

No.: RZA2009-0333



# OET 65 TEST REPORT

TA Technology (Shanghai) Co., Ltd.

No. RZA2009-0333 Page 2of 118

**GENERAL TERMS** 

1. The test report is invalid if not marked with "exclusive stamp for the data report" or the stamp of

the TA.

2. Any copy of the test report is invalid if not re-marked with the "exclusive stamp for the test report"

or the stamp of TA.

3. The test report is invalid if not marked with the stamps or the signatures of the persons

responsible for performing, revising and approving the test report.

4. The test report is invalid if there is any evidence of erasure and/or falsification.

5. If there is any dissidence for the test report, please file objection to the test center within 15 days

from the date of receiving the test report.

6. Normally, entrust test is only responsible for the samples that have undergone the test.

7. This test report cannot be used partially or in full for publicity and/or promotional purposes without

previous written permissions of TA.

Address: Room4,No.399,Cailun Rd,Zhangjiang Hi-Tech Park, Pudong Shanghai,China

Post code: 201203

Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com
E-mail: service@ta-shanghai.com

No. RZA2009-0333 Page 3of 118

# **GENERAL SUMMARY**

| Product                  | GSM Dual-Band Digital Moblie Phone Model ZTE A306+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | ZTE A306+                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|
| Client ZTE CORPORATION - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type of test           | Entrusted                     |
| Manufacturer             | ZTE CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arrival Date of sample | March 23 <sup>th</sup> , 2009 |
| Place of sampling        | (Blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Carrier of the samples | Min Zhang                     |
| Quantity of the samples  | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date of product        | (Blank)                       |
| Base of the samples      | (Blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Items of test          | SAR                           |
| Series number            | 359497020002742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                               |
| Standard(s)              | ANSI C95.1–2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.  IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques.  OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.  IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).  IEC 62209-2:2008(106/162/CDV): Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR)for wireless communication devices used in close proximity to the human body .( frequency rang of 30MHz to 6GHz ) |                        |                               |
| Conclusion               | Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 7.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 7.1 of this test report.  General Judgment: Pass  (Stamp)  Date of issue: March 30 <sup>th</sup> , 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                               |
| Comment                  | The test result only responds to the measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sample.                |                               |

Approved by Mo 13 4

Revised by

交氢

Performed by

Jinchang Li

Weizhong Yang

Minbao Ling

No. RZA2009-0333 Page 4of 118

# **TABLE OF CONTENT**

| 1. | CC           | OMPETENCE AND WARRANTIES               | 6  |
|----|--------------|----------------------------------------|----|
| 2. | GF           | ENERAL CONDITIONS                      | 6  |
| 3. | DE           | ESCRIPTION OF EUT                      | 7  |
|    | 3.1.         | ADDRESSING INFORMATION RELATED TO EUT  | .7 |
|    | 3.2.         | CONSTITUENTS OF EUT                    | .7 |
|    | 3.3.         | GENERAL DESCRIPTION                    | .7 |
|    | 3.4.         | TEST ITEM                              | .8 |
| 4. | OF           | PERATIONAL CONDITIONS DURING TEST      | 9  |
|    | 4.1.         | GENERAL DESCRIPTION OF TEST PROCEDURES | .9 |
|    | 4.2.         | GSM TEST CONFIGURATION                 | .9 |
| 5. | SA           | AR MEASUREMENTS SYSTEM CONFIGURATION   | 10 |
|    | 5.1.         |                                        |    |
|    | 5.2.         |                                        |    |
|    | _            | 2.1. EX3DV4 Probe Specification        |    |
|    | _            | 2.2. E-field Probe Calibration1        |    |
|    |              | OTHER TEST EQUIPMENT                   |    |
|    | _            | 3.1. Device Holder for Transmitters    |    |
|    |              | 3.2. Phantom                           |    |
|    | 5.4.         |                                        |    |
|    | 5.5.         |                                        |    |
|    | _            | 5.1. Data Storage                      |    |
|    | 5.6.         | .5.2. Data Evaluation by SEMCAD        |    |
|    | 5.6.         |                                        |    |
|    | _            |                                        |    |
| 6. |              | ABORATORY ENVIRONMENT                  |    |
| 7. | _            | HARACTERISTICS OF THE TEST             |    |
|    | 7.1.         |                                        |    |
|    | 7.2.         |                                        |    |
|    |              | ONDUCTED OUTPUT POWER MEASUREMENT      |    |
|    |              | SUMMARY                                |    |
|    |              |                                        |    |
|    |              | EST RESULTS                            |    |
|    | 9.1.<br>9.2. |                                        |    |
|    | 9.2.         |                                        |    |
|    |              | CONCLUSION                             |    |
|    |              |                                        |    |
| 10 |              | MEASUREMENT UNCERTAINTY                |    |
| 11 |              | MAIN TEST INSTRUMENTS                  |    |
| 12 |              | TEST PERIOD                            |    |
| 13 | 3.           | TEST LOCATION                          | 27 |
| A١ | NEX          | (A: TEST LAYOUT                        | 28 |

| No. H       | RZA2009-0333                                | Page 50f 118 |
|-------------|---------------------------------------------|--------------|
|             |                                             |              |
| ANNEX B: S  | SYSTEM CHECK RESULTS                        | 31           |
| ANNEX C:    | GRAPH RESULTS                               | 35           |
| ANNEX D: I  | PROBE CALIBRATION CERTIFICATE               | 83           |
| ANNEX E : [ | D835V2 DIPOLE CALIBRATION CERTIFICATE       | 92           |
| ANNEX F:    | D1900V2 DIPOLE CALIBRATION CERTIFICATE      | 101          |
| ANNEX G: I  | DAE4 CALIBRATION CERTIFICATE                | 110          |
| ANNEY H · · | THE ELIT APPEARANCES AND TEST CONFIGURATION | 115          |

No. RZA2009-0333 Page 6of 118

#### 1. COMPETENCE AND WARRANTIES

**TA Technology (Shanghai) Co., Ltd.** is a test laboratory competent to carry out the tests described in this test report.

**TA Technology (Shanghai) Co., Ltd.** guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and teCHnical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

**TA Technology (Shanghai) Co., Ltd.** is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.

#### 2. GENERAL CONDITIONS

This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This document is only valid if complete; no partial reproduction can be made with out written approval of **TA Technology (Shanghai) Co., Ltd.** 

This report cannot be used partially or in full for publicity and/or promotional purposes with out previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

No. RZA2009-0333 Page 7of 118

#### 3. DESCRIPTION OF EUT

#### 3.1. Addressing Information Related to EUT

**Table 1: Applicant (The Client)** 

| Name or Company | ZTE CORPORATION                                              |
|-----------------|--------------------------------------------------------------|
| Address/Post    | ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan |
| Address/Post    | District,Shenzhen, Guangdong, 518057, P.R.China              |
| City            | Shenzhen                                                     |
| Postal Code     | 518057                                                       |
| Country         | P.R.China                                                    |
| Telephone       | 021-68897541                                                 |
| Fax             | 021-50801070                                                 |

**Table 2: Manufacturer** 

| Name or Company | ZTE CORPORATION                                              |
|-----------------|--------------------------------------------------------------|
| Address/Post    | ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan |
| Address/Post    | District,Shenzhen, Guangdong, 518057, P.R.China              |
| City            | Shenzhen                                                     |
| Postal Code     | 518057                                                       |
| Country         | P.R.China                                                    |
| Telephone       | 021-68897541                                                 |
| Fax             | 021-50801070                                                 |

#### 3.2. Constituents of EUT

**Table 3: Constituents of Samples** 

| Description     | Model              | Serial Number      | Manufacturer    |
|-----------------|--------------------|--------------------|-----------------|
| Handset         | ZTE A306+          | 359497020002742    | ZTE CORPORATION |
| Lithium Battery | Li3706T42P3h383857 | 900208010901311756 | ZTE CORPORATION |
| AC/DC Adapter   | STC-A22O50U8-B     | 100812056411953    | ZTE CORPORATION |

Note:

The EUT appearances see ANNEX H.

#### 3.3. General Description

Equipment Under Test (EUT) is a model of GSM Dual-Band Digital Mobile Phone with internal antenna. It consists of Handset, Lithium Battery and AC/DC Adapter The detail about Mobile phone, Lithium Battery and AC/DC Adapter is in Table 3. SAR is tested for GSM 850 and GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

No. RZA2009-0333 Page 8of 118

# 3.4. Test item

#### Table 4: Test item of EUT

| Device type :                     | portable device                               |                          |
|-----------------------------------|-----------------------------------------------|--------------------------|
| Exposure category:                | uncontrolled environment / general population |                          |
| Device operating configurations : |                                               |                          |
| Operating mode(s):                | GSM850; (tested)                              |                          |
| Operating mode(s).                | GSM1900; (tested)                             |                          |
| Modulation:                       | GMSK,                                         |                          |
| Operating frequency range(s)      | transmitter frequency range                   | receiver frequency range |
| GSM850: (tested)                  | 824.2 MHz ~ 848.8 MHz                         | 869.2 MHz ~ 893.8 MHz    |
| GSM1900: (tested)                 | 1850.2 MHz ~ 1909.8 MHz                       |                          |
| Dower does                        | GSM 850: 4, tested with power level 5         |                          |
| Power class                       | GSM 1900: 1, tested with power level 0        |                          |
| Test channel                      | 128 -190 - 251 (GSM85                         | 0) (tested)              |
| (Low –Middle –High)               | 512 - 661 – 810 (GSM190                       | 0) (tested)              |
| Hardware version:                 | g6cB                                          |                          |
| Software version:                 | EF-P108E1FM(U)V1.0.0B01                       |                          |
| Antenna type:                     | integrated antenna                            |                          |

No. RZA2009-0333 Page 9of 118

#### 4. OPERATIONAL CONDITIONS DURING TEST

#### 4.1. General description of test procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, allocated to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

#### 4.2. **GSM Test Configuration**

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" in head SAR and body SAR of GSM850, set to "0" in head SAR and body SAR of GSM1900, The test in the band of GSM 850 and 1900 are performed in the mode of speech transfer function,

No. RZA2009-0333 Page 10of 118

#### 5. SAR MEASUREMENTS SYSTEM CONFIGURATION

#### 5.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

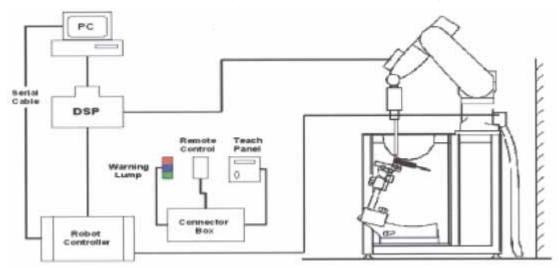



Figure 1. SAR Lab Test Measurement Set-up

No. RZA2009-0333 Page 11of 118

#### 5.2. Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

#### 5.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900

and HSL 1750

Additional CF for other liquids and

frequencies upon request

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10  $\mu$ W/g to > 100 mW/g Linearity:

 $\pm$  0.2dB (noise: typically < 1  $\mu$ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.



Figure 2.EX3DV4 E-field Probe



Figure 3. EX3DV4 E-field probe

No. RZA2009-0333 Page 12of 118

#### 5.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:  $\Delta t = \text{Exposure time (30 seconds)}$ ,

C = Heat capacity of tissue (brain or muscle),

 $\Delta T$  = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m3).

