 26 |
| 9. Main Test Instruments                                                          |    |

| Report No. RZA2010-0952                             | Page 4of 94 |
|-----------------------------------------------------|-------------|
| ANNEX A: Test Layout                                | 28          |
| ANNEX B: System Check Results                       |             |
| ANNEX C: Graph Results                              | 35          |
| ANNEX D: Probe Calibration Certificate              | 59          |
| ANNEX E: D835V2 Dipole Calibration Certificate      | 68          |
| ANNEX F: D1900V2 Dipole Calibration Certificate     | 77          |
| ANNEX G: DAE4 Calibration Certificate               | 86          |
| ANNEX H: The EUT Appearances and Test Configuration | 91          |

Report No. RZA2010-0952 Page 5of 94

## 1. General Information

#### 1.1. Notes of the test report

**TA Technology (Shanghai) Co., Ltd.** guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

**TA Technology (Shanghai) Co., Ltd.** is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

### 1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RZA2010-0952 Page 6of 94

## 1.3. Applicant Information

Company: ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Address:

Guangdong, 518057, P.R. China

City: Shenzhen

Postal Code: 518057

Country: P.R. China

Contact: Zhang Min

Telephone: 021-68897541

Fax: 021-50801070

#### 1.4. Manufacturer Information

Company: ZTE CORPORATION

Address: ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen,

Guangdong, 518057, P.R. China

City: Shenzhen

Postal Code: 518057

Country: P.R. China

Telephone: 021-68897541

Fax: 021-50801070

Report No. RZA2010-0952 Page 7of 94

## 1.5. Information of EUT

## **General information**

| Device Type :                     | Portable Device                               |                 |                 |  |
|-----------------------------------|-----------------------------------------------|-----------------|-----------------|--|
| Exposure Category:                | Uncontrolled Environment / General Population |                 |                 |  |
| Product Name:                     | GSM Dual-Mode Digital Mobile Phone            |                 |                 |  |
| IMEI or S/N:                      | 358530030076503                               |                 |                 |  |
| Device Operating Configurations : |                                               |                 |                 |  |
| Supporting Mode(s):               | GSM 850; (tested) GSM 1900; (tested)          |                 |                 |  |
| Test Modulation:                  | GMSK                                          |                 |                 |  |
|                                   | Band                                          | Tx (MHz)        | Rx (MHz)        |  |
| Operating Frequency Range(s):     | GSM 850                                       | 824.2 ~ 848.8   | 869.2 ~ 893.8   |  |
|                                   | GSM 1900                                      | 1850.2 ~ 1909.8 | 1930.2 ~ 1989.8 |  |
| D Ola                             | GSM 850: 4, tested with power level 5         |                 |                 |  |
| Power Class                       | GSM 1900: 1, tested with power level 0        |                 |                 |  |
| Test Channel                      | 128 - 190 - 251                               | (GSM850) (tes   | ted)            |  |
| (Low - Middle - High)             | 512 - 661 - 810                               | (GSM1900) (tes  | ted)            |  |
| Hardware Version:                 | g9jA                                          |                 |                 |  |
| Software Version:                 | P108A37(U)B01-FrEs-01\\ng9jA                  |                 |                 |  |
| Antenna Type:                     | Internal Antenna                              |                 |                 |  |

Report No. RZA2010-0952 Page 8of 94

#### **Auxiliary equipment details**

AE1:Battery

Model: Li3705T42P3h383863

Manufacturer: ZTE CORPORATION

S/N: 30030910200063513

**AE2:Travel Adapter** 

Model: STC-A22O50U8-C

Manufacturer: ZTE CORPORATION

S/N: 800910191178667

Equipment Under Test (EUT) is a model of GSM Dual-Mode Digital Mobile Phone with internal antenna. The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in chapter 1.5 in this report. SAR is tested for GSM 850 and GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

## 1.6. The Maximum SAR<sub>1g</sub> Values and Conducted Power of each tested band

| Band     | SAR <sub>1g</sub> | (W/kg) | Conducted  |
|----------|-------------------|--------|------------|
| Ballu    | Head              | Body   | Power(dBm) |
| GSM 850  | 1.480             | 0.488  | 31.84      |
| GSM 1900 | 0.874             | 0.103  | 28.87      |

## 1.7. Test Date

The test is performed on June 25, 2010.

Report No. RZA2010-0952 Page 9of 94

## 2. Operational Conditions during Test

#### 2.1. General description of test procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, allocated to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

## 2.2. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to 5" in SAR of GSM 850, set to 0" in SAR of GSM 1900. The test in the band of GSM 850 and GSM 1900 are performed in the mode of speech transfer function.

## 3. SAR Measurements System Configuration

#### 3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

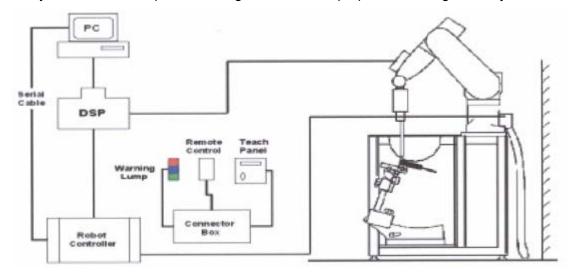



Figure 1 SAR Lab Test Measurement Set-up

## 3.2. DASY 4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

#### 3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service

available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity  $\pm$  0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10  $\mu$ W/g to > 100 mW/g Linearity:

 $\pm$  0.2dB (noise: typically < 1  $\mu$ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.



Figure 2.EX3DV4 E-field Probe



Figure 3. EX3DV4 E-field probe

#### 3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than  $\pm$  10%. The spherical isotropy was evaluated and found to be better than  $\pm$  0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where:  $\Delta t = \text{Exposure time (30 seconds)}$ ,

C = Heat capacity of tissue (brain or muscle),

 $\Delta T$  = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m3).

#### 3.3. Other Test Equipment

#### 3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the

The amount of dielectric material
has been reduced in the closest vicinity of the
device, since measurements have suggested that the
inference of the clamp on the test results could thus be lowered.



Figure 4.Device Holder

#### 3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special



Figure 5.Generic Twin Phantom

#### 3.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

#### Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values

Report No. RZA2010-0952

Page 14of 94

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

#### Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

#### Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

#### 3.5. Data Storage and Evaluation

#### 3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### 3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi,  $a_{i0}$ ,  $a_{i1}$ ,  $a_{i2}$ 

Conversion factor
 Diode compression point
 Dcp<sub>i</sub>

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With  $V_i$  = compensated signal of channel i (i = x, y, z)

 $U_i$  = input signal of channel i (i = x, y, z)

**cf** = crest factor of exciting field (DASY parameter)

**dcp**<sub>i</sub> = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ 

H-field probes:  $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$ 

With  $V_i$  = compensated signal of channel i (i = x, y, z)

**Norm**<sub>i</sub> = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)<sup>2</sup>] for E-field Probes

**ConvF** = sensitivity enhancement in solution

 $a_{ij}$  = sensor sensitivity factors for H-field probes

**f** = carrier frequency [GHz]

 $E_i$  = electric field strength of channel i in V/m

 $H_i$  = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / ( \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$  = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or  $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$ 

with  $P_{pwe}$  = equivalent power density of a plane wave in mW/cm<sup>2</sup>

 $E_{tot}$  = total electric field strength in V/m

 $H_{tot}$  = total magnetic field strength in A/m

#### 3.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY 4 system.

3D Probe positioner

Field probe
Flat Phantom
Dipole

Signal
Generator

Att2

PM3

Att2

PM3

Att2

PM3

Figure 6. System Check Set-up

## 3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

**Table 1: Composition of the Head Tissue Equivalent Matter** 

| MIXTURE%                              | FREQUENCY(Brain) 835MHz |  |
|---------------------------------------|-------------------------|--|
| Water                                 | 41.45                   |  |
| Sugar                                 | 56                      |  |
| Salt                                  | 1.45                    |  |
| Preventol                             | 0.1                     |  |
| Cellulose                             | 1.0                     |  |
| Dielectric Parameters<br>Target Value | f=835MHz ε=41.5 σ=0.9   |  |

| MIXTURE%                              | FREQUENCY(Brain)1900MHz |  |
|---------------------------------------|-------------------------|--|
| Water                                 | 55.242                  |  |
| Glycol monobutyl                      | 44.452                  |  |
| Salt                                  | 0.306                   |  |
| Dielectric Parameters<br>Target Value | f=1900MHz ε=40.0 σ=1.40 |  |

**Table 2: Composition of the Body Tissue Equivalent Matter** 

| MIXTURE%              | FREQUENCY(Body)835MHz   |  |  |
|-----------------------|-------------------------|--|--|
| Water                 | 52.5                    |  |  |
| Sugar                 | 45                      |  |  |
| Salt                  | 1.4                     |  |  |
| Preventol             | 0.1                     |  |  |
| Cellulose             | 1.0                     |  |  |
| Dielectric Parameters | f=835MHz ε=55.2 σ=0.97  |  |  |
| Target Value          | 1-033WI12 E-35.2 0-0.57 |  |  |

| MIXTURE%                              | FREQUENCY (Body) 1900MHz |  |
|---------------------------------------|--------------------------|--|
| Water                                 | 69.91                    |  |
| Glycol monobutyl                      | 29.96                    |  |
| Salt                                  | 0.13                     |  |
| Dielectric Parameters<br>Target Value | f=1900MHz ε=53.3 σ=1.52  |  |

## 4. Laboratory Environment

**Table 3: The Ambient Conditions during Test** 

| Temperature                                                                                     | Min. = 20°C, Max. = 25 °C |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------|--|--|
| Relative humidity                                                                               | Min. = 30%, Max. = 70%    |  |  |
| Ground system resistance                                                                        | < 0.5 Ω                   |  |  |
| Ambient noise is checked and found very low and in compliance with requirement of standards.    |                           |  |  |
| Reflection of surrounding objects is minimized and in compliance with requirement of standards. |                           |  |  |

#### 5. Characteristics of the Test

## 5.1. Applicable Limit Regulations

**IEEE Std C95.1, 1999:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 5.2. Applicable Measurement Standards

Supplement C Edition 01-01 To OET Bulletin 65 Edition 97-01 June 2001 Including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.