#### 5.3. Other Test Equipment

#### 5.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss

POM material having the following dielectric



Figure 4.Device Holder

parameters: relative permittivity "=3 and loss tangent \_=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

No. RZA2009-0333 Page 13of 118

#### **5.3.2.** Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special



Figure 5.Generic Twin Phantom

#### 5.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

#### Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values

No. RZA2009-0333 Page 14of 118

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

#### Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

#### Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps. No. RZA2009-0333 Page 15of 118

#### 5.5. Data Storage and Evaluation

#### 5.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### 5.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai<sub>0</sub>, a<sub>i1</sub>, a<sub>i2</sub>

Conversion factor
 Diode compression point
 Dcp<sub>i</sub>

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

No. RZA2009-0333 Page 16of 118

the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With  $V_i$  = compensated signal of channel i (i = x, y, z)

 $U_i$  = input signal of channel i (i = x, y, z)

**cf** = crest factor of exciting field (DASY parameter)

**dcp**<sub>i</sub> = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ 

H-field probes:  $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$ 

With  $V_i$  = compensated signal of channel i (i = x, y, z)

**Norm**<sub>i</sub> = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)<sup>2</sup>] for E-field Probes

**ConvF** = sensitivity enhancement in solution

 $a_{ij}$  = sensor sensitivity factors for H-field probes

**f** = carrier frequency [GHz]

 $E_i$  = electric field strength of channel i in V/m

 $H_i$  = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / ( \cdot 1000)$$

No. RZA2009-0333 Page 17of 118

with **SAR** = local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$  = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or  $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$ 

with  $P_{pwe}$  = equivalent power density of a plane wave in mW/cm<sup>2</sup>

 $E_{tot}$  = total electric field strength in V/m

 $H_{tot}$  = total magnetic field strength in A/m

No. RZA2009-0333 Page 18of 118

#### 5.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 11.

System check results have to be equal or near the values determined during dipole calibration with the

relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY 4 system.

3D Probe positioner

Field probe
Flat Phantom
Dipole

Cable

Att2
PM3

Att2
PM3

Figure 6. System Check Set-up

No. RZA2009-0333 Page 19of 118

#### 5.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 5 and Table 6 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

**Table 5: Composition of the Head Tissue Equivalent Matter** 

| MIXTURE%              | FREQUENCY(Brain) 835MHz |
|-----------------------|-------------------------|
| Water                 | 41.45                   |
| Sugar                 | 56                      |
| Salt                  | 1.45                    |
| Preventol             | 0.1                     |
| Cellulose             | 1.0                     |
| Dielectric Parameters | f=835MHz ε=41.5 σ=0.9   |
| Target Value          | 1-035NIDZ E-41.5 0-0.9  |

| MIXTURE%                              | FREQUENCY(Brain)1900MHz |
|---------------------------------------|-------------------------|
| Water                                 | 55.242                  |
| Glycol monobutyl                      | 44.452                  |
| Salt                                  | 0.306                   |
| Dielectric Parameters<br>Target Value | f=1900MHz ε=40.0 σ=1.40 |

**Table 6: Composition of the Body Tissue Equivalent Matter** 

| MIXTURE%                              | FREQUENCY(Body)835MHz  |
|---------------------------------------|------------------------|
| Water                                 | 52.5                   |
| Sugar                                 | 45                     |
| Salt                                  | 1.4                    |
| Preventol                             | 0.1                    |
| Cellulose                             | 1.0                    |
| Dielectric Parameters<br>Target Value | f=835MHz ε=55.2 σ=0.97 |

| MIXTURE%              | FREQUENCY (Body) 1900MHz |  |
|-----------------------|--------------------------|--|
| Water                 | 69.91                    |  |
| Glycol monobutyl      | 29.96                    |  |
| Salt                  | 0.13                     |  |
| Dielectric Parameters | f-4000MH-                |  |
| Target Value          | f=1900MHz ε=53.3 σ=1.52  |  |

No. RZA2009-0333 Page 20of 118

#### 6. LABORATORY ENVIRONMENT

**Table 7: The Ambient Conditions during Test** 

| Temperature                                                                                     | Min. = 20°C, Max. = 25 °C |  |
|-------------------------------------------------------------------------------------------------|---------------------------|--|
| Relative humidity                                                                               | Min. = 30%, Max. = 70%    |  |
| Ground system resistance                                                                        | < 0.5 Ω                   |  |
| Ambient noise is checked and found very low and in compliance with requirement of standards.    |                           |  |
| Reflection of surrounding objects is minimized and in compliance with requirement of standards. |                           |  |

#### 7. CHARACTERISTICS OF THE TEST

#### 7.1. Applicable Limit Regulations

**ANSI C95.1–2005:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 7.2. Applicable Measurement Standards

**IEEE 1528–2003:** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Experimental Techniques.

**OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002:** Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

**IEC 62209-1:** Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

**IEC 62209-2:2008(106/162/CDV):** Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body .( frequency rang of 30MHz to 6GHz )

No. RZA2009-0333 Page 21of 118

#### 8. CONDUCTED OUTPUT POWER MEASUREMENT

#### 8.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power. Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

#### 8.2. Conducted Power Results

**Table 8: Conducted Power Measurement Results** 

|                   | Conducted Power         |             |             |  |  |  |  |
|-------------------|-------------------------|-------------|-------------|--|--|--|--|
| GSM 850           | Channel 128 Channel 190 |             | Channel 251 |  |  |  |  |
|                   | (824.2MHz)              | (836.6MHz)  | (848.8MHz)  |  |  |  |  |
| Before Test (dBm) | 31.68                   | 31.56       | 31.37       |  |  |  |  |
| After Test (dBm)  | 31.67                   | 31.54       | 31.36       |  |  |  |  |
|                   | Conducted Power         |             |             |  |  |  |  |
| GSM 1900          | Channel 512             | Channel 661 | Channel 810 |  |  |  |  |
|                   | (1850.2MHz)             | (1880MHz)   | (1909.8MHz) |  |  |  |  |
| Before Test (dBm) | 29.01                   | 28.78       | 28.31       |  |  |  |  |
| After Test (dBm)  | 29.01                   | 28.76       | 28.32       |  |  |  |  |

No. RZA2009-0333 Page 22of 118

## 9. TEST RESULTS

#### 9.1. Dielectric Performance

Table 9: Dielectric Performance of Head Tissue Simulating Liquid

| Frequency | Description       | Dielectric Par | Temp        |      |
|-----------|-------------------|----------------|-------------|------|
| l         | Description       | ٤r             | σ(s/m)      |      |
|           | Target value      | 41.5           | 0.90        | ,    |
| 835MHz    | ±5% window        | 39.43 — 43.58  | 0.86 — 0.95 | ,    |
| (head)    | Measurement value | 43.03          | 0.93        | 21.8 |
|           | 2009-3-28         | 43.03          | 0.93        | 21.0 |
|           | Target value      | 40.0           | 1.40        | ,    |
| 1900MHz   | ±5% window        | 38 — 42        | 1.33 — 1.47 | ,    |
| (head)    | Measurement value | 39.79          | 1.42        | 21.9 |
|           | 2009-3-29         | 39.79          | 1.42        | 21.9 |

Table 10: Dielectric Performance of Body Tissue Simulating Liquid

| Frequency  | Description       | Dielectric Par | Temp        |      |
|------------|-------------------|----------------|-------------|------|
| riequelicy | Description       | ε <sub>r</sub> | σ(s/m)      |      |
|            | Target value      | 55.20          | 0.97        | ,    |
| 835MHz     | ±5% window        | 52.44 — 57.96  | 0.92 — 1.02 | /    |
| (body)     | Measurement value | 55.62          | 0.98        | 21.8 |
|            | 2009-3-28         | 33.02          | 0.96        | 21.0 |
|            | Target value      | 53.3           | 1.52        | ,    |
| 1900MHz    | ±5% window        | 50.64 — 55.97  | 1.44 — 1.60 | /    |
| (body)     | Measurement value | 52.10          | 1.51        | 21.9 |
|            | 2009-3-29         | 52.10          | 1.51        | 21.9 |

#### 9.2. System Checking Results

Table 11: System Checking for Head tissue simulant

| Frequency | Description        | SAR               | Dielectric<br>Parameters |       | Temp   |          |
|-----------|--------------------|-------------------|--------------------------|-------|--------|----------|
|           |                    | 10g               | 1g                       | ٤r    | σ(s/m) |          |
|           | Recommended result | 1.52              | 2.30                     | 40.90 | 0.00   | ,        |
| 835MHz    | ±10% window        | 1.371.67 2.072.53 |                          | 40.90 | 0.89   | /        |
| OSSIVITIZ | Measurement value  | 1.50              | 2.30                     | 43.03 | 0.93   | 21.9     |
|           | 2009-3-28          | 1.50              |                          |       |        |          |
|           | Recommended result | 5.06              | 9.84                     | 38.80 | 1.47   | ,        |
| 1900MHz   | ±10% window        | 4.555.57          | 8.8610.82                | 30.00 | 1.47   | <b>'</b> |
|           | Measurement value  | 5.09              | 9.74                     | 39.79 | 1.42   | 22.1     |
|           | 2009-3-29          | 5.09              |                          |       |        | 22.1     |

Note: 1. The graph results see ANNEX B.

<sup>2.</sup> Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

No. RZA2009-0333 Page 23of 118

#### 9.3. Summary of Measurement Results

Table 12: SAR Values (GSM850)

| Liquid Temperature: 22.5   |                        |                          |                         |        |           |  |  |  |
|----------------------------|------------------------|--------------------------|-------------------------|--------|-----------|--|--|--|
| Limit of SAR (W/k          | 10 g<br>Average<br>2.0 | 1 g<br>Average<br>1.6    | Power Drift (dB) ± 0.21 | Graph  |           |  |  |  |
| Took Coop Of Hood          |                        | Measurement Result(W/kg) |                         | Power  | Results   |  |  |  |
| rest case of flea          | Test Case Of Head      |                          | 10 g 1 g                |        |           |  |  |  |
| Different Test Position    | Channel                | Average                  | Average                 | (dB)   |           |  |  |  |
|                            | Т                      | est position of          | Head                    |        |           |  |  |  |
|                            | High                   | 0.562                    | 0.840                   | 0.002  | Figure 11 |  |  |  |
| Left hand, Touch cheek     | Middle                 | 0.643                    | 0.967                   | 0.021  | Figure 13 |  |  |  |
|                            | Low                    | 0.708                    | 1.050                   | -0.009 | Figure 15 |  |  |  |
| Left hand, Tilt 15 Degree  | Middle                 | 0.367                    | 0.531                   | -0.038 | Figure 17 |  |  |  |
|                            | High                   | 0.625                    | 0.913                   | 0.039  | Figure 19 |  |  |  |
| Right hand, Touch cheek    | Middle                 | 0.680                    | 1.010                   | 0.034  | Figure 21 |  |  |  |
|                            | Low                    | 0.783                    | 1.140                   | -0.026 | Figure 23 |  |  |  |
| Right hand, Tilt 15 Degree | Middle                 | 0.373                    | 0.556                   | -0.091 | Figure 25 |  |  |  |
|                            | Test posit             | ion of Body (Dis         | stance 15mm)            |        |           |  |  |  |
|                            | High                   | 0.266                    | 0.377                   | -0.039 | Figure 27 |  |  |  |
| Towards Ground             | Middle                 | 0.310                    | 0.436                   | -0.064 | Figure 29 |  |  |  |
|                            | Low                    | 0.368                    | 0.522                   | -0.153 | Figure 31 |  |  |  |
| Towards phantom            | Middle                 | 0.291                    | 0.407                   | -0.016 | Figure 33 |  |  |  |

Note: 1.The value with blue color is the maximum SAR Value of test case of head and body in each test band.

- 2. Upper and lower frequencies were measured at the worst position of head.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR<sub>1g</sub> limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. Tests in body position were performed with 15 mm air gap between DUT and Phantom to simulate the use of a non-metallic belt-clip or holster.