**IEEE Std 1528™-2003:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

## 6. Conducted Output Power Measurement

## 6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

#### 6.2. Conducted Power Results

**Table 4: Conducted Power Measurement Results** 

| GSM 850           | Conducted Power |             |             |  |
|-------------------|-----------------|-------------|-------------|--|
| GSW 630           | Channel 128     | Channel 190 | Channel 251 |  |
| Before Test (dBm) | 31.84           | 31.78       | 31.74       |  |
| After Test (dBm)  | 31.82           | 31.77       | 31.73       |  |
| CSM 1000          | Conducted Power |             |             |  |
| GSM 1900          | Channel 512     | Channel 661 | Channel 810 |  |
| Before Test (dBm) | 28.58           | 28.67       | 28.87       |  |
| After Test (dBm)  | 28.58           | 28.66       | 28.86       |  |

## 7. Test Results

## 7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

| Frequency | Description       | Dielectric Parameters |              | Temp |
|-----------|-------------------|-----------------------|--------------|------|
| rrequency | ε <sub>r</sub>    | σ(s/m)                | $^{\circ}$ C |      |
|           | Target value      | 41.5                  | 0.90         | ,    |
| 835MHz    | ±5% window        | 39.43 — 43.58         | 0.86 — 0.95  | ,    |
| (head)    | Measurement value | 42.53                 | 0.93         | 21.8 |
|           | 2010-6-25         | 42.53                 | 0.93         | 21.0 |
|           | Target value      | 40.0                  | 1.40         | ,    |
| 1900MHz   | 5% window         | 38 — 42               | 1.33 — 1.47  | ,    |
| (head)    | Measurement value | 40.2                  | 1.41         | 21.9 |
|           | 2010-6-25         | 40.2                  | 1.41         | 21.9 |

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

| Frequency | Description       | Dielectric Par | Temp        |                 |  |
|-----------|-------------------|----------------|-------------|-----------------|--|
| Frequency | Description       | ε <sub>r</sub> |             | ${\mathfrak C}$ |  |
|           | Target value      | 55.20          | 0.97        | ,               |  |
| 835MHz    | ±5% window        | 52.44 — 57.96  | 0.92 — 1.02 | /               |  |
| (body)    | Measurement value | FF 27          | 1.00        | 21.8            |  |
|           | 2010-6-25         | 55.37          | 1.00        | 21.0            |  |
|           | Target value      | 53.3           | 1.52        | ,               |  |
| 1900MHz   | ±5% window        | 50.64 — 55.97  | 1.44 — 1.60 | 1               |  |
| (body)    | Measurement value | 50.00          |             | 21.9            |  |
|           | 2010-6-25         | 52.29          | 1.55        | 21.9            |  |

## 7.2. System Check Results

Table 7: System Check for Head Tissue Simulating Liquid

| Frequency  | Description        | SAR         | Die<br>Para  | Temp           |        |            |
|------------|--------------------|-------------|--------------|----------------|--------|------------|
|            |                    | 10g         | 1g           | ε <sub>r</sub> | σ(s/m) | $^{\circ}$ |
|            | Recommended result | 1.58        | 2.42         | 40 E           | 0.89   | ,          |
| 835MHz     | ±10% window        | 1.42 - 1.74 | 2.18 - 2.66  | 40.5           | 0.09   | ,          |
| OSSIVITIZ  | Measurement value  | 1.62        | 2.48         | 42.53          | 0.93   | 21.9       |
|            | 2010-6-25          | 1.02        |              |                |        | 21.9       |
|            | Recommended result | 5.38        | 10.3         | 41             | 1.42   | ,          |
| 1900MHz    | 10% window         | 4.84 — 5.92 | 9.27 — 11.33 | 41             | 1.42   | /          |
| I JUUIVINZ | Measurement value  | 5.46        | 10.6         | 40.0           | 1.41   | 22.1       |
|            | 2010-6-25          | 5.46        | 10.6         | 40.2           |        | 22.1       |

Note: 1. the graph results see ANNEX B.

Table 8: System Check for Body Tissue Simulating Liquid

| Frequency | Description                       | SAR                 | Dielectric<br>Parameters |       | Temp   |                        |
|-----------|-----------------------------------|---------------------|--------------------------|-------|--------|------------------------|
|           |                                   | 10g                 | 1g                       | ٤r    | σ(s/m) | $^{\circ}\!\mathbb{C}$ |
| 835MHz    | Recommended result ±10% window    | 1.68<br>1.51 - 1.85 | 2.56<br>2.30 - 2.82      | 53    | 0.99   | 1                      |
| 033WH2    | Measurement value 2010-6-25       | 1.68                | 2.56                     | 55.37 | 1.00   | 21.9                   |
| 1900 MHz  | Recommended result<br>±10% window | 5.52<br>4.97—6.07   | 10.50<br>9.45 — 11.55    | 54.00 | 1.55   | 1                      |
| 1900 MHZ  | Measurement value 2010-6-25       | 5.17                | 9.73                     | 52.29 | 1.55   | 21.7                   |

Note: 1. The graph results see ANNEX B.

<sup>2.</sup> Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

<sup>2.</sup> Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

### 7.3. Summary of Measurement Results

#### 7.3.1. GSM850

Table 9: SAR Values (GSM850)

| Limit of SAR (W/k               | g)      | 10 g Average         1 g Average           2.0         1.6 |                | Power Drift (dB) ± 0.21 | Graph     |  |
|---------------------------------|---------|------------------------------------------------------------|----------------|-------------------------|-----------|--|
| Test Case                       |         | Measuremen                                                 | t Result(W/kg) | Power                   | Results   |  |
| lest oase                       | _       | 10 g Average                                               | 1 g Average    | Drift                   |           |  |
| Different Test Position Channel |         | To g Average                                               | i g Average    | (dB)                    |           |  |
|                                 |         | Test position of                                           | Head           |                         |           |  |
|                                 | High    | 0.968                                                      | 1.400          | 0.013                   | Figure 11 |  |
| Left hand, Touch cheek          | Middle  | 0.876                                                      | 1.260          | -0.120                  | Figure 12 |  |
|                                 | Low     | 0.727                                                      | 1.050          | -0.186                  | Figure 13 |  |
| Left hand, Tilt 15 Degree       | Middle  | 0.429                                                      | 0.616          | -0.032                  | Figure 14 |  |
|                                 | High    | 1.030                                                      | 1.480          | -0.020                  | Figure 15 |  |
| Right hand, Touch cheek         | Middle  | 0.893                                                      | 1.280          | -0.031                  | Figure 16 |  |
|                                 | Low     | 0.781                                                      | 1.120          | -0.042                  | Figure 17 |  |
| Right hand, Tilt 15 Degree      | Middle  | 0.400                                                      | 0.614          | -0.041                  | Figure 18 |  |
|                                 | Test po | osition of Body (Di                                        | stance 15mm)   |                         |           |  |
| Towards Ground Middle           |         | 0.248                                                      | 0.342          | 0.010                   | Figure 19 |  |
|                                 | High    | 0.350                                                      | 0.488          | -0.024                  | Figure 20 |  |
| Towards phantom                 | Middle  | 0.254                                                      | 0.354          | 0.126                   | Figure 21 |  |
|                                 | Low     | 0.253                                                      | 0.352          | -0.013                  | Figure 22 |  |

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

Report No. RZA2010-0952

Page 25of 94

#### 7.3.2. GSM1900

Table 10: SAR Values (GSM1900)

| Limit of SAR (W/kg         | 10 g Average 2.0 Measurement | 1 g<br>Average<br>1.6<br>Result(W/kg) | Power Drift (dB) ± 0.21 Power | Graph<br>Results |           |  |
|----------------------------|------------------------------|---------------------------------------|-------------------------------|------------------|-----------|--|
| Different Test Position    | Channal                      | 10 g<br>Average                       | 1 g<br>Average                | Drift<br>(dB)    |           |  |
| Different fest Position    | Channel                      |                                       |                               | (0.2)            |           |  |
|                            |                              | Test position of H                    | lead                          | T                |           |  |
|                            | High                         | 0.477                                 | 0.874                         | -0.041           | Figure 23 |  |
| Left hand, Touch cheek     | Middle                       | 0.468                                 | 0.857                         | -0.031           | Figure 24 |  |
|                            | Low                          | 0.471                                 | 0.868                         | -0.167           | Figure 25 |  |
| Left hand, Tilt 15 Degree  | Middle                       | 0.180                                 | 0.322                         | -0.152           | Figure 26 |  |
| Right hand, Touch cheek    | Middle                       | 0.308                                 | 0.554                         | -0.084           | Figure 27 |  |
| Right hand, Tilt 15 Degree | Middle                       | 0.138                                 | 0.244                         | -0.072           | Figure 28 |  |
|                            | Test po                      | sition of Body (Dis                   | tance 15mm)                   |                  |           |  |
| Towards Ground             | Middle                       | 0.036                                 | 0.059 0.07                    |                  | Figure 29 |  |
|                            | High                         | 0.054                                 | 0.090                         | -0.029           | Figure 30 |  |
| Towards phantom            | Middle                       | 0.056                                 | 0.095                         | -0.102           | Figure 31 |  |
|                            | Low                          | 0.063                                 | 0.103                         | -0.053           | Figure 32 |  |

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

Report No. RZA2010-0952

Page 26of 94

# 8. Measurement Uncertainty

| No. | source                                                                          | Туре | Uncertaint<br>y Value<br>(%) | Probability<br>Distributio<br>n | k          | Ci           | Standard ncertainty $u_i^{'}(\%)$ | Degree of<br>freedom<br>V <sub>eff</sub> or v <sub>i</sub> |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------|------|------------------------------|---------------------------------|------------|--------------|-----------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|
| 1   | System repetivity                                                               | Α    | 0.5                          | N                               | 1          | 1            | 0.5                               | 9                                                          |  |  |  |  |  |  |  |
|     | Measurement system                                                              |      |                              |                                 |            |              |                                   |                                                            |  |  |  |  |  |  |  |
| 2   | probe calibration                                                               | В    | 5.9                          | N                               | 1          | 1            | 5.9                               | ∞                                                          |  |  |  |  |  |  |  |
| 3   | axial isotropy of the probe                                                     | В    | 4.7                          | R                               | $\sqrt{3}$ | $\sqrt{0.5}$ | 1.9                               | ∞                                                          |  |  |  |  |  |  |  |
| 4   | Hemispherical isotropy of the probe                                             | В    | 9.4                          | R                               | $\sqrt{3}$ | $\sqrt{0.5}$ | 3.9                               | ∞                                                          |  |  |  |  |  |  |  |
| 6   | boundary effect                                                                 | В    | 1.9                          | R                               | $\sqrt{3}$ | 1            | 1.1                               | ∞                                                          |  |  |  |  |  |  |  |
| 7   | probe linearity                                                                 | В    | 4.7                          | R                               | $\sqrt{3}$ | 1            | 2.7                               | ∞                                                          |  |  |  |  |  |  |  |
| 8   | System detection limits                                                         | В    | 1.0                          | R                               | $\sqrt{3}$ | 1            | 0.6                               | ∞                                                          |  |  |  |  |  |  |  |
| 9   | readout Electronics                                                             | В    | 1.0                          | Ν                               | 1          | 1            | 1.0                               | ∞                                                          |  |  |  |  |  |  |  |
| 10  | response time                                                                   | В    | 0                            | R                               | $\sqrt{3}$ | 1            | 0                                 | ∞                                                          |  |  |  |  |  |  |  |
| 11  | integration time                                                                | В    | 4.32                         | R                               | $\sqrt{3}$ | 1            | 2.5                               | ∞                                                          |  |  |  |  |  |  |  |
| 12  | noise                                                                           | В    | 0                            | R                               | $\sqrt{3}$ | 1            | 0                                 | ∞                                                          |  |  |  |  |  |  |  |
| 13  | RF Ambient Conditions                                                           | В    | 3                            | R                               | $\sqrt{3}$ | 1            | 1.73                              | ∞                                                          |  |  |  |  |  |  |  |
| 14  | Probe Positioner Mechanical Tolerance                                           | В    | 0.4                          | R                               | $\sqrt{3}$ | 1            | 0.2                               | ∞                                                          |  |  |  |  |  |  |  |
| 15  | Probe Positioning with respect to Phantom Shell                                 | В    | 2.9                          | R                               | $\sqrt{3}$ | 1            | 1.7                               | ∞                                                          |  |  |  |  |  |  |  |
| 16  | Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation | В    | 3.9                          | R                               | $\sqrt{3}$ | 1            | 2.3                               | ∞                                                          |  |  |  |  |  |  |  |
|     | Test sample Related                                                             |      |                              |                                 |            |              |                                   |                                                            |  |  |  |  |  |  |  |
| 17  | -Test Sample Positioning                                                        | Α    | 2.9                          | N                               | 1          | 1            | 2.9                               | 5                                                          |  |  |  |  |  |  |  |
| 18  | -Device Holder Uncertainty                                                      | Α    | 4.1                          | N                               | 1          | 1            | 4.1                               | 5                                                          |  |  |  |  |  |  |  |
| 19  | -Output Power Variation - SAR drift measurement                                 | В    | 5.0                          | R                               | $\sqrt{3}$ | 1            | 2.9                               | ∞                                                          |  |  |  |  |  |  |  |
|     |                                                                                 | Ph   | ysical parame                | ter                             |            |              |                                   | Physical parameter                                         |  |  |  |  |  |  |  |

Report No. RZA2010-0952

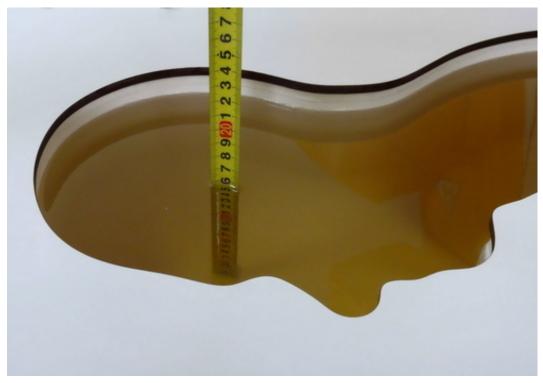
Page 27of 94

| 20                            | -phantom                                           | В           | 4.0                                  | R | $\sqrt{3}$ | 1        | 2.3  | 80 |
|-------------------------------|----------------------------------------------------|-------------|--------------------------------------|---|------------|----------|------|----|
| 21                            | -liquid conductivity (deviation from target)       | В           | 5.0                                  | R | $\sqrt{3}$ | 0.6<br>4 | 1.8  | ∞  |
| 22                            | -liquid conductivity (measurement uncertainty)     | В           | 5.0                                  | N | 1          | 0.6<br>4 | 3.2  | ∞  |
| 23                            | -liquid permittivity (deviation from target)       | В           | 5.0                                  | R | $\sqrt{3}$ | 0.6      | 1.7  | ∞  |
| 24                            | -liquid permittivity (measurement uncertainty )    | В           | 5.0                                  | N | 1          | 0.6      | 3.0  | ∞  |
| Combined standard uncertainty |                                                    | $u_c^{'} =$ | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |   |            |          | 12.0 |    |
| 1                             | Expanded uncertainty (confidence interval of 95 %) |             | $u_c = 2u_c$                         | N | k=         | 2        | 24.0 |    |

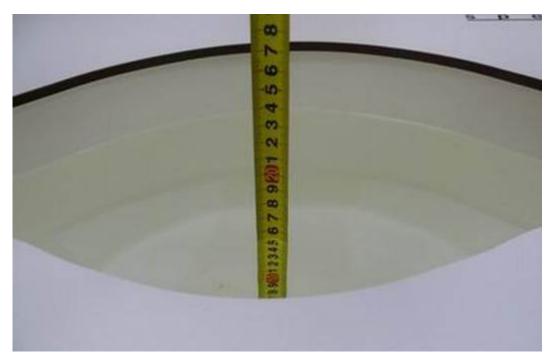
## 9. Main Test Instruments

**Table 11: List of Main Instruments** 

| No. | Name                   | Туре           | Serial<br>Number | Calibration Date   | Valid<br>Period |
|-----|------------------------|----------------|------------------|--------------------|-----------------|
| 01  | Network analyzer       | Agilent 8753E  | US37390326       | September 13, 2009 | One year        |
| 02  | Dielectric Probe Kit   | Agilent 85070E | US44020115       | No Calibration Req | uested          |
| 03  | Power meter            | Agilent E4417A | GB41291714       | March 13, 2010     | One year        |
| 04  | Power sensor           | Agilent 8481H  | MY41091316       | March 26, 2010     | One year        |
| 05  | Signal Generator       | HP 8341B       | 2730A00804       | September 13, 2009 | One year        |
| 06  | Amplifier              | IXA-020        | 0401             | No Calibration Req | uested          |
| 07  | BTS                    | E5515C         | MY48360988       | December 4, 2009   | One year        |
| 08  | E-field Probe          | EX3DV4         | 3677             | September 23, 2009 | One year        |
| 09  | DAE                    | DAE4           | 871              | November 11, 2009  | One year        |
| 10  | Validation Kit 835MHz  | D835V2         | 4d082            | July 13, 2009      | One year        |
| 11  | Validation Kit 1900MHz | D1900V2        | 5d018            | June 26, 2009      | One year        |


## **ANNEX A: Test Layout**




Picture 1: Specific Absorption Rate Test Layout



Picture 2: Liquid depth in the flat Phantom (835MHz, 15.2 cm depth)



Picture 3: Liquid depth in the head Phantom (835MHz, 15.4 cm depth)



Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.4 cm depth)



Picture 5: liquid depth in the head Phantom (1900 MHz, 15.2 cm depth)

## **ANNEX B: System Check Results**

#### System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Date/Time: 6/25/2010 3:50:02 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz;  $\sigma = 0.93 \text{ mho/m}$ ;  $\epsilon_r = 42.53$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.71 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 3.75 W/kg

**SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.62 mW/g**Maximum value of SAR (measured) = 2.67 mW/g

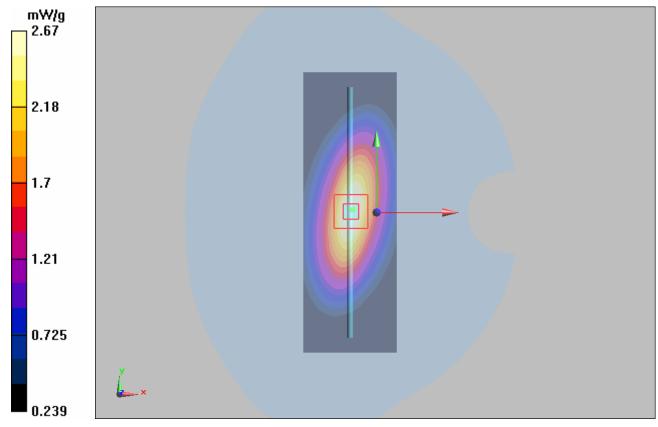



Figure 7 System Performance Check 835MHz 250mW

### System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Date/Time: 6/25/2010 10:22:20 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz;  $\sigma = 1.00 \text{ mho/m}$ ;  $\epsilon_r = 55.37$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.77 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.68 W/kg

**SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/g**Maximum value of SAR (measured) = 2.77 mW/g

2.27
1.76
1.26
0.756

Figure 8 System Performance Check 835MHz 250mW

#### System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Date/Time: 6/25/2010 8:16:04 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz;  $\sigma = 1.41 \text{ mho/m}$ ;  $\epsilon_r = 40.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 87.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 20.1 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.46 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

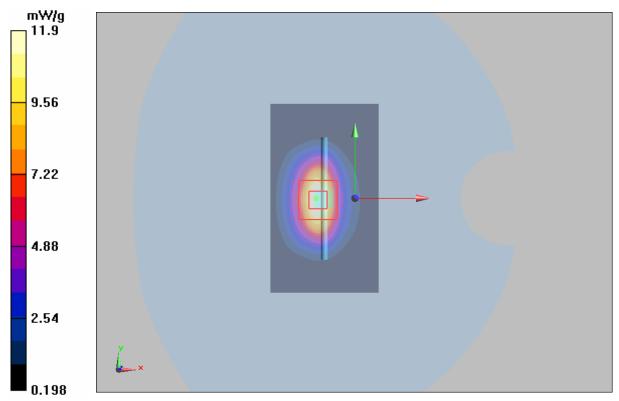



Figure 9 System Performance Check 1900MHz 250mW

### System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Date/Time: 6/25/2010 1:46:19 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.55 mho/m;  $\varepsilon_r$  = 52.29;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 75.9 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.17 mW/g

Maximum value of SAR (measured) = 11 mW/g

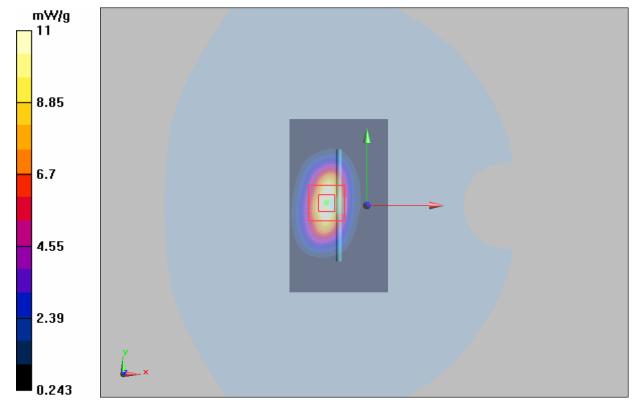



Figure 10 System Performance Check 1900MHz 250mW

## **ANNEX C: Graph Results**

#### **GSM 850 Left Cheek High**

Date/Time: 6/25/2010 5:15:03 AM

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 849 MHz;  $\sigma = 0.945$  mho/m;  $\varepsilon_r = 42.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.52 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.0 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 1.4 mW/g; SAR(10 g) = 0.968 mW/g

Maximum value of SAR (measured) = 1.49 mW/g

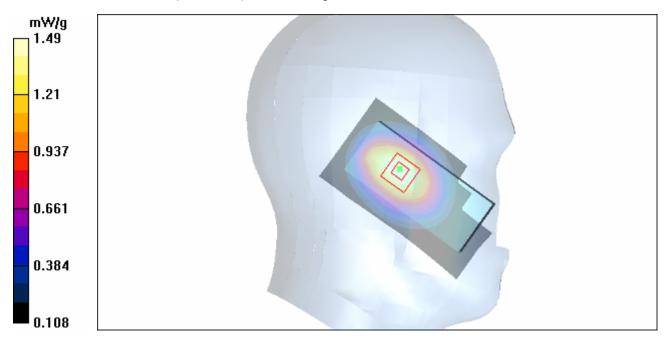



Figure 11 Left Hand Touch Cheek GSM 850 Channel 251

#### **GSM 850 Left Cheek Middle**

Date/Time: 6/25/2010 4:37:45 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz;  $\sigma$  = 0.934 mho/m;  $\varepsilon_r$  = 42.5;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.38 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.3 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.876 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

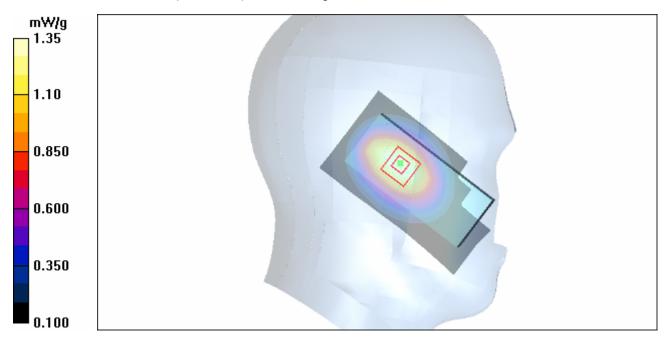



Figure 12 Left Hand Touch Cheek GSM 850 Channel 190

# **GSM 850 Left Cheek Low**

Date/Time: 6/25/2010 4:55:55 AM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.923 \text{ mho/m}$ ;  $\epsilon_r = 42.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.19 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.2 V/m; Power Drift = -0.186 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.727 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