No. RZA2009-0333 Page 24of 118

Table 13: SAR Values (GSM1900)

| Liquid Temperature: 22.5   |                       |                      |                          |                        |                  |  |  |  |  |
|----------------------------|-----------------------|----------------------|--------------------------|------------------------|------------------|--|--|--|--|
| Limit of SAR (W/kg)        |                       | 10 g<br>Average      | 1 g<br>Average           | Power<br>Drift<br>(dB) |                  |  |  |  |  |
|                            |                       | 2.0                  | 1.6                      | ± 0.21                 | Graph<br>Results |  |  |  |  |
| Test Case Of Hea           | 4                     | Measurement          | Measurement Result(W/kg) |                        |                  |  |  |  |  |
| Test Case Of Hea           | u                     | 10 g                 | 1 g                      | Drift                  |                  |  |  |  |  |
| Different Test Position    | Channel               | Average              | Average                  | (dB)                   |                  |  |  |  |  |
|                            | Test position of Head |                      |                          |                        |                  |  |  |  |  |
|                            | High                  | 0.588                | 1.050                    | -0.032                 | Figure 35        |  |  |  |  |
| Left hand, Touch cheek     | Middle                | 0.586                | 1.040                    | 0.045                  | Figure 37        |  |  |  |  |
|                            | Low                   | 0.573                | 1.010                    | 0.037                  | Figure 39        |  |  |  |  |
| Left hand, Tilt 15 Degree  | Middle                | 0.307                | 0.564                    | -0.008                 | Figure 41        |  |  |  |  |
|                            | High                  | 0.486                | 0.878                    | -0.053                 | Figure 43        |  |  |  |  |
| Right hand, Touch cheek    | Middle                | 0.468                | 0.826                    | 0.011                  | Figure 45        |  |  |  |  |
|                            | Low                   | 0.466                | 0.799                    | 0.029                  | Figure 47        |  |  |  |  |
| Right hand, Tilt 15 Degree | Middle                | 0.281                | 0.518                    | -0.046                 | Figure 49        |  |  |  |  |
|                            | Test pos              | ition of Body (Dista | nce 15mm)                |                        |                  |  |  |  |  |
|                            | High                  | 0.116(max.cube)      | 0.195(max.cube)          | 0.048                  | Figure 51        |  |  |  |  |
| Towards Ground             | Middle                | 0.090(max.cube)      | 0.150(max.cube)          | -0.010                 | Figure 53        |  |  |  |  |
|                            | Low                   | 0.0699(max.cube)     | 0.117(max.cube)          | 0.028                  | Figure 55        |  |  |  |  |
| Towards phantom            | Middle                | 0.083(max.cube)      | 0.139(max.cube)          | -0.013                 | Figure 57        |  |  |  |  |

Note: 1.The value with blue color is the maximum SAR Value of test case of head and body in each test band.

- 2. Upper and lower frequencies were measured at the worst position of head.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR<sub>1g</sub> limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the tables above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).
- 5. Tests in body position were performed with 15 mm air gap between DUT and Phantom to simulate the use of a non-metallic belt-clip or holster.

No. RZA2009-0333 Page 25of 118

#### 9.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 7.2 of this report. Maximum localized  $SAR_{1g}$  are 1.14 W/kg (head) and 0.522W/kg (body) that are below exposure limits specified in the relevant standards cited in Clause 7.1 of this test report.

No. RZA2009-0333 Page 26of 118

# **10. MEASUREMENT UNCERTAINTY**

| No. | а                                                                               | Type   | С            | d             | e=f(d、k)   | f                   | h=c×f/e    | k              |  |  |
|-----|---------------------------------------------------------------------------------|--------|--------------|---------------|------------|---------------------|------------|----------------|--|--|
|     | Uncertainty Component                                                           |        | Tol.<br>(±%) | Prob.<br>Dist | Div.       | c <sub>1</sub> (1g) | 1g u (± %) | V <sub>1</sub> |  |  |
| 1   | System repetivity                                                               | Α      | 0.5          | N             | 1          | 1                   | 0.5        | 9              |  |  |
|     | Measurement system                                                              |        |              |               |            |                     |            |                |  |  |
| 2   | Probe Calibration                                                               | В      | 5            | N             | 2          | 1                   | 2.5        | ∞              |  |  |
| 3   | Axial isotropy                                                                  | В      | 4.7          | R             | $\sqrt{3}$ | (1-cp)              | 4.3        | 8              |  |  |
| 4   | Hemisphere Isotropy                                                             | В      | 9.4          | R             | $\sqrt{3}$ | $\sqrt{C_P}$        |            | 8              |  |  |
| 5   | Boundary Effect                                                                 | В      | 0.4          | R             | $\sqrt{3}$ | 1                   | 0.23       | ∞              |  |  |
| 6   | Linearity                                                                       | В      | 4.7          | R             | $\sqrt{3}$ | 1                   | 2.7        | 8              |  |  |
| 7   | System Detection Limits                                                         | В      | 1.0          | R             | $\sqrt{3}$ | 1                   | 0.6        | 80             |  |  |
| 8   | Readout Electronics                                                             | В      | 1.0          | N             | 1          | 1                   | 1.0        | 8              |  |  |
| 9   | RF Ambient Conditions                                                           | В      | 3.0          | R             | $\sqrt{3}$ | 1                   | 1.73       | 8              |  |  |
| 10  | Probe Positioner Mechanical Tolerance                                           | В      | 0.4          | R             | $\sqrt{3}$ | 1                   | 0.2        | ∞              |  |  |
| 11  | Probe Positioning with respect to<br>Phantom Shell                              | В      | 2.9          | R             | $\sqrt{3}$ | 1                   | 1.7        | 8              |  |  |
| 12  | Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation | В      | 3.9          | R             | $\sqrt{3}$ | 1                   | 2.3        | 8              |  |  |
|     |                                                                                 | Te     | st Sample    | Related       |            |                     |            |                |  |  |
| 13  | Test Sample Positioning                                                         | Α      | 4.9          | N             | 1          | 1                   | 4.9        | N-1            |  |  |
| 14  | Device Holder Uncertainty                                                       | Α      | 6.1          | N             | 1          | 1                   | 6.1        | N-1            |  |  |
| 15  | Output Power Variation-SAR drift measurement                                    | В      | 5.0          | R             | $\sqrt{3}$ | 1                   | 2.9        | 8              |  |  |
|     | F                                                                               | hanton | and Tiss     | ue Parame     | eters      |                     |            |                |  |  |
| 16  | Phantom Uncertainty(shape and thickness tolerances)                             | В      | 1.0          | R             | $\sqrt{3}$ | 1                   | 0.6        | 8              |  |  |
| 17  | Liquid Conductivity-deviation from target values                                | В      | 5.0          | R             | $\sqrt{3}$ | 0.64                | 1.7        | 8              |  |  |
| 18  | Liquid Conductivity-measurement uncertainty                                     | В      | 5.0          | N             | 1          | 0.64                | 1.7        | М              |  |  |
| 19  | Liquid Permittivity-deviation from target values                                | В      | 5.0          | R             | $\sqrt{3}$ | 0.6                 | 1.7        | 8              |  |  |
| 20  | Liquid Permittivity- measurement uncertainty                                    | В      | 5.0          | N             | 1          | 0.6                 | 1.7        | М              |  |  |
|     | Combined Standard Uncertainty                                                   |        |              | RSS           |            |                     | 11.25      |                |  |  |
|     | Expanded Uncertainty (95 % CONFIDENCE INTERVAL)                                 |        |              | K=2           |            |                     | 22.5       |                |  |  |

No. RZA2009-0333 Page 27of 118

## 11. MAIN TEST INSTRUMENTS

**Table 14: List of Main Instruments** 

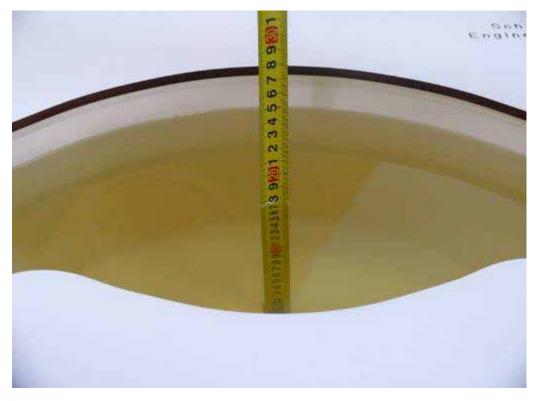
| No. | Name                   | Туре           | Serial Number | Calibration Date         | Valid<br>Period |
|-----|------------------------|----------------|---------------|--------------------------|-----------------|
| 01  | Network analyzer       | Agilent 8753E  | US37390326    | September 14, 2008       | One year        |
| 02  | Dielectric Probe Kit   | Agilent 85070E | US44020115    | No Calibration Requeste  | d               |
| 03  | Power meter            | Agilent E4417A | GB41291714    | March 14, 2009           | One year        |
| 04  | Power sensor           | Agilent 8481H  | MY41091316    | March 14, 2009           | One year        |
| 05  | Signal Generator       | HP 8341B       | 2730A00804    | September 14, 2008       | One year        |
| 06  | Amplifier              | IXA-020        | 0401          | No Calibration Requested |                 |
| 07  | BTS                    | E5515C         | GB46490218    | September 14, 2008       | One year        |
| 08  | E-field Probe          | EX3DV4         | 3660          | September 3, 2008        | One year        |
| 09  | DAE                    | DAE4           | 452           | November 18, 2008        | One year        |
| 10  | Validation Kit 835MHz  | D835V2         | 4d020         | July 21, 2008            | One year        |
| 11  | Validation Kit 1900MHz | D1900V2        | 5d060         | July 22, 2008            | One year        |

# 12. TEST PERIOD

The test is performed from March 28 2009 to March 29, 2009.

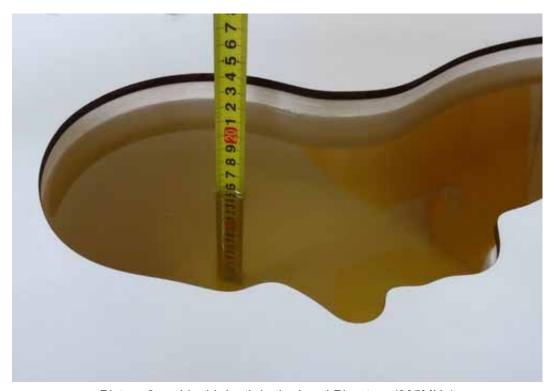
## 13. TEST LOCATION

The test is performed at TA Technology (Shanghai) Co., Ltd.


\*\*\*\*\*END OF REPORT BODY\*\*\*\*\*

No. RZA2009-0333 Page 28of 118

# **ANNEX A: TEST LAYOUT**




Picture 1: Specific Absorption Rate Test Layout



Picture 2: Liquid depth in the flat Phantom (835MHz)

No. RZA2009-0333 Page 29of 118



Picture 3: Liquid depth in the head Phantom (835MHz)



Picture 4: Liquid depth in the flat Phantom (1900 MHz)

No. RZA2009-0333 Page 30of 118



Picture 5: liquid depth in the head Phantom (1900 MHz)

No. RZA2009-0333 Page 31of 118

#### ANNEX B: SYSTEM CHECK RESULTS

Date/Time: 3/28/2009 8:01:58 AM

#### **System Performance Check at 835 MHz**

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020 Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1

Medium parameters used: f = 835 MHz;  $\sigma = 0.93 \text{ mho/m}$ ;  $\epsilon_r = 43.03$ ;  $\rho = 1000 \text{ kg/m}^3$ 

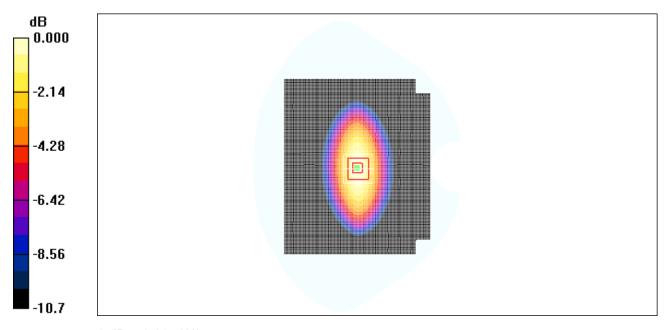
Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19);

Electronics: DAE4 Sn452;

d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.81 mW/g

# d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.8 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 3.50 W/kg

#### SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.5 mW/g

Maximum value of SAR (measured) = 2.83 mW/g



0 dB = 2.83 mW/g

Figure 7 System Performance Check 835MHz 250mW

No. RZA2009-0333 Page 32of 118

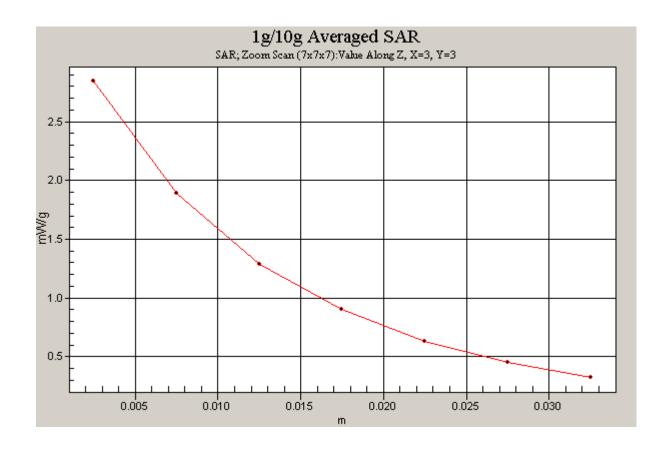



Figure 8 Z-Scan at power reference point (system check at 835 MHz dipole)

No. RZA2009-0333 Page 33of 118

Date/Time: 3/29/2009 8:05:58 AM

#### **System Performance Check at 1900 MHz**

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d060

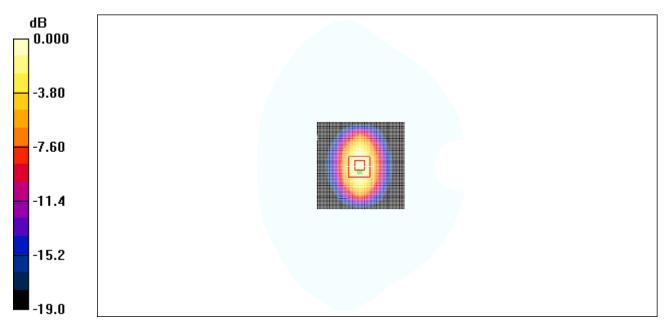
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz;  $\sigma = 1.42 \text{ mho/m}$ ;  $\varepsilon_r = 38.79$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35);

Electronics: DAE4 Sn452;

d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 11.4 mW/g

**d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.1 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 16.9 W/kg

**SAR(1 g) = 9.74 mW/g; SAR(10 g) = 5.09 mW/g** Maximum value of SAR (measured) = 11.1 mW/g



0 dB = 11.1 mW/g

Figure 9 System Performance Check 1900MHz 250mW

No. RZA2009-0333 Page 34of 118

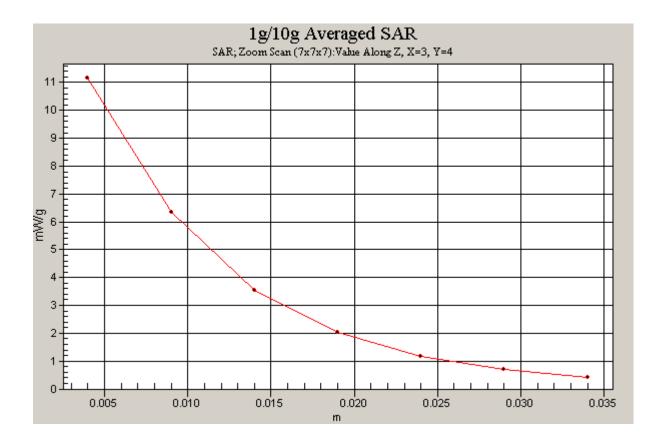



Figure 10 Z-Scan at power reference point (system check at 1900 MHz dipole)

No. RZA2009-0333 Page 35of 118

#### ANNEX C: GRAPH RESULTS

Date/Time: 3/28/2009 7:31:15 PM

#### **GSM 850 Left Cheek High**

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 849 MHz;  $\sigma$  = 0.946 mho/m;  $\epsilon_r$  = 42.9;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Left Section

**DASY4** Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.3 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.840 mW/g; SAR(10 g) = 0.562 mW/g

Maximum value of SAR (measured) = 0.989 mW/g

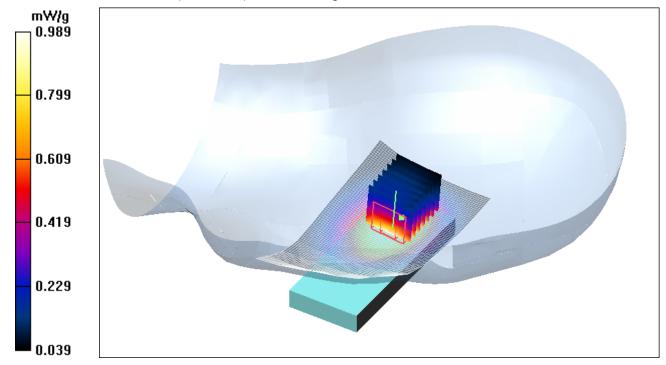



Figure 11 Left Hand Touch Cheek GSM 850 Channel 251

No. RZA2009-0333 Page 36of 118

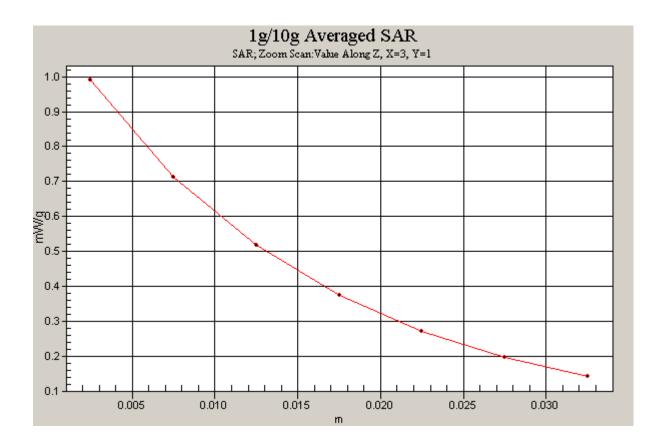



Figure 12 Z-Scan at power reference point (Left Hand Touch Cheek GSM 850 Channel 251)

No. RZA2009-0333 Page 37of 118

Date/Time: 3/28/2009 7:11:15 PM

#### **GSM 850 Left Cheek Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.935$  mho/m;  $\epsilon_r = 43$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.12 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.1 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.967 mW/g; SAR(10 g) = 0.643 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

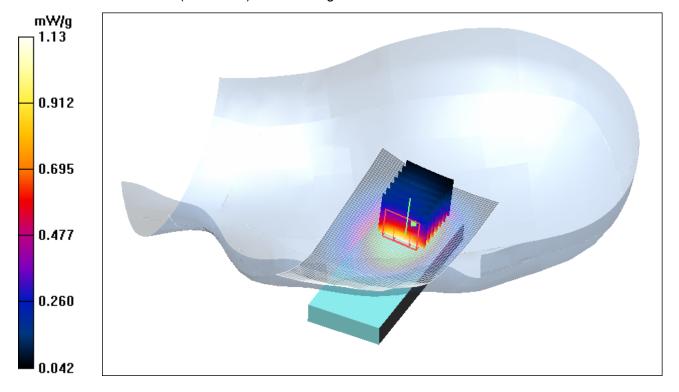



Figure 13 Left Hand Touch Cheek GSM 850 Channel 190

No. RZA2009-0333 Page 38of 118

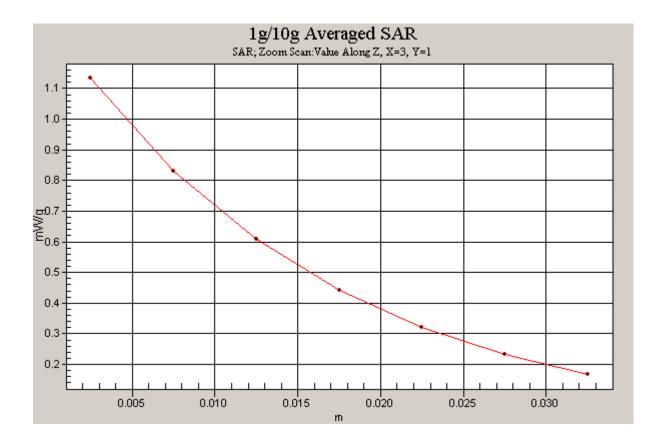



Figure 14 Z-Scan at power reference point (Left Hand Touch Cheek GSM 850 Channel 190)

No. RZA2009-0333 Page 39of 118

Date/Time: 3/28/2009 8:16:15 PM

#### **GSM 850 Left Cheek Low**

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.915 \text{ mho/m}$ ;  $\varepsilon_r = 43.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.6 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.708 mW/g

Maximum value of SAR (measured) = 1.25 mW/g

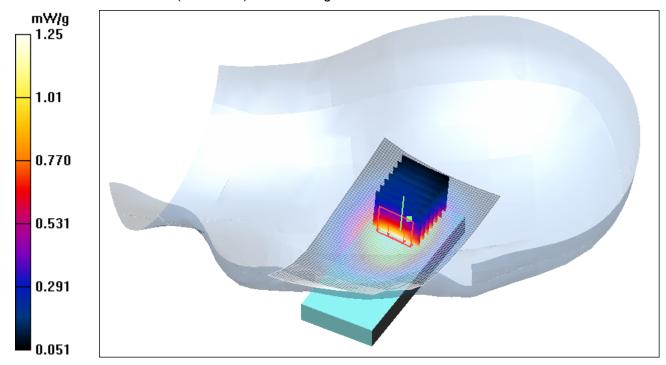



Figure 15 Left Hand Touch Cheek GSM 850 Channel 128

No. RZA2009-0333 Page 40of 118

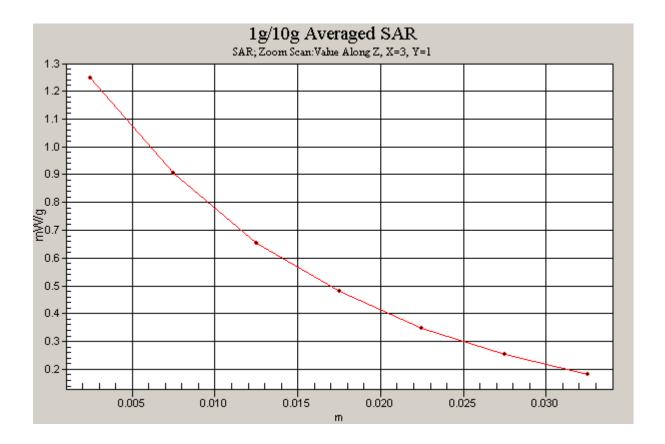



Figure 16 Z-Scan at power reference point (Left Hand Touch Cheek GSM 850 Channel 128)

No. RZA2009-0333 Page 41of 118

Date/Time: 3/28/2009 8:37:22 PM

#### **GSM 850 Left Tilt Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.935$  mho/m;  $\epsilon_r = 43$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008
- Electronics: DAE4 Sn452; Calibrated: 11/18/2008
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Tilt Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.681 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.2 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.818 W/kg