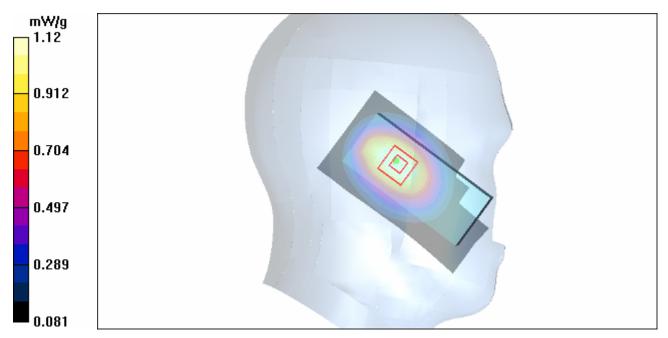



Figure 13 Left Hand Touch Cheek GSM 850 Channel 128

# **GSM 850 Left Tilt Middle**

Date/Time: 6/25/2010 5:55:53 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz;  $\sigma$  = 0.934 mho/m;  $\epsilon_r$  = 42.5;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle /Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.679 mW/g

Tilt Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.824 W/kg

SAR(1 g) = 0.616 mW/g; SAR(10 g) = 0.429 mW/g

Maximum value of SAR (measured) = 0.656 mW/g

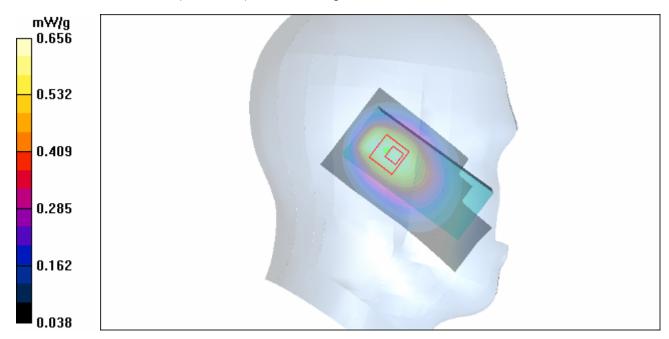



Figure 14 Left Hand Tilt 15° GSM 850 Channel 190

# **GSM 850 Right Cheek High**

Date/Time: 6/25/2010 6:35:14 AM

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 849 MHz;  $\sigma$  = 0.945 mho/m;  $\varepsilon_r$  = 42.4;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

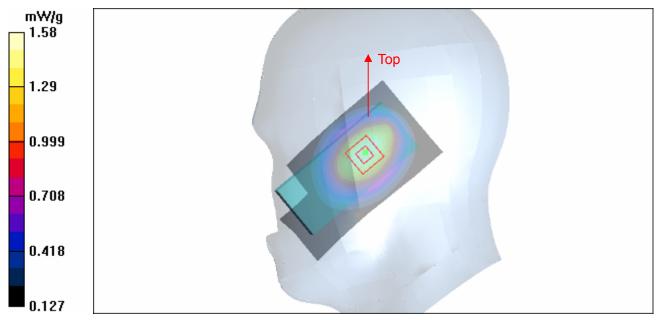
Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.61 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.5 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 1.48 mW/g; SAR(10 g) = 1.03 mW/g

Maximum value of SAR (measured) = 1.58 mW/g



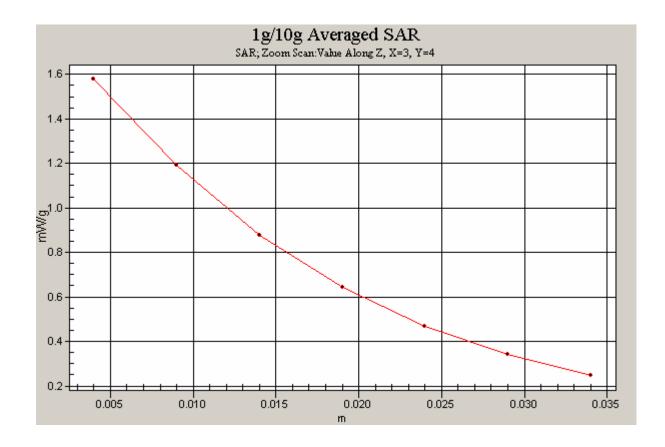



Figure 15 Right Hand Touch Cheek GSM 850 Channel 251

# **GSM 850 Right Cheek Middle**

Date/Time: 6/25/2010 6:16:39 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz;  $\sigma$  = 0.934 mho/m;  $\varepsilon_r$  = 42.5;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.38 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.8 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.893 mW/g

Maximum value of SAR (measured) = 1.36 mW/g

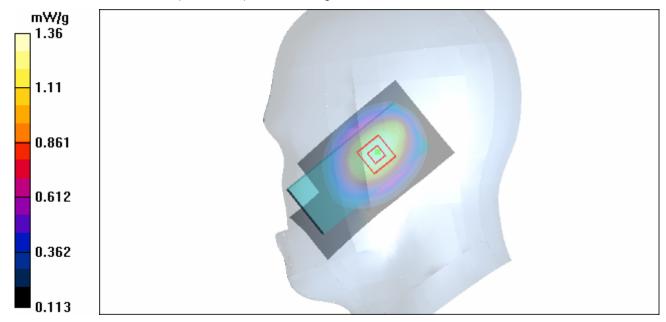



Figure 16 Right Hand Touch Cheek GSM 850 Channel 190

# **GSM 850 Right Cheek Low**

Date/Time: 6/25/2010 6:53:50 AM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.923 \text{ mho/m}$ ;  $\epsilon_r = 42.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.20 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.1 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.781 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

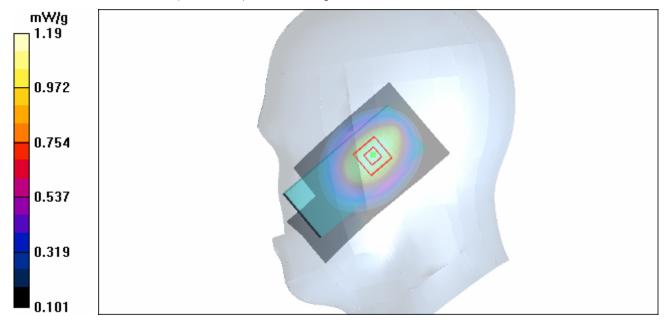



Figure 17 Right Hand Touch Cheek GSM 850 Channel 128

# **GSM 850 Right Tilt Middle**

Date/Time: 6/25/2010 7:13:12 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz;  $\sigma$  = 0.934 mho/m;  $\epsilon_r$  = 42.5;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.2, 9.2, 9.2); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.716 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.0 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.969 W/kg

SAR(1 g) = 0.614 mW/g; SAR(10 g) = 0.400 mW/g

Maximum value of SAR (measured) = 0.676 mW/g

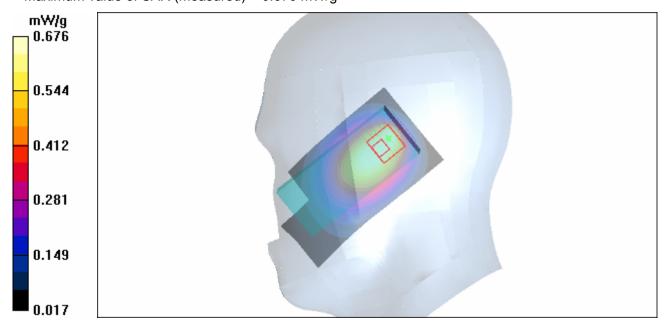



Figure 18 Right Hand Tilt 15° GSM 850 Channel 190

### **GSM 850 Towards Ground Middle**

Date/Time: 6/25/2010 11:39:13 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 1$  mho/m;  $\epsilon_r = 55.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.361 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 0.450 W/kg

SAR(1 g) = 0.342 mW/g; SAR(10 g) = 0.248 mW/g Maximum value of SAR (measured) = 0.363 mW/g

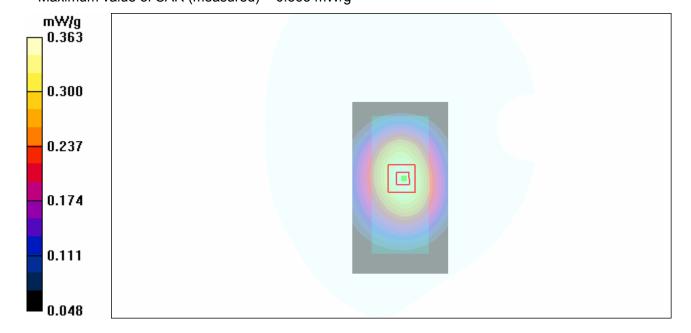



Figure 19 Body, Towards Ground, GSM 850 Channel 190

# **GSM 850 Towards Phantom High**

Date/Time: 6/25/2010 11:57:54 PM

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz;  $\sigma = 1.01$  mho/m;  $\epsilon_r = 55.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

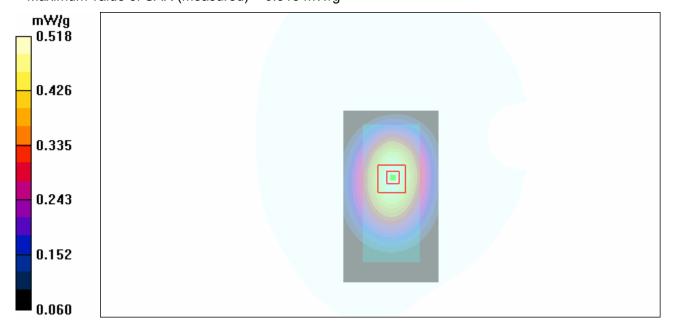
Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.519 mW/g

Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 17.0 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.350 mW/g

Maximum value of SAR (measured) = 0.518 mW/g



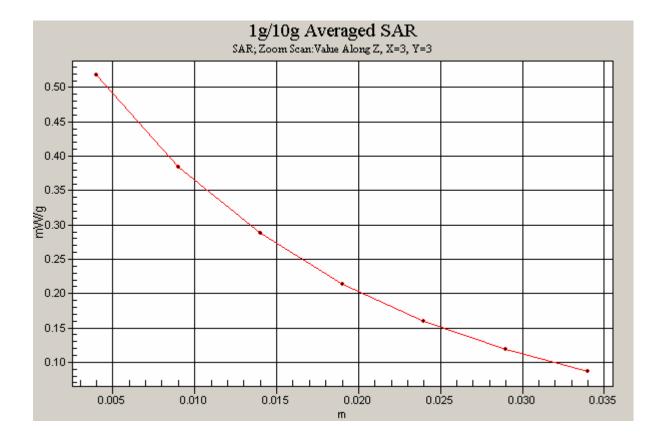



Figure 20 Body, Towards Phantom, GSM 850 Channel 251

### **GSM 850 Towards Phantom Middle**

Date/Time: 6/25/2010 11:19:13 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 1$  mho/m;  $\epsilon_r = 55.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5℃

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.501 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.126 dB

Peak SAR (extrapolated) = 0.470 W/kg

SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.376 mW/g

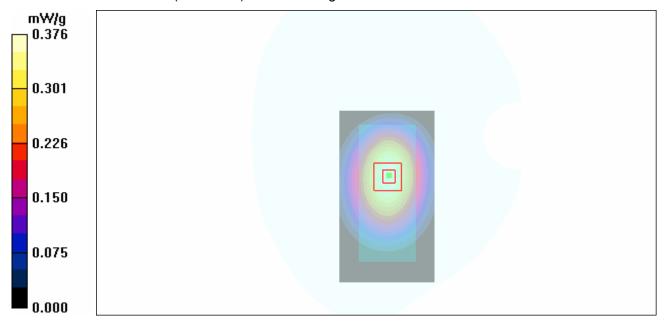



Figure 21 Body, Towards Phantom, GSM 850 Channel 190

### **GSM 850 Towards Phantom Low**

Date/Time: 6/25/2010 11:30:37 PM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.99 \text{ mho/m}$ ;  $\varepsilon_r = 55.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.11, 9.11, 9.11); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.374 mW/g

Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.253 mW/g

Maximum value of SAR (measured) = 0.374 mW/g

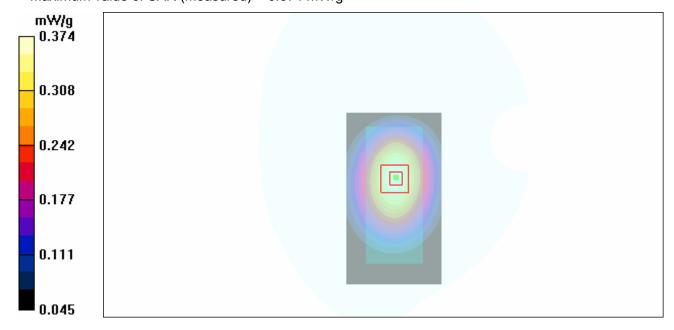



Figure 22 Body, Towards Phantom, GSM 850 Channel 128

# GSM 1900 Left Cheek High

Date/Time: 6/25/2010 9:40:36 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon_r = 40.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.08 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.874 mW/g; SAR(10 g) = 0.477 mW/g

Maximum value of SAR (measured) = 0.965 mW/g

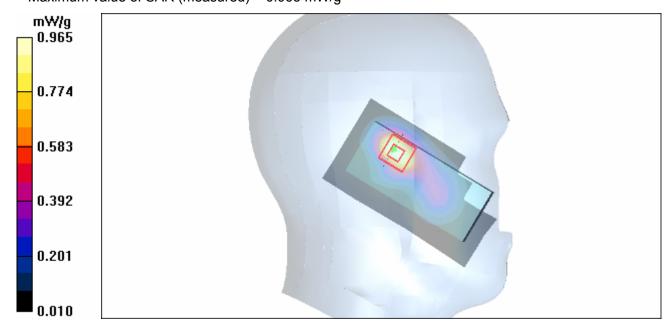



Figure 23 Left Hand Touch Cheek GSM 1900 Channel 810

# **GSM 1900 Left Cheek Middle**

Date/Time: 6/25/2010 9:22:30 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.4 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.857 mW/g; SAR(10 g) = 0.468 mW/g

Maximum value of SAR (measured) = 0.942 mW/g

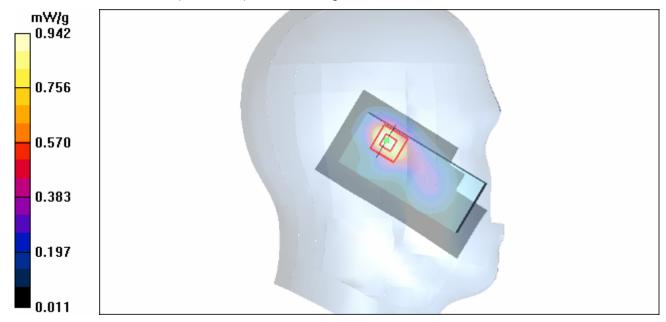



Figure 24 Left Hand Touch Cheek GSM 1900 Channel 661

### **GSM 1900 Left Cheek Low**

Date/Time: 6/25/2010 9:58:48 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37 \text{ mho/m}$ ;  $\epsilon_r = 40.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.04 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.167 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.868 mW/g; SAR(10 g) = 0.471 mW/g

Maximum value of SAR (measured) = 0.963 mW/g

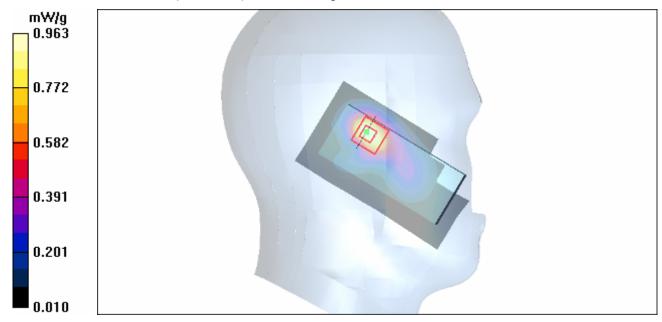



Figure 25 Left Hand Touch Cheek GSM 1900 Channel 512

### **GSM 1900 Left Tilt Middle**

Date/Time: 6/25/2010 10:19:14 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.386 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.41 V/m; Power Drift = -0.152 dB

Peak SAR (extrapolated) = 0.537 W/kg

SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.180 mW/g

Maximum value of SAR (measured) = 0.359 mW/g

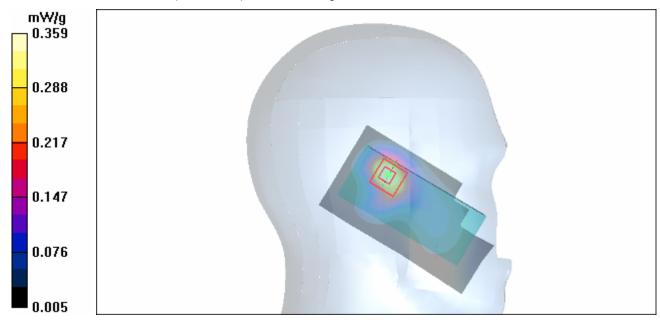



Figure 26 Left Hand Tilt 15° GSM 1900 Channel 661

# **GSM 1900 Right Cheek Middle**

Date/Time: 6/25/2010 10:40:24 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.616 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.879 W/kg

SAR(1 g) = 0.554 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.613 mW/g

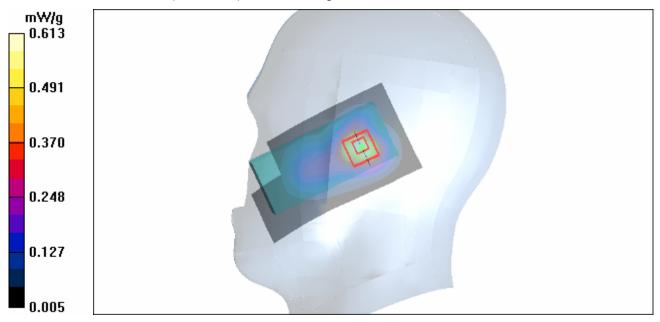



Figure 27 Right Hand Touch Cheek GSM 1900 Channel 661

# **GSM 1900 Right Tilt Middle**

Date/Time: 6/25/2010 10:58:27 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.261 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.78 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.392 W/kg

SAR(1 g) = 0.244 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

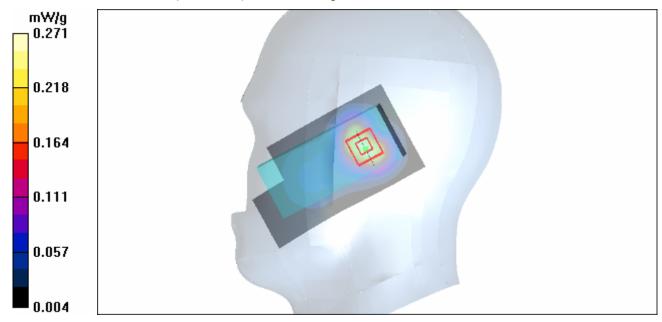



Figure 28 Right Hand Tilt 15° GSM 1900 Channel 661

#### **GSM 1900 Towards Ground Middle**

Date/Time: 6/25/2010 2:53:14 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz;  $\sigma = 1.54 \text{ mho/m}$ ;  $\epsilon_r = 52.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.065 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.80 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.093 W/kg

SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.036 mW/g

Maximum value of SAR (measured) = 0.064 mW/g

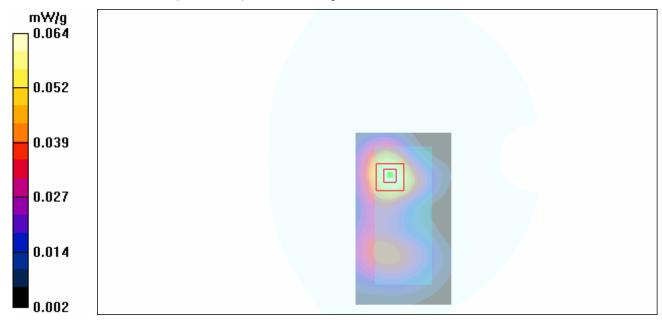



Figure 29 Body, Towards Ground, GSM 1900 Channel 661

# **GSM 1900 Towards Phantom High**

Date/Time: 6/25/2010 3:12:24 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz;  $\sigma = 1.56$  mho/m;  $\epsilon_r = 52.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

# Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.099 mW/g

# Towards Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.82 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.143 W/kg

# SAR(1 g) = 0.090 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.097 mW/g

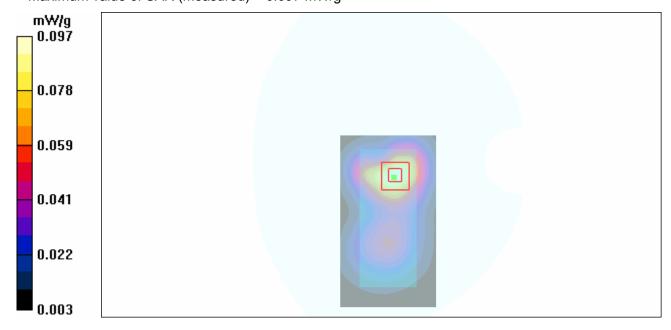



Figure 30 Body, Towards Phantom, GSM 1900 Channel 810

# **GSM 1900 Towards Phantom Middle**

Date/Time: 6/25/2010 3:33:22 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz;  $\sigma = 1.54 \text{ mho/m}$ ;  $\epsilon_r = 52.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.104 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.77 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.056 mW/g

Maximum value of SAR (measured) = 0.103 mW/g

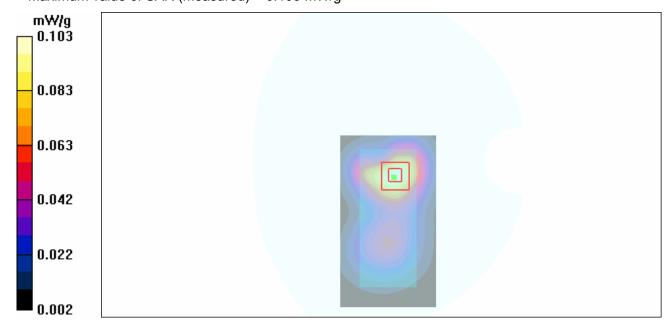



Figure 31 Body, Towards Phantom, GSM 1900 Channel 661

#### **GSM 1900 Towards Phantom Low**

Date/Time: 6/25/2010 3:50:27 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.49 \text{ mho/m}$ ;  $\epsilon_r = 52.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.62, 7.62, 7.62); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.113 mW/g

Towards Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 6.85 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 0.163 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.063 mW/g

Maximum value of SAR (measured) = 0.111 mW/g

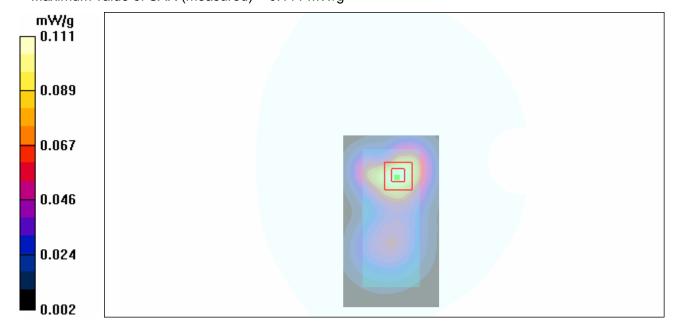



Figure 32 Body, Towards Phantom, GSM 1900 Channel 512

# **ANNEX D: Probe Calibration Certificate**

**Calibration Laboratory of** Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| Client TA (Auden)                    |                            | * "                                                | ertificate No: EX3-3677_Sep09                                                                                         |
|--------------------------------------|----------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| CALIBRATION                          | CERTIFICAT                 | $E_{-t}: \mathcal{F} \to F$                        |                                                                                                                       |
| Object                               | EX3DV4 - SN:3              | 677                                                |                                                                                                                       |
| Calibration procedure(s)             |                            | QA CAL-12.v5, QA CAL-<br>edure for dosimetric E-fi | 23.v3 and QA CAL-25.v2 -<br>ald probes                                                                                |
| Calibration date:                    | September 23,              | 2009                                               |                                                                                                                       |
| Condition of the calibrated item     | In Tolerance               | u zelaset e                                        |                                                                                                                       |
| The measurements and the unco        | ertainties with confidence | probability are given on the follow                | physical units of measurements (\$1).  Ing pages and are part of the certificate.  Ing (22 ± 3)°C and humidity < 70%. |
| Calibration Equipment used (M&       |                            | ory facility: environment temperatt                | re (22 ± 3)°C and numidity < 70%.                                                                                     |
| Primary Standards                    | ID#                        | Cal Date (Certificate No.)                         | Scheduled Calibration                                                                                                 |
| Power meter E4419B                   | GB41293874                 | 1-Apr-09 (No. 217-01030)                           | Apr-10                                                                                                                |
| Power sensor E4412A                  | MY41495277                 | 1-Apr-09 (No. 217-01030)                           | Apr-10                                                                                                                |
| Power sensor E4412A                  | MY41498087                 | 1-Apr-09 (No. 217-01030)                           | Apr-10                                                                                                                |
| Reference 3 dB Attenuator            | SN: S5054 (3c)             | 31-Mar-09 (No. 217-01026)                          | Mar-10                                                                                                                |
| Reference 20 dB Attenuator           | SN: S5086 (20b)            | 31-Mar-09 (No. 217-01028)                          | Mar-10                                                                                                                |
| Reference 30 dB Attenuator           | SN: S5129 (30b)            | 31-Mar-09 (No. 217-01027)                          | Mar-10                                                                                                                |
| Reference Probe ES3DV2               | SN: 3013                   | 2-Jan-09 (No. ES3-3013_Jan                         | 09) Jan-10                                                                                                            |
| DAE4                                 | SN: 660                    | 9-Sep-08 (No. DAE4-660_Se                          | p08) Sep-09                                                                                                           |
| Secondary Standards                  | ID#                        | Check Date (in house)                              | Scheduled Check                                                                                                       |
| RF generator HP 8648C                | US3642U01700               | 4-Aug-99 (in house check Oc                        | I-07) In house check: Oct-09                                                                                          |
| Network Analyzer HP 8753E            | US37390585                 | 18-Oct-01 (in house check Oc                       | ct-08) In house check: Oct-09                                                                                         |
|                                      | Name                       | Function                                           | <b>S</b> ignature,                                                                                                    |
| Calibrated by:                       | Claudio Leubler            | Laboratory Techr                                   | ician (Ca)                                                                                                            |
| Approved by:                         | Katja Pokovic              | Technical Manag                                    | er St. Ul                                                                                                             |
|                                      |                            |                                                    | Issued: September 23, 2009                                                                                            |
| This calibration certificate shall n | ot be reproduced except    | in full without written approval of the            | ne laboratory.                                                                                                        |

Certificate No: EX3-3677\_Sep09

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

ConvF

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

sensitivity in TSL / NORMx,y,z diode compression point

DCP Polarization φ

φ rotation around probe axis

Polarization 9 9 rotation around an a

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e.,  $\vartheta = 0$  is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
  the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0952

Page 61of 94

EX3DV4 SN:3677

**September 23, 2009** 

# Probe EX3DV4

SN:3677

Manufactured: Last calibrated: September 9, 2008 November 7, 2008 September 23, 2009

Recalibrated:

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

September 23, 2009

# DASY - Parameters of Probe: EX3DV4 SN:3677

| Sensitivity in Free Space <sup>A</sup> |                     |                 | Diode C | ompression <sup>B</sup> |
|----------------------------------------|---------------------|-----------------|---------|-------------------------|
| NormX                                  | <b>0.42</b> ± 10.1% | $\mu V/(V/m)^2$ | DCP X   | <b>91</b> mV            |
| NormY                                  | <b>0.47</b> ± 10.1% | $\mu V/(V/m)^2$ | DCP Y   | <b>92</b> mV            |
| NormZ                                  | 0.40 ± 10.1%        | $\mu V/(V/m)^2$ | DCP Z   | 93 mV                   |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

# **Boundary Effect**

TSL

900 MHz

Typical SAR gradient: 5 % per mm

| Sensor Center to      | Phantom Surface Distance     | 2.0 mm | 3.0 mm |
|-----------------------|------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 8.2    | 4.4    |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 8.0    | 0.5    |

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

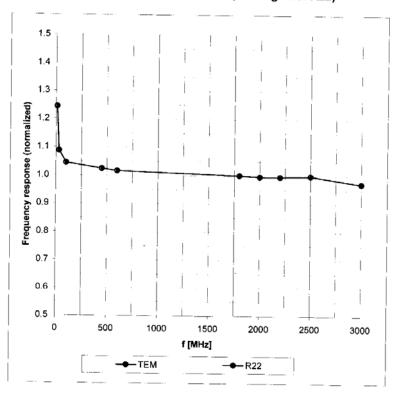
| Sensor Center         | 2.0 mm                       | 3.0 mm |     |
|-----------------------|------------------------------|--------|-----|
| SAR <sub>be</sub> [%] | Without Correction Algorithm | 7.5    | 3.9 |
| SAR <sub>be</sub> [%] | With Correction Algorithm    | 0.8    | 0.4 |

#### Sensor Offset

Probe Tip to Sensor Center

1.0 mm

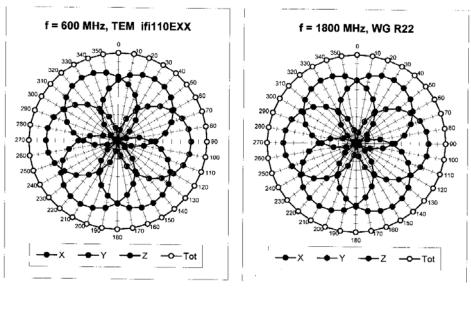
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

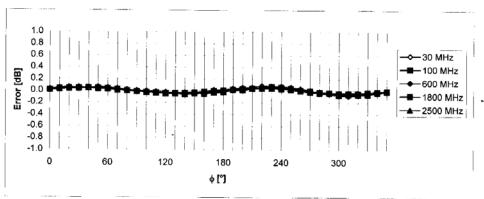

<sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 8).

<sup>&</sup>lt;sup>8</sup> Numerical linearization parameter: uncertainty not required.

September 23, 2009

# Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

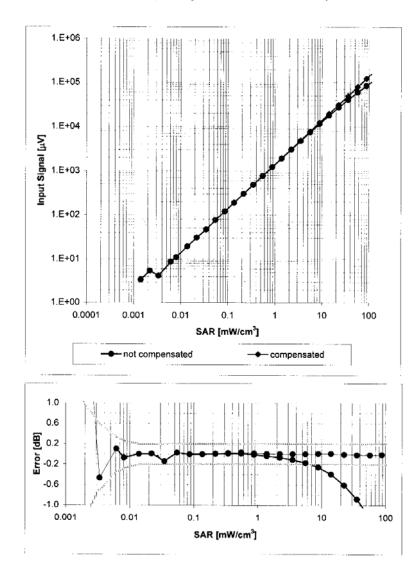



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

September 23, 2009

# Receiving Pattern ( $\phi$ ), $\vartheta$ = 0°

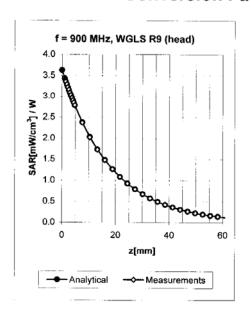


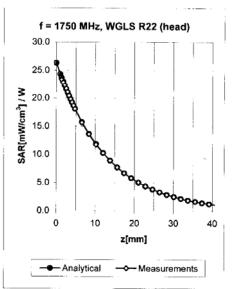



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

September 23, 2009

# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

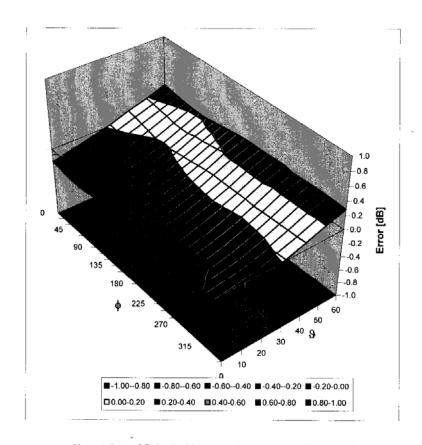
**September 23, 2009** 

# **Conversion Factor Assessment**





| f [MHz] | Validity [MHz] <sup>C</sup> | TSL  | Permittivity   | Conductivity   | Alpha | Depth | ConvF Uncertainty   |
|---------|-----------------------------|------|----------------|----------------|-------|-------|---------------------|
| 835     | ± 50 / ± 100                | Head | 41.5 ± 5%      | 0.90 ± 5%      | 0.68  | 0.64  | 9.20 ± 11.0% (k=2)  |
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%      | $0.97 \pm 5\%$ | 0.71  | 0.62  | 8.91 ± 11.0% (k=2)  |
| 1750    | ± 50 / ± 100                | Head | 40.1 ± 5%      | 1.37 ± 5%      | 0.68  | 0.62  | 8.04 ± 11.0% (k=2)  |
| 1950    | ± 50 / ± 100                | Head | $40.0 \pm 5\%$ | 1.40 ± 5%      | 0.70  | 0.60  | 7.53 ± 11.0% (k=2)  |
|         |                             |      |                |                |       |       |                     |
|         |                             |      |                |                |       |       | •                   |
| 450     | ± 50 / ± 100                | Body | 56.7 ± 5%      | 0.94 ± 5%      | 0.32  | 0.49  | 10.43 ± 13.3% (k=2) |
| 835     | ± 50 / ± 100                | Body | 55.2 ± 5%      | $0.97 \pm 5\%$ | 0.54  | 0.73  | 9.11 ± 11.0% (k=2)  |
| 900     | ± 50 / ± 100                | Body | $55.0 \pm 5\%$ | 1.05 ± 5%      | 0.63  | 0.71  | 8.89 ± 11.0% (k=2)  |
| 1750    | ± 50 / ± 100                | Body | 53.4 ± 5%      | 1.49 ± 5%      | 0.55  | 0.74  | 7.70 ± 11.0% (k=2)  |
| 1950    | ± 50 / ± 100                | Body | 53.3 ± 5%      | 1.52 ± 5%      | 0.30  | 1.01  | 7.62 ± 11.0% (k=2)  |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%      | 1.95 ± 5%      | 0.56  | 0.68  | 7.28 ± 11.0% (k=2)  |


<sup>&</sup>lt;sup>C</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3677\_Sep09