SAR(1 g) = 0.531 mW/g; SAR(10 g) = 0.367 mW/g

Maximum value of SAR (measured) = 0.634 mW/g

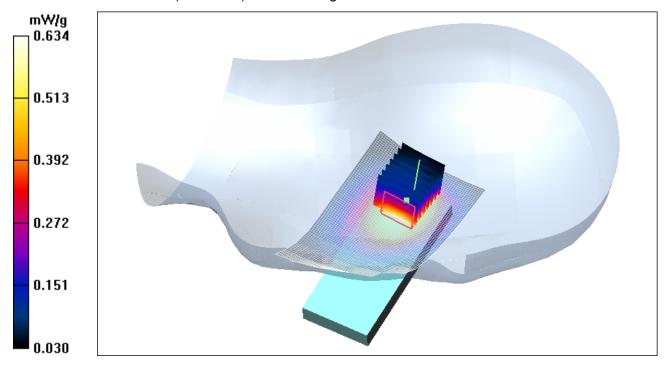



Figure 17 Left Hand Tilt 15° GSM 850 Channel 190

No. RZA2009-0333 Page 42of 118

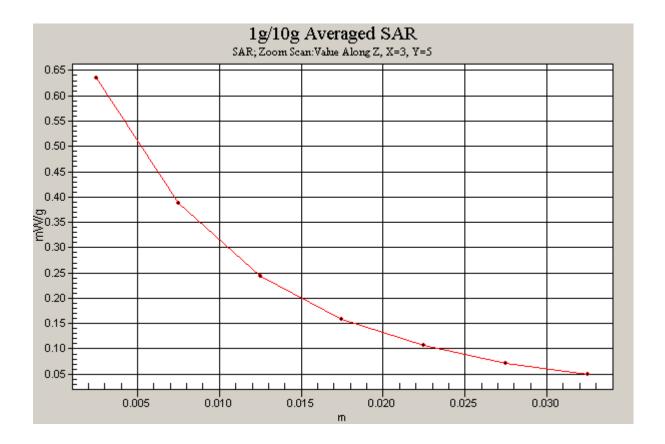



Figure 18 Z-Scan at power reference point (Left Hand Tilt 15° GSM 850 Channel 190)

No. RZA2009-0333 Page 43of 118

Date/Time: 3/28/2009 9:19:55 PM

# **GSM 850 Right Cheek High**

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz;  $\sigma = 0.946$  mho/m;  $\epsilon_r = 42.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.09 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.4 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.913 mW/g; SAR(10 g) = 0.625 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

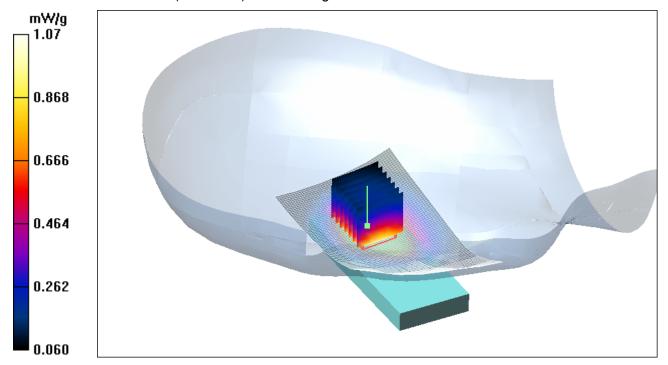



Figure 19 Right Hand Touch Cheek GSM 850 Channel 251

No. RZA2009-0333 Page 44of 118

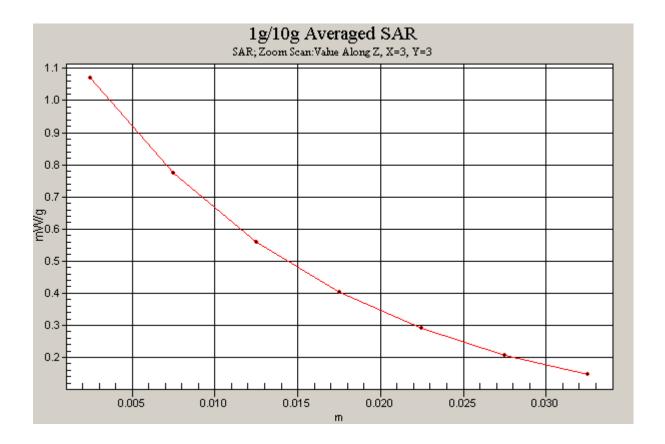



Figure 20 Z-Scan at power reference point (Right Hand Touch Cheek GSM 850 Channel 251)

No. RZA2009-0333 Page 45of 118

Date/Time: 3/28/2009 8:59:49 PM

## **GSM 850 Right Cheek Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.935$  mho/m;  $\epsilon_r = 43$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.21 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.5 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.680 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

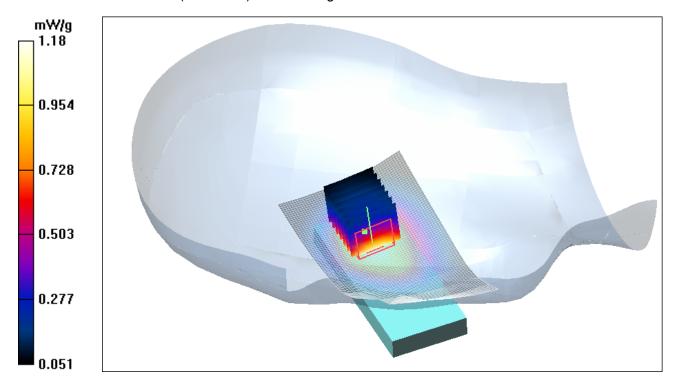



Figure 21 Right Hand Touch Cheek GSM 850 Channel 190

No. RZA2009-0333 Page 46of 118

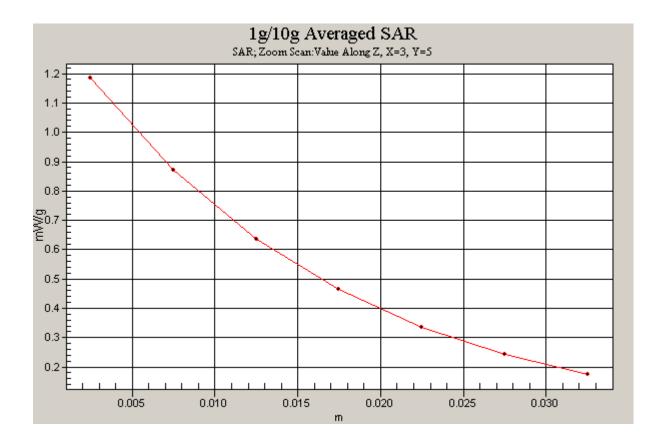



Figure 22 Z-Scan at power reference point (Right Hand Touch Cheek GSM 850 Channel 190)

No. RZA2009-0333 Page 47of 118

Date/Time: 3/28/2009 9:43:35 PM

## **GSM 850 Right Cheek Low**

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.915 \text{ mho/m}$ ;  $\epsilon_r = 43.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.43 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.5 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.783 mW/g

Maximum value of SAR (measured) = 1.33 mW/g

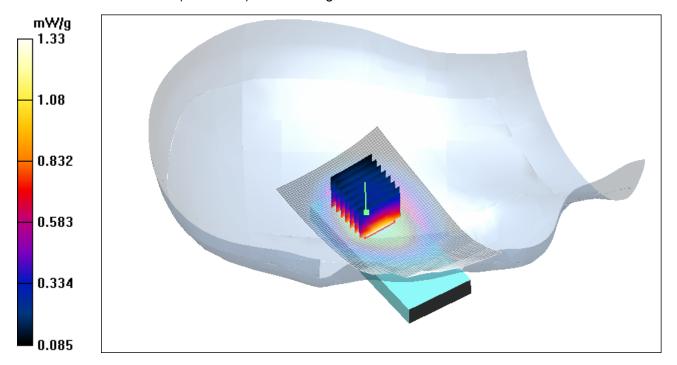



Figure 23 Right Hand Tilt 15° GSM 850 Channel 128

No. RZA2009-0333 Page 48of 118

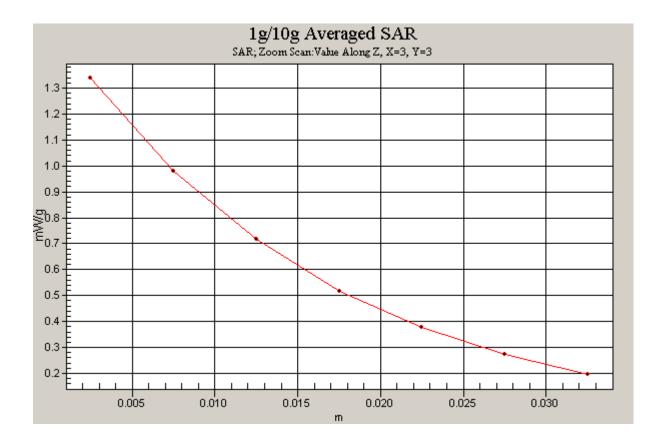



Figure 24 Z-Scan at power reference point (Right Hand Touch Cheek GSM 850 Channel 128)

No. RZA2009-0333 Page 49of 118

Date/Time: 3/28/2009 10:04:36 PM

## **GSM 850 Right Tilt Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.935$  mho/m;  $\epsilon_r = 43$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(9.19, 9.19, 9.19); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Tilt Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.730 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 0.941 W/kg

SAR(1 g) = 0.556 mW/g; SAR(10 g) = 0.373 mW/g

Maximum value of SAR (measured) = 0.655 mW/g

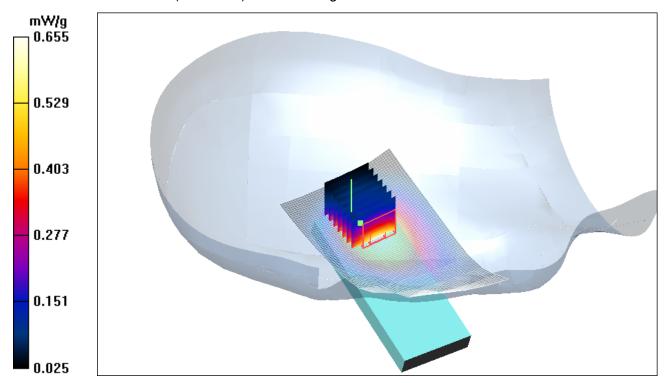



Figure 25 Right Hand Tilt 15° GSM 850 Channel 190

No. RZA2009-0333 Page 50of 118

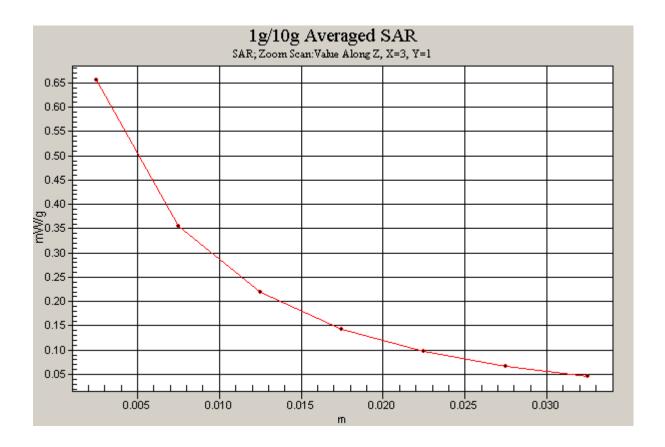



Figure 26 Z-Scan at power reference point (Right Hand Tilt 15° GSM 850 Channel 190)

No. RZA2009-0333 Page 51of 118

Date/Time: 3/28/2009 2:32:55 PM

# **GSM 850 Towards Ground High**

Communication System: GSM 850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz;  $\sigma = 0.998$  mho/m;  $\epsilon_r = 55.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Towards Ground High/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.442 mW/g

**Towards Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.4 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.513 W/kg

SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.266 mW/g

Maximum value of SAR (measured) = 0.440 mW/g

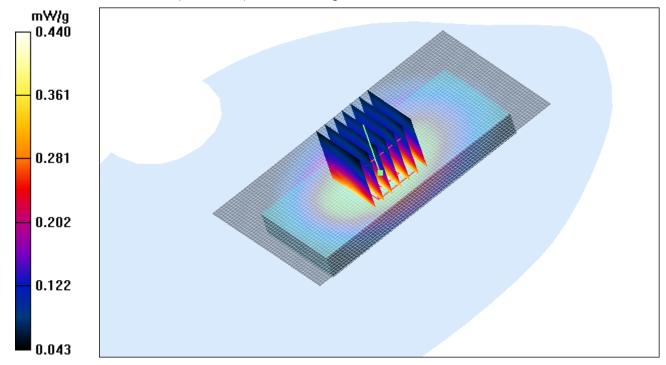



Figure 27 Body, Towards Ground, GSM 850 Channel 251

No. RZA2009-0333 Page 52of 118

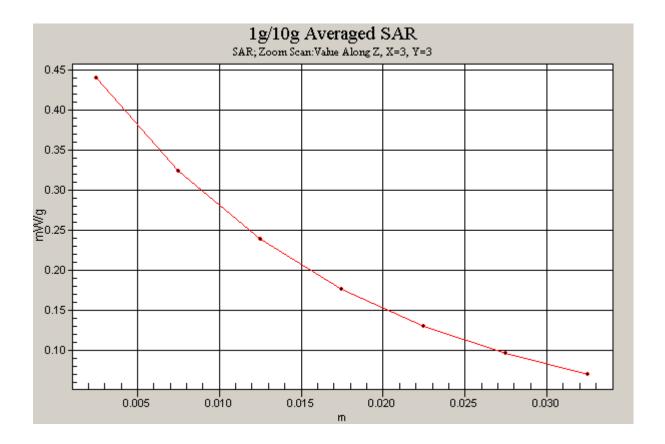



Figure 28 Z-Scan at power reference point (Body, Towards Ground, GSM 850 Channel 251)

# TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-0333 Page 53of 118

Date/Time: 3/28/2009 2:54:15 PM

#### **GSM 850 Towards Ground Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.986$  mho/m;  $\epsilon_r = 55.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Towards Ground Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.510 mW/g

**Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.310 mW/g

Maximum value of SAR (measured) = 0.505 mW/g

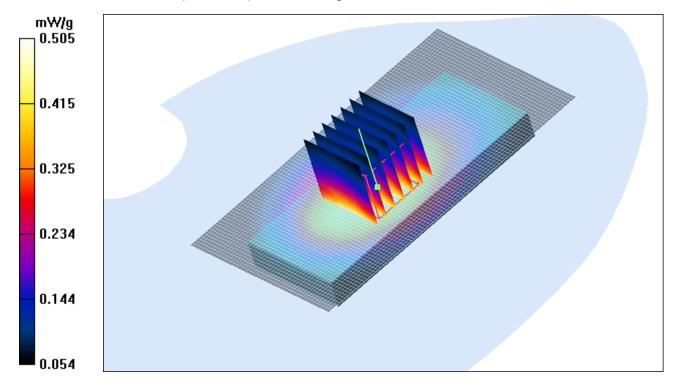



Figure 29 Body, Towards Ground, GSM 850 Channel 190

No. RZA2009-0333 Page 54of 118

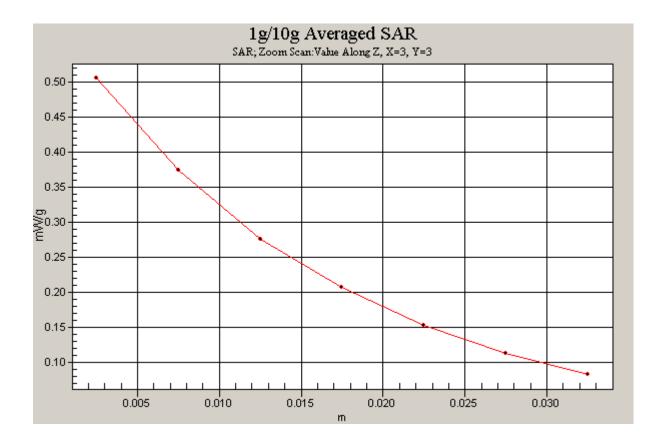



Figure 30 Z-Scan at power reference point (Body, Towards Ground , GSM 850 Channel 190)

No. RZA2009-0333 Page 55of 118

Date/Time: 3/28/2009 3:15:14 PM

#### **GSM 850 Towards Ground Low**

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz;  $\sigma = 0.972 \text{ mho/m}$ ;  $\epsilon_r = 55.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Towards Ground Low/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.622 mW/g

**Towards Ground Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.5 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.708 W/kg

SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.368 mW/g

Maximum value of SAR (measured) = 0.605 mW/g

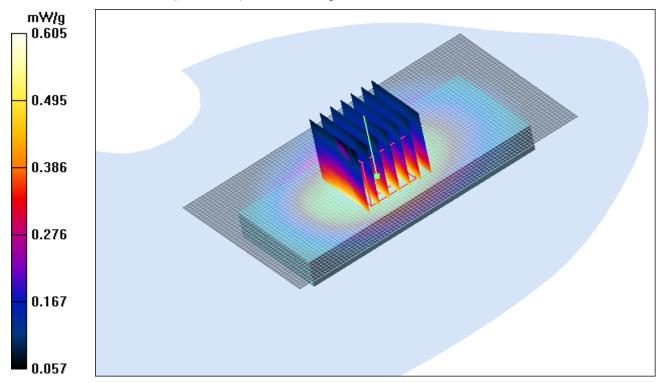



Figure 31 Body, Towards Ground, GSM 850 Channel 128

No. RZA2009-0333 Page 56of 118

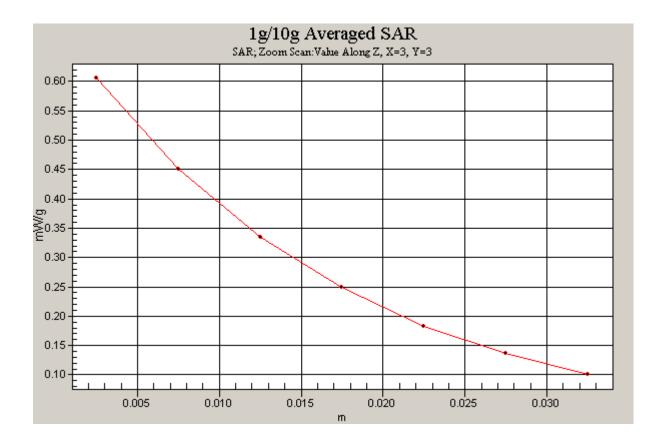



Figure 32 Z-Scan at power reference point (Body, Towards Ground , GSM 850 Channel 128)

No. RZA2009-0333 Page 57of 118

Date/Time: 3/28/2009 2:14:06 PM

#### **GSM 850 Towards Phantom Middle**

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz;  $\sigma = 0.986$  mho/m;  $\epsilon_r = 55.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3660; ConvF(9.1, 9.1, 9.1); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Towards Phantom Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.507 mW/g

**Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.291 mW/g

Maximum value of SAR (measured) = 0.475 mW/g

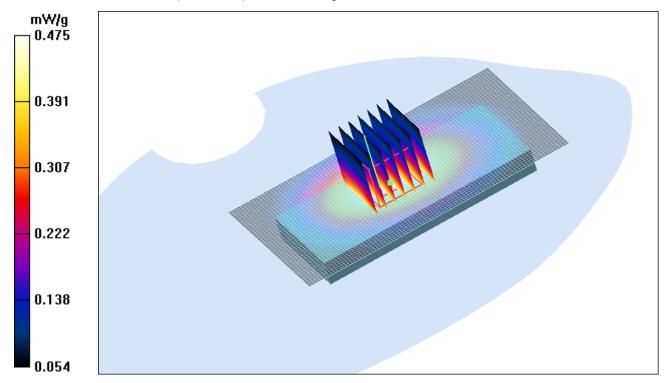



Figure 33 Body with Earphone, Towards Phantom, GSM 850, Channel 190

No. RZA2009-0333 Page 58of 118

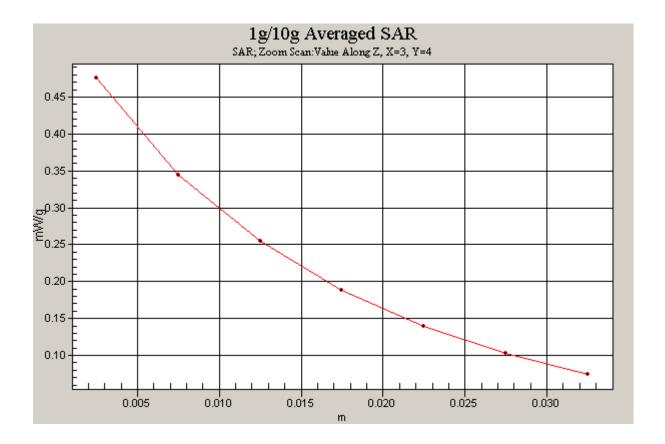



Figure 34 Z-Scan at power reference point (Body, Towards Phantom, GSM 850, Channel 190)

No. RZA2009-0333 Page 59of 118

Date/Time: 3/29/2009 10:37:10 PM

## **GSM 1900 Left Cheek High**

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.58 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

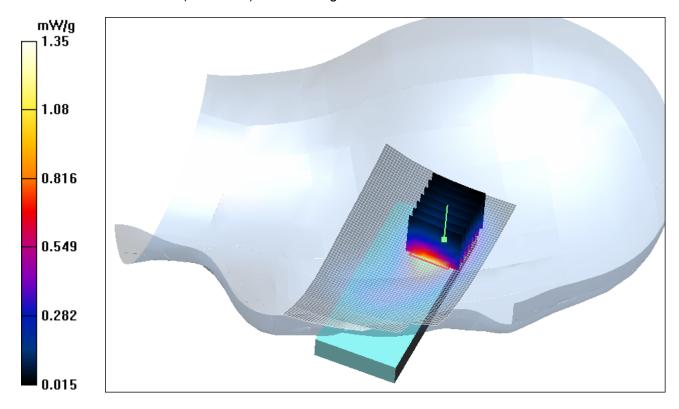



Figure 35 Left Hand Touch Cheek GSM 1900 Channel 810

No. RZA2009-0333 Page 60of 118

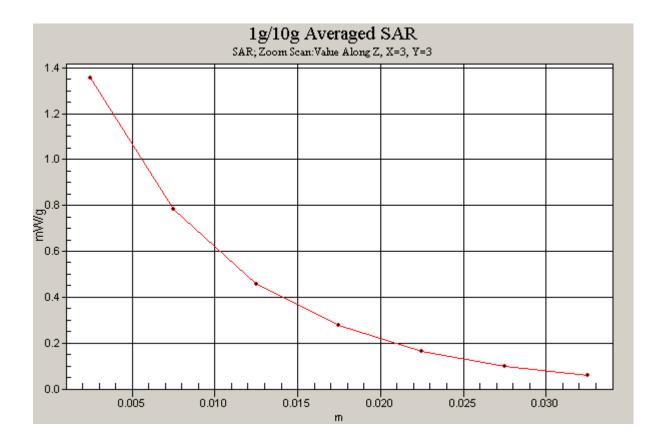



Figure 36 Z-Scan at power reference point (Left Hand Touch Cheek GSM 1900 Channel 810)

No. RZA2009-0333 Page 61of 118

Date/Time: 3/29/2009 6:04:48 PM

#### **GSM 1900 Left Cheek Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.39$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.56 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.586 mW/g

Maximum value of SAR (measured) = 1.36 mW/g

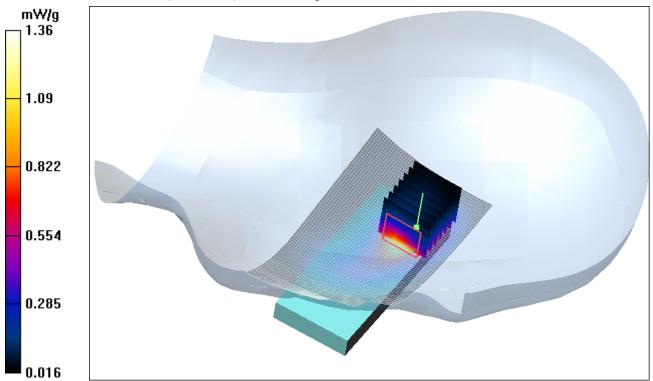



Figure 37 Left Hand Touch Cheek GSM 1900 Channel 661

No. RZA2009-0333 Page 62of 118

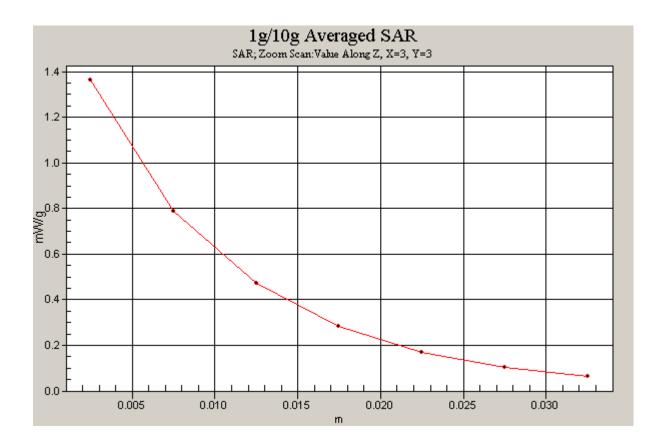



Figure 38 Z-Scan at power reference point (Left Hand Touch Cheek GSM 1900 Channel 661)

No. RZA2009-0333 Page 63of 118

Date/Time: 3/29/2009 6:38:26 PM

#### **GSM 1900 Left Cheek Low**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37 \text{ mho/m}$ ;  $\epsilon_r = 40$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.50 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.573 mW/g

Maximum value of SAR (measured) = 1.32 mW/g

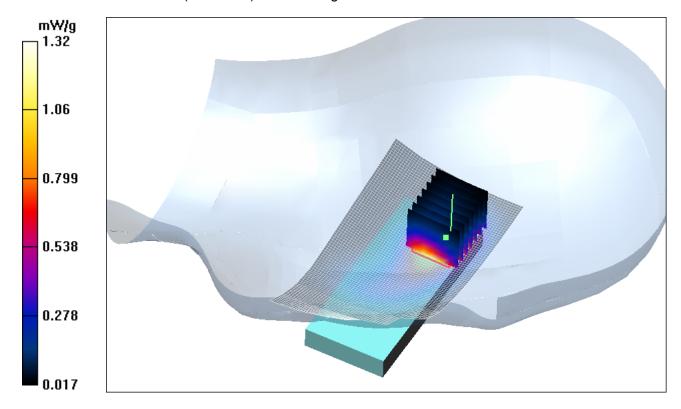



Figure 39 Left Hand Touch Cheek GSM 1900 Channel 512

No. RZA2009-0333 Page 64of 118

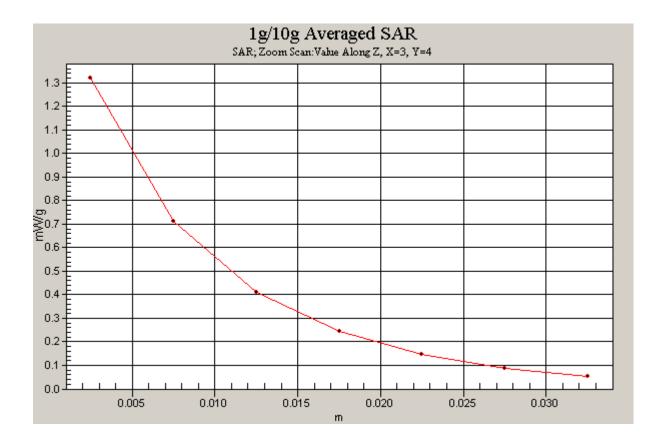



Figure 40 Z-Scan at power reference point (Left Hand Touch Cheek GSM 1900 Channel 512)

No. RZA2009-0333 Page 65of 118

Date/Time: 3/29/2009 10:59:03 PM

#### **GSM 1900 Left Tilt Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.39$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Tilt Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.759 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.971 W/kg

SAR(1 g) = 0.564 mW/g; SAR(10 g) = 0.307 mW/g Maximum value of SAR (measured) = 0.733 mW/g

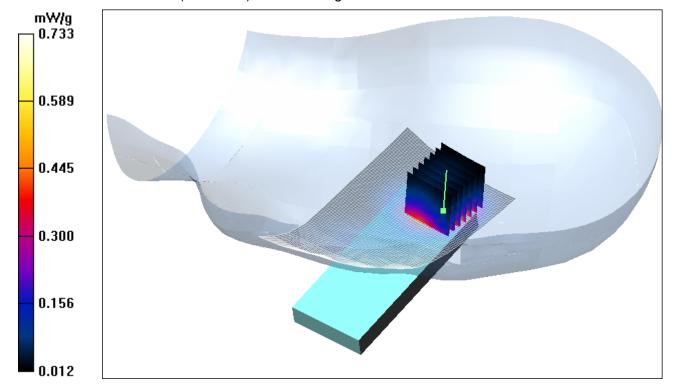



Figure 41 Left Hand Tilt 15° GSM 1900 Channel 661

No. RZA2009-0333 Page 66of 118

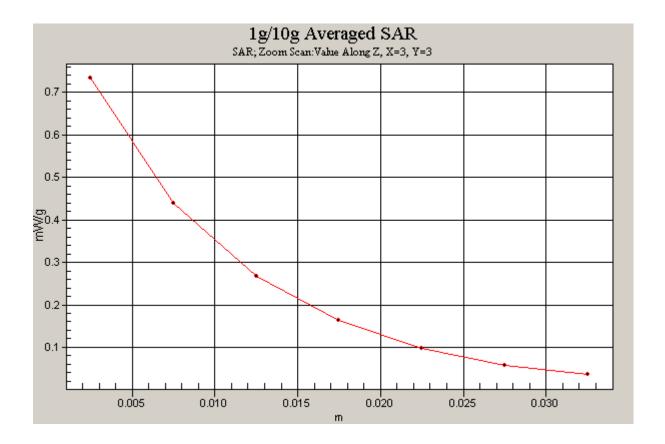



Figure 42 Z-Scan at power reference point (Left Hand Tilt 15° GSM 1900 Channel 661)

No. RZA2009-0333 Page 67of 118

Date/Time: 3/29/2009 11:17:48 PM

# **GSM 1900 Right Cheek High**

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.5 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.878 mW/g; SAR(10 g) = 0.486 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

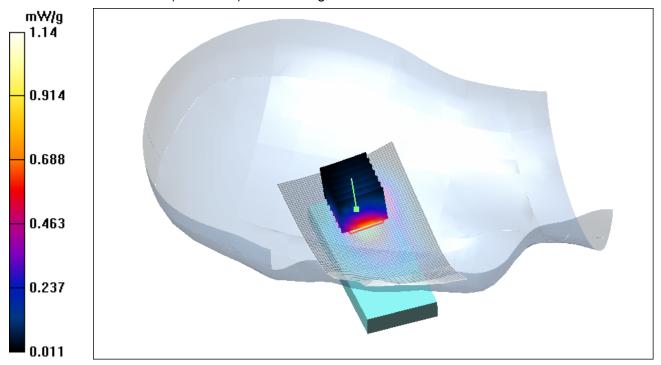



Figure 43 Right Hand Touch Cheek GSM 1900 Channel 810

No. RZA2009-0333 Page 68of 118

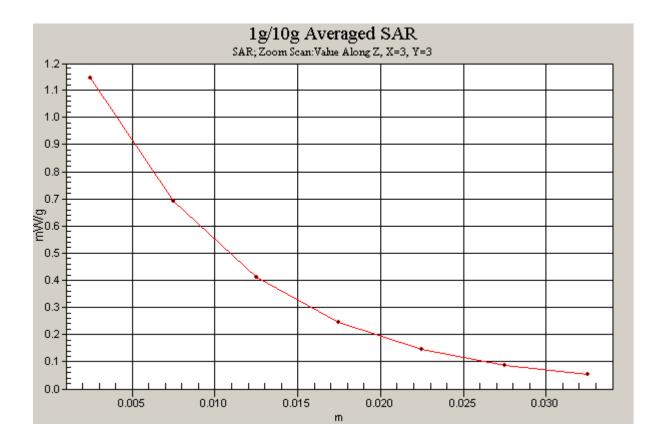



Figure 44 Z-Scan at power reference point (Right Hand Touch Cheek GSM 1900 Channel 810)

No. RZA2009-0333 Page 69of 118

Date/Time: 3/29/2009 11:39:37 PM

# **GSM 1900 Right Cheek Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.39$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.826 mW/g; SAR(10 g) = 0.468 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

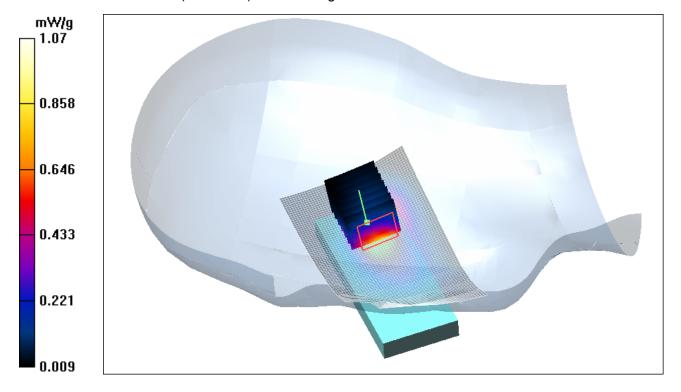



Figure 45 Right Hand Touch Cheek GSM 1900 Channel 661

No. RZA2009-0333 Page 70of 118

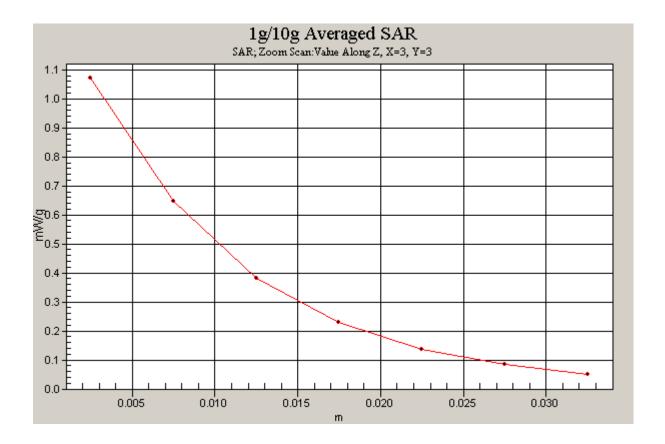



Figure 46 Z-Scan at power reference point (Right Hand Touch Cheek GSM 1900 Channel 661)

No. RZA2009-0333 Page 71of 118

Date/Time: 3/29/2009 11:59:29 PM

#### **GSM 1900 Right Cheek Low**

Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37 \text{ mho/m}$ ;  $\epsilon_r = 40$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.13 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.0 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.799 mW/g; SAR(10 g) = 0.466 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

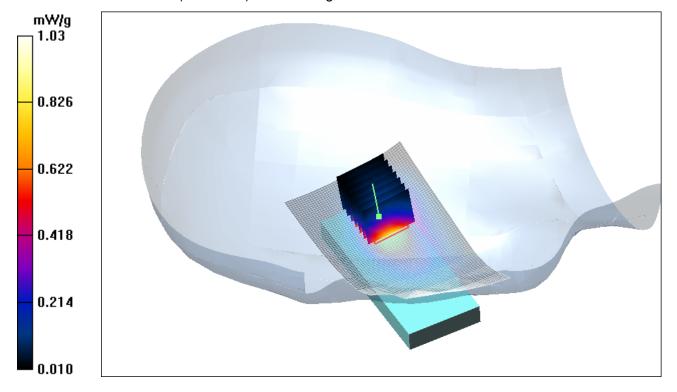



Figure 47 Right Hand Touch Cheek GSM 1900 Channel 512

No. RZA2009-0333 Page 72of 118

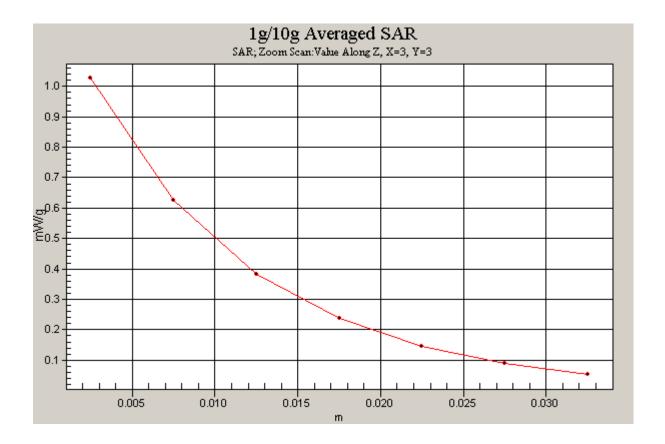



Figure 48 Z-Scan at power reference point (Right Hand Touch Cheek GSM 1900 Channel 512)

No. RZA2009-0333 Page 73of 118

Date/Time: 3/29/2009 0:22:55 AM

## **GSM 1900 Right Tilt Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.39$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.35, 7.35, 7.35); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Tilt Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.647 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.835 W/kg

SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.281 mW/g

Maximum value of SAR (measured) = 0.654 mW/g

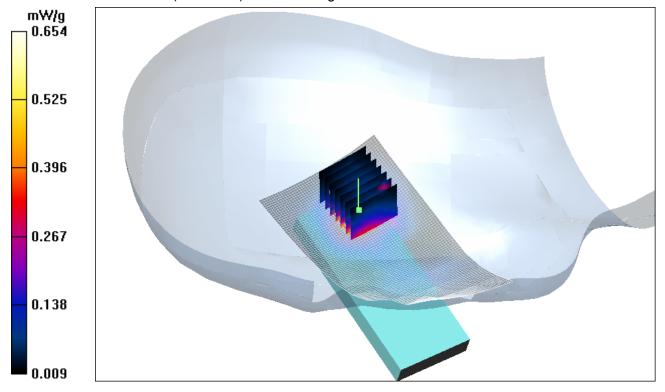



Figure 49 Right Hand Tilt 15° GSM 1900 Channel 661

No. RZA2009-0333 Page 74of 118

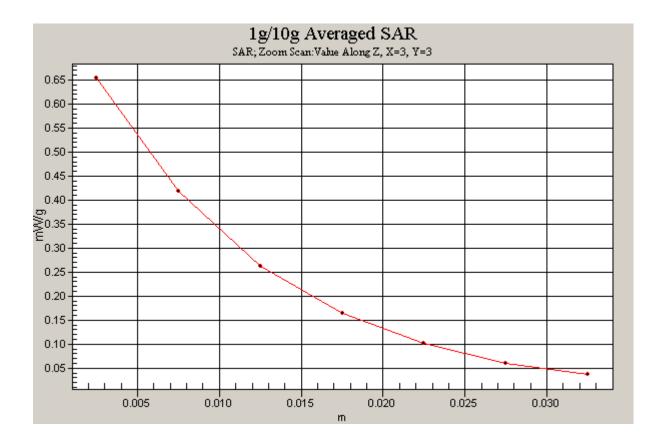



Figure 50 Z-Scan at power reference point (Right Hand Tilt 15° GSM 1900 Channel 661)

No. RZA2009-0333 Page 75of 118

Date/Time: 3/29/2009 10:45:43 AM

## **GSM 1900 Towards Ground High**

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz;  $\sigma = 1.52$  mho/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.45, 7.45, 7.45); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.250 mW/g

**Towards Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.57 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.244 mW/g

**Towards Ground High/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.57 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.170 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.207 mW/g

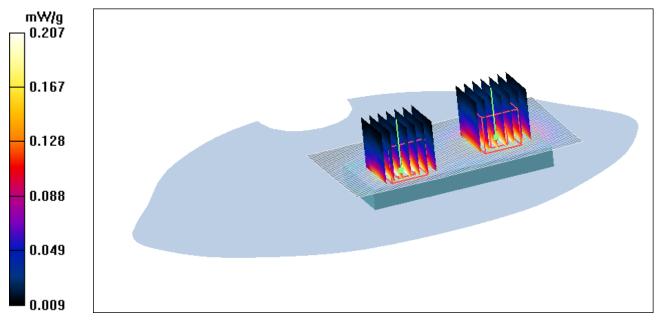
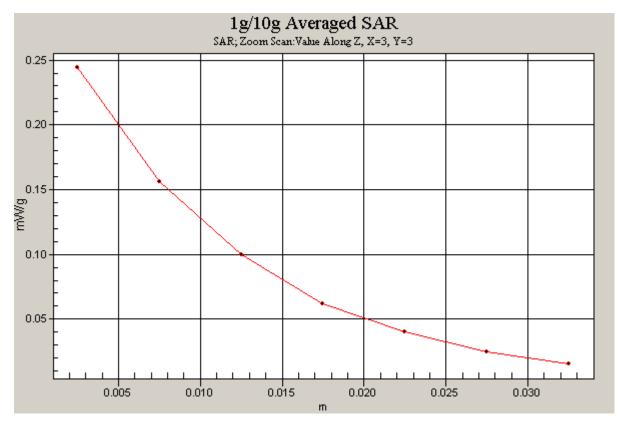




Figure 51 Body, Towards Ground, GSM 1900 Channel 810

No. RZA2009-0333 Page 76of 118






Figure 52 Z-Scan at power reference point (Body, Towards Ground , GSM 1900 Channel 810)

No. RZA2009-0333 Page 77of 118

Date/Time: 3/29/2009 10:01:27 AM

## **GSM 1900 Towards Ground Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.49$  mho/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.45, 7.45, 7.45); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.193 mW/g

**Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.33 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.090 mW/g

Maximum value of SAR (measured) = 0.186 mW/g

**Towards Ground Middle/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.33 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.208 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.090 mW/g

Maximum value of SAR (measured) = 0.168 mW/g

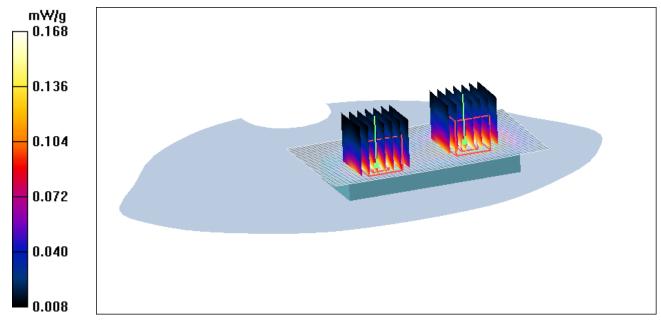
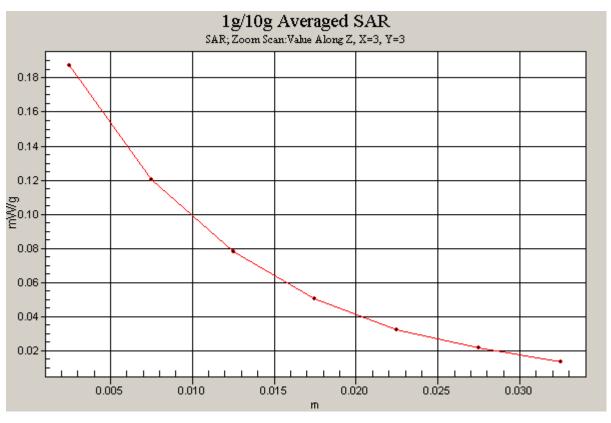




Figure 53 Body, Towards Ground, GSM 1900 Channel 661

No. RZA2009-0333 Page 78of 118



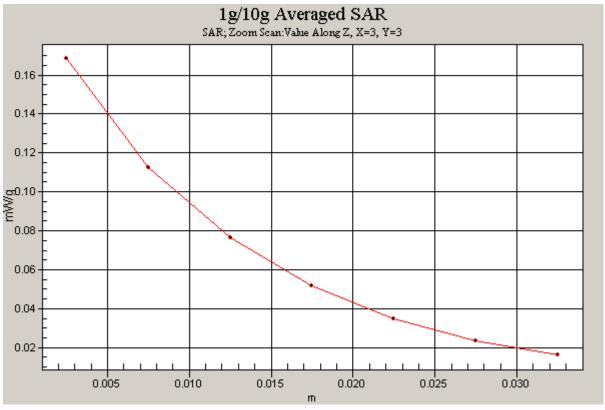



Figure 54 Z-Scan at power reference point (Body, Towards Ground , GSM 1900 Channel 661)

No. RZA2009-0333 Page 79of 118

Date/Time: 3/29/2009 11:26:48 AM

## **GSM 1900 Towards Ground Low**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.45 \text{ mho/m}$ ;  $\varepsilon_r = 52.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.45, 7.45, 7.45); Calibrated: 9/3/2008

• Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.146 mW/g

**Towards Ground Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.18 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.117 mW/g; SAR(10 g) = 0.070 mW/g

Maximum value of SAR (measured) = 0.145 mW/g

**Towards Ground Low/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.18 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.074 mW/g

Maximum value of SAR (measured) = 0.139 mW/g

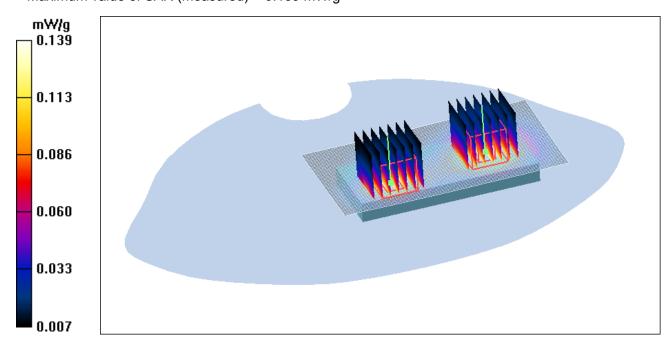



Figure 55 Body, Towards Ground, GSM 1900 Channel 512

No. RZA2009-0333 Page 80of 118

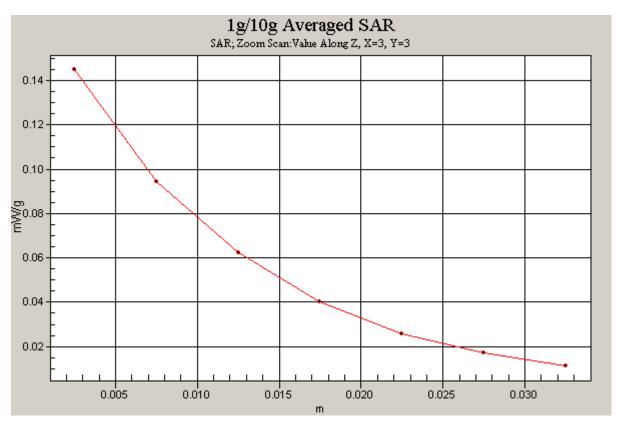





Figure 56 Z-Scan at power reference point (Body, Towards Ground , GSM 1900 Channel 512)

No. RZA2009-0333 Page 81of 118

Date/Time: 3/29/2009 12:03:32 PM

## **GSM 1900 Towards Phantom Middle**

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz;  $\sigma = 1.49$  mho/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

Probe: EX3DV4 - SN3660; ConvF(7.45, 7.45, 7.45); Calibrated: 9/3/2008

Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

**Towards Phantom Middle/Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.173 mW/g

**Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.73 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.222 W/kg

SAR(1 g) = 0.139 mW/g; SAR(10 g) = 0.083 mW/g

Maximum value of SAR (measured) = 0.172 mW/g

**Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.73 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.070 mW/g

Maximum value of SAR (measured) = 0.131 mW/g

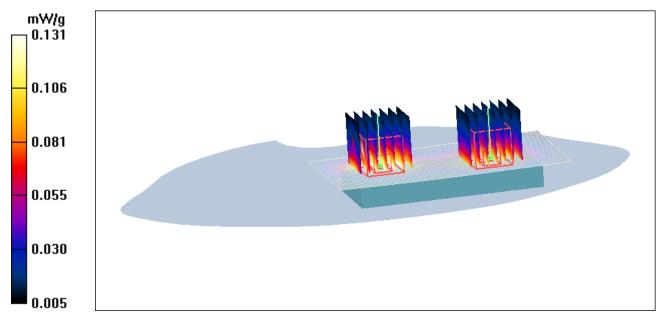