**September 23, 2009** 

# **Deviation from Isotropy in HSL**

Error  $(\phi, \vartheta)$ , f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

# **ANNEX E: D835V2 Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 108

C

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d082\_Jul09 ATL (Auden)

| Object                                                                                                                                                                                                                                                                                                  | D835V2 - SN: 40                                                                                                                | 1082                                                                                                                                                                                                                                                                                                                                            | official from the literacy.                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                                                                                | QA CAL-05.v7<br>Calibration proce                                                                                              | dure for dipole validation kits                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
| Calibration date:                                                                                                                                                                                                                                                                                       | July 13, 2009                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
| Condition of the calibrated item                                                                                                                                                                                                                                                                        | In Tolerance                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
| All calibrations have been conduc                                                                                                                                                                                                                                                                       | sted in the closed laborator                                                                                                   | ry facility: environment temperature (22 ± 3)*(                                                                                                                                                                                                                                                                                                 | C and humidity < 70%                                                                                                                                 |
| Calibration Equipment used (M&T                                                                                                                                                                                                                                                                         | TE critical for calibration)                                                                                                   | ,,                                                                                                                                                                                                                                                                                                                                              | o distribution of the control                                                                                                                        |
| Primary Standards                                                                                                                                                                                                                                                                                       | ID#                                                                                                                            | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                                                                      | Scheduled Calibration                                                                                                                                |
| Primary Standards<br>Power meter EPM-442A                                                                                                                                                                                                                                                               | ID#<br>GB37480704                                                                                                              | Cal Date (Certificate No.)<br>08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                                                                         | Scheduled Calibration<br>Oct-09                                                                                                                      |
| Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                                                                                                                                      | ID #<br>GB37480704<br>US37292783                                                                                               | Cal Date (Certificate No.)<br>08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                                            | Scheduled Calibration<br>Oct-09<br>Oct-09                                                                                                            |
| Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                                                                                        | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)                                                                             | Cal Date (Certificate No.)<br>08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)                                                                                                                                                                                                                               | Scheduled Calibration<br>Oct-09<br>Oct-09<br>Mar-10                                                                                                  |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination                                                                                                                                                                                     | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327                                                       | Cal Date (Certificate No.)<br>08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)<br>31-Mar-09 (No. 217-01029)                                                                                                                                                                                                  | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10                                                                                                    |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2                                                                                                                                                              | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)                                                                             | Cal Date (Certificate No.)<br>08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)                                                                                                                                                                                                                               | Scheduled Calibration<br>Oct-09<br>Oct-09<br>Mar-10                                                                                                  |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4                                                                                                                                                         | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025                                           | Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09)                                                                                                                                                                               | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10                                                                                             |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards                                                                                                                                     | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                | Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)                                                                                                                                                | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mer-10                                                                                      |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A                                                                                                               | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                | Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)                                                                                                                          | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mer-10 Scheduled Check                                                                      |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                                                       | ID #  GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601  ID #  MY41092317                               | Cal Date (Certificate No.)  08-Oct-08 (No. 217-00898)  08-Oct-08 (No. 217-00898)  31-Mar-09 (No. 217-01025)  31-Mar-09 (No. 217-01029)  30-Apr-09 (No. ES3-3025_Apr09)  07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house)                                                                                                                   | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09                                               |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                                                                       | ID #  GB37480704 US37292783 SN: 5085 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601  ID #  MY41092317 100005                        | Cal Date (Certificate No.)  08-Oct-08 (No. 217-00898)  08-Oct-08 (No. 217-00898)  31-Mar-09 (No. 217-01025)  31-Mar-09 (No. 217-01029)  30-Apr-09 (No. ES3-3025_Apr09)  07-Mar-09 (No. DAE4-601_Mar09)  Check Date (In house)  18-Oct-02 (In house check Oct-07)  4-Aug-99 (In house check Oct-07)                                              | Scheduled Celibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E                                                             | ID #  GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601  ID #  MY41092317 100005 US37390585 S4208       | Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)                    | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |
| Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by: | ID #  GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601  ID #  MY41092317 100005 US37390585 S4206  Name | Cal Date (Certificate No.)  08-Oct-08 (No. 217-00898)  08-Oct-08 (No. 217-00898)  31-Mar-09 (No. 217-01025)  31-Mar-09 (No. 217-01029)  30-Apr-09 (No. ES3-3025_Apr09)  07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house)  18-Oct-02 (in house check Oct-07)  4-Aug-99 (in house check Oct-07)  18-Oct-01 (in house check Oct-08)  Function | Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |

Certificate No: D835V2-4d082\_Jul09

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
  uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d082\_Jul09

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 835 MHz ± 1 MHz           |             |
|                              |                           |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 40.4 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature during test | (22.2 ± 0.2) °C |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>2</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.42 mW / g              |
| SAR normalized                                        | normalized to 1W   | 9.68 mW / g              |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 9.71 mW/g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 1.58 mW / g               |
| SAR normalized                                          | normalized to 1W   | 6.32 mW / g               |
| SAR for nominal Head TSL parameters 1                   | normalized to 1W   | 6.34 mW /g ± 16.5 % (k=2) |

<sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 53.0 ± 6 %   | 0.99 mho/m ± 6 % |
| Body TSL temperature during test | (22.5 ± 0.2) °C | -            | _                |

# SAR result with Body TSL

| SAR averaged over 1 cm3 (1 g) of Body TSL        | Condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 250 mW input power | 2.56 mW / g                |
| SAR normalized                                   | normalized to 1W   | 10.2 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup> | normalized to 1W   | 10.0 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.68 mW / g                |
| SAR normalized                                          | normalized to 1W   | 6.72 mW / g                |
| SAR for nominal Body TSL parameters 2                   | normalized to 1W   | 6.61 mW / g ± 16.5 % (k=2) |

Certificate No: D835V2-4d082\_Jul09

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

# TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0952

Page 72of 94

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.3 Ω - 2.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.5 dB       |  |

# Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.3 Ω - 4.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26.6 dB       |  |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.390 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |  |
|-----------------|------------------|--|
| Manufactured on | October 17, 2008 |  |

Certificate No: D835V2-4d082\_Jul09

#### **DASY5 Validation Report for Head TSL**

Date/Time: 13.07.2009 11:31:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

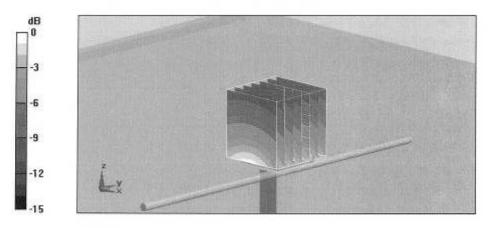
Medium parameters used: f = 835 MHz;  $\sigma = 0.89$  mho/m;  $\varepsilon_r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

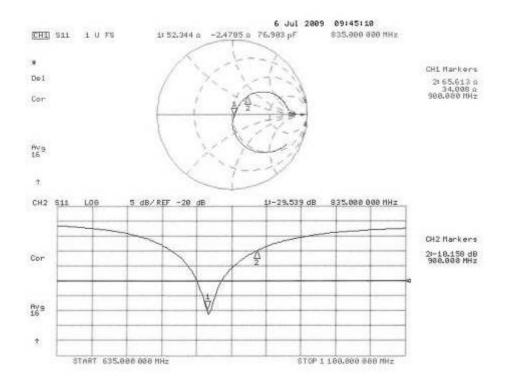
#### DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


# Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.4 V/m; Power Drift = 0.00639 dB

Peak SAR (extrapolated) = 3.62 W/kg


SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.8 mW/g



0 dB = 2.8 mW/g

#### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date/Time: 13.07.2009 11:50:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz;  $\sigma = 0.99$  mho/m;  $\epsilon_r = 53$ ;  $\rho = 1000$  kg/m<sup>3</sup>

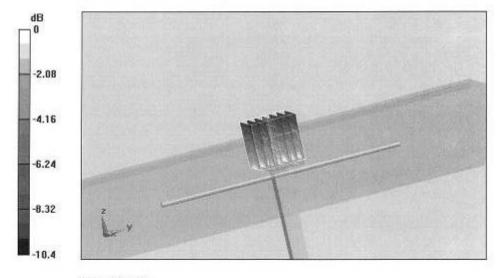
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

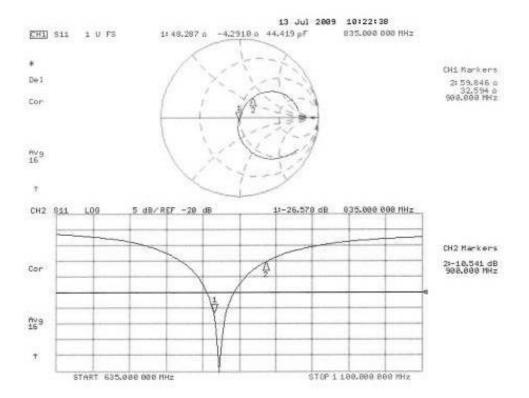
- Probe: ES3DV2 SN3025; ConvF(5.79, 5.79, 5.79); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

## Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 56.4 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.76 W/kg


SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.68 mW/g

Maximum value of SAR (measured) = 2.97 mW/g



0 dB = 2.97 mW/g

#### Impedance Measurement Plot for Body TSL



## **ANNEX F: D1900V2 Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

| CALIBRATION C                                                                                                                                                                                                                               | ERTIFICATI                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                                                                                                      | D1900V2 - SN: 5                                                                                                                             | d018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FRIDE TIES                                                                                                                     |
| Calibration procedure(s)                                                                                                                                                                                                                    | QA CAL-05.v7<br>Calibration proce                                                                                                           | edure for dipole validation kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |
| Calibration date:                                                                                                                                                                                                                           | June 26, 2009                                                                                                                               | STATE OF THE STATE |                                                                                                                                |
| Condition of the calibrated item                                                                                                                                                                                                            | In Tolerance                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| The measurements and the unce                                                                                                                                                                                                               | rtainties with confidence p                                                                                                                 | ional standards, which realize the physical units in<br>robability are given on the following pages and a<br>ry facility: environment temperature (22 ± 3)°C an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ire part of the certificate.                                                                                                   |
|                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| Primary Standards                                                                                                                                                                                                                           | ID#                                                                                                                                         | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scheduled Calibration                                                                                                          |
|                                                                                                                                                                                                                                             | ID#<br>GB37480704                                                                                                                           | Cal Date (Calibrated by, Certificate No.)<br>08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oct-09                                                                                                                         |
| ower meter EPM-442A                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |
| ower meter EPM-442A<br>ower sensor HP 8481A                                                                                                                                                                                                 | GB37480704                                                                                                                                  | 08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oct-09                                                                                                                         |
| ower meter EPM-442A<br>ower sensor HP 8481A<br>eference 20 dB Attenuator                                                                                                                                                                    | GB37480704<br>US37292783                                                                                                                    | 08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oct-09<br>Oct-09                                                                                                               |
| ower meter EPM-442A<br>ower sensor HP 8481A<br>eference 20 dB Attenuator<br>ype-N mismatch combination                                                                                                                                      | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025                                                                | 08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)<br>31-Mar-09 (No. 217-01029)<br>30-Apr-09 (No. ES3-3025_Apr09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct-09<br>Oct-09<br>Mar-10<br>Mar-10<br>Apr-10                                                                                 |
| ower meter EPM-442A<br>ower sensor HP 8481A<br>teference 20 dB Attenuator<br>ype-N mismatch combination<br>teference Probe ES3DV2                                                                                                           | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327                                                                            | 08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)<br>31-Mar-09 (No. 217-01029)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oct-09<br>Oct-09<br>Mar-10<br>Mar-10                                                                                           |
| ower meter EPM-442A<br>ower sensor HP 8481A<br>eference 20 dB Attenuator<br>ype-N mismatch combination<br>eference Probe ES3DV2<br>AE4                                                                                                      | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025                                                                | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oct-09<br>Oct-09<br>Mar-10<br>Mar-10<br>Apr-10                                                                                 |
| ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator ype-N mismatch combination deference Probe ES3DV2 AE4 econdary Standards                                                                                                | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                     | 08-Oct-08 (No. 217-00898)<br>08-Oct-08 (No. 217-00898)<br>31-Mar-09 (No. 217-01025)<br>31-Mar-09 (No. 217-01029)<br>30-Apr-09 (No. ES3-3025_Apr09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct-09<br>Oct-09<br>Mar-10<br>Mar-10<br>Apr-10<br>Mar-10                                                                       |
| lower meter EPM-442A lower sensor HP 8481A teference 20 dB Attenuator type-N mismatch combination teference Probe ES3DV2 AE4 secondary Standards lower sensor HP 8481A                                                                      | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                     | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check                                                                      |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601                                                     | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09                                               |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                             | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005                     | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09                        |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E                   | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206 | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06                                             | GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327<br>SN: 3025<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4206 | 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 30-Apr-09 (No. ES3-3025_Apr09) 07-Mar-09 (No. DAE4-601_Mar09)  Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oct-09 Oct-09 Mar-10 Mar-10 Apr-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09 |

Certificate No: D1900V2-5d018\_Jun09

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





C

Schweizerischer Kallbrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), https://doi.org/10.1016/j.jcp.10016

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

# Measurement Conditions

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 1900 MHz ± 1 MHz          |             |
|                              |                           |             |

Head TSL parameters

| he following parameters and calculations were a | Temperature     | Permittivity | Conductivity     |
|-------------------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters                     | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters                    | (22.0 ± 0.2) °C | 41.0 ± 6 %   | 1.42 mho/m ± 6 % |
| Head TSL temperature during test                | (22.0 ± 0.2) °C |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm3 (1 g) of Head TSL | condition          |                            |
|-------------------------------------------|--------------------|----------------------------|
| SAR measured                              | 250 mW input power | 10.3 mW/g                  |
| SAR normalized                            | normalized to 1W   | 41.2 mW / g                |
| SAR for nominal Head TSL parameters 1     | normalized to 1W   | 41.1 mW / g ± 17.0 % (k=2) |

| Condition          |                          |
|--------------------|--------------------------|
| 250 mW input power | 5.38 mW / g              |
| normalized to 1W   | 21.5 mW / g              |
| normalized to 1W   | 21.5 mW/g ± 16.5 % (k=2) |
|                    | 250 mW input power       |

Certificate No: D1900V2-5d018\_Jun09

<sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

## **Body TSL parameters**

he following parameters and calculations were applied.

| ne following parameters and calculations were a | Temperature     | Permittivity | Conductivity     |
|-------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                     | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters                    | (22.0 ± 0.2) °C | 53.9 ± 6 %   | 1.55 mho/m ± 6 % |
| Body TSL temperature during test                | (21.2 ± 0.2) °C |              | 0000             |

## SAR result with Body TSL

| Condition          |                                        |
|--------------------|----------------------------------------|
| 250 mW input power | 10.5 mW / g                            |
| normalized to 1W   | 42.0 mW / g                            |
| normalized to 1W   | 41.7 mW / g ± 17.0 % (k=2)             |
|                    | 250 mW input power<br>normalized to 1W |

| SAR averaged over 10 cm3 (10 g) of Body TSL      | condition          |                          |
|--------------------------------------------------|--------------------|--------------------------|
| SAR measured                                     | 250 mW input power | 5.52 mW / g              |
| SAR normalized                                   | normalized to 1W   | 22.1 mW/g                |
| SAR for nominal Body TSL parameters <sup>2</sup> | normalized to 1W   | 22.0 mW/g ± 16.5 % (k=2) |

<sup>&</sup>lt;sup>7</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

# TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0952

Page 81of 94

#### Appendix

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.8 Ω + 2.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.9 dB       |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.6 Ω + 4.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.9 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.195 ns |
|----------------------------------|----------|
| Decirios Belly (one en estate)   |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |  |
|-----------------|---------------|--|
| Manufactured on | June 04, 2002 |  |

#### **DASY5 Validation Report for Head TSL**

Date/Time: 26.06,2009 13:05:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

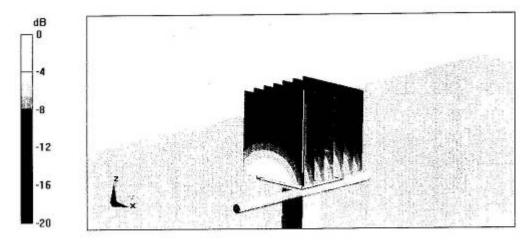
Medium parameters used: f = 1900 MHz;  $\sigma = 1.42$  mho/m;  $\varepsilon_r = 41$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

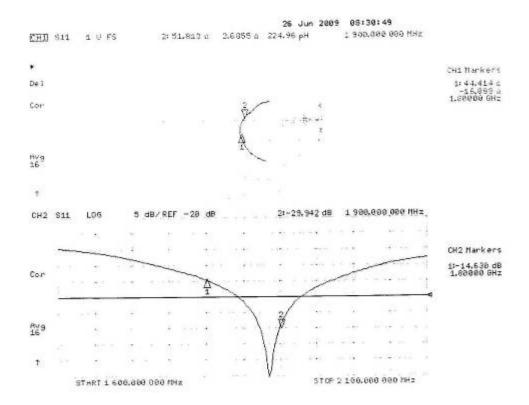
#### DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.88, 4.88, 4.88); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


## Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.6 V/m; Power Drift = 0.030 dB


Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.38 mW/gMaximum value of SAR (measured) = 12.6 mW/g



0 dB = 12.6 mW/g

## Impedance Measurement Plot for Head TSL



Page 7 of 9

#### DASY5 Validation Report for Body TSL

Date/Time: 26.06.2009 14:30:50

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

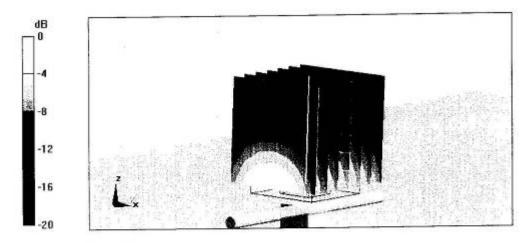
Medium parameters used: f = 1900 MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 54$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

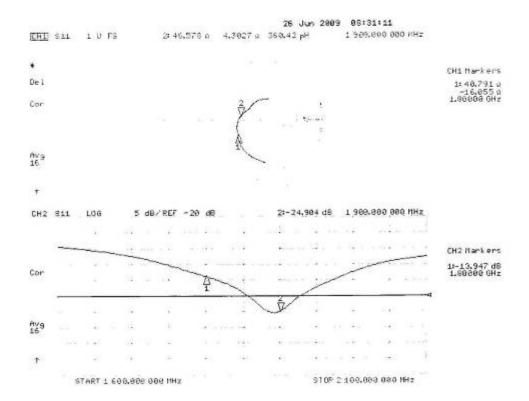
#### DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.46, 4.46, 4.46); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


# Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0mm, probe 0deg) (7x7x7)/Cube 0;

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.8 V/m; Power Drift = 0.043 dB


Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.52 mW/gMaximum value of SAR (measured) = 13.3 mW/g



0 dB = 13.3 mW/g

#### Impedance Measurement Plot for Body TSL



## **ANNEX G: DAE4 Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

s

С

## Certificate No: DAE4-871 Nov09 TA - SH (Auden) Client CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 871 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 11, 2009 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Calibrator Box V1.1 Name Function Calibrated by: Andrea Guntli Technician Approved by: Fin Bomholt R&D Director Issued: November 11, 2009

Certificate No: DAE4-871\_Nov09

Page 1 of 5

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

## TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RZA2010-0952

Page 88of 94

## **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =

6.1µV,

full range = -100...+300 mV full range = -1......+3mV

Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | х                    | Υ                    | Z                    |
|---------------------|----------------------|----------------------|----------------------|
| High Range          | 404.813 ± 0.1% (k=2) | 404.794 ± 0.1% (k=2) | 405.237 ± 0.1% (k=2) |
| Low Range           | 3.98191 ± 0.7% (k=2) | 3.98417 ± 0.7% (k=2) | 3.98912 ± 0.7% (k=2) |

## **Connector Angle**

| 1 |                                           |              |
|---|-------------------------------------------|--------------|
|   | Connector Angle to be used in DASY system | 90.0 ° ± 1 ° |

Certificate No: DAE4-871\_Nov09

Page 3 of 5

## **Appendix**

1. DC Voltage Linearity

| High Range        | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 199994.0     | 1.84            | 0.00      |
| Channel X + Input | 19999.85     | 0.05            | 0.00      |
| Channel X - Input | -19997.97    | 1.83            | -0.01     |
| Channel Y + Input | 200010.3     | -3.71           | -0.00     |
| Channel Y + Input | 19999.12     | -0.48           | -0.00     |
| Channel Y - Input | -20000.18    | -0.78           | 0.00      |
| Channel Z + Input | 200010.2     | -2.80           | -0.00     |
| Channel Z + Input | 19998.54     | -0.86           | -0.00     |
| Channel Z - Input | -19999.82    | 0.00            | 0.00      |

| Low Range        | Reading (μV) | Difference (μV) | Error (%) |
|------------------|--------------|-----------------|-----------|
| Channel X + Inp  | rt 2000.3    | 0.22            | 0.01      |
| Channel X + Inp  | rt 200.20    | 0.30            | 0.15      |
| Channel X - Inpu | t -199.89    | 0.21            | -0.10     |
| Channel Y + Inp  | ıt 1999.8    | -0.13           | -0.01     |
| Channel Y + Inp  | ıt 200.06    | -0.04           | -0.02     |
| Channel Y - Inpu | t -200.43    | -0.73           | 0.36      |
| Channel Z + Inp  | ıt 1999.5    | -0.57           | -0.03     |
| Channel Z + Inp  | ıt 199.58    | -0.72           | -0.36     |
| Channel Z - Inpu | t -201.11    | -1.01           | 0.51      |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 13.79                              | 12.75                             |
|           | - 200                             | -12.26                             | -13.72                            |
| Channel Y | 200                               | -11.82                             | -11.47                            |
|           | - 200                             | 10.67                              | 10.68                             |
| Channel Z | 200                               | -1.08                              | -1.35                             |
|           | - 200                             | 0.32                               | 0.12                              |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 3.36           | 1.06           |
| Channel Y | 200                | 1.52           |                | 3.59           |
| Channel Z | 200                | 2.55           | 1.41           | -              |

Certificate No: DAE4-871\_Nov09

## 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15928            | 16288           |
| Channel Y | 16188            | 15745           |
| Channel Z | 15790            | 16219           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) |
|-----------|--------------|------------------|------------------|---------------------|
| Channel X | 0.06         | -3.43            | 1.18             | 0.52                |
| Channel Y | -0.71        | -2.66            | 0.96             | 0.57                |
| Channel Z | -0.95        | -1.94            | 0.04             | 0.41                |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

|           | Zeroing (MOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 0.1999         | 204.4            |
| Channel Y | 0.1999         | 203.6            |
| Channel Z | 0.1999         | 203.8            |

8. Low Battery Alarm Voltage (verified during pre test)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

9. Power Consumption (verified during pre test)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.0              | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |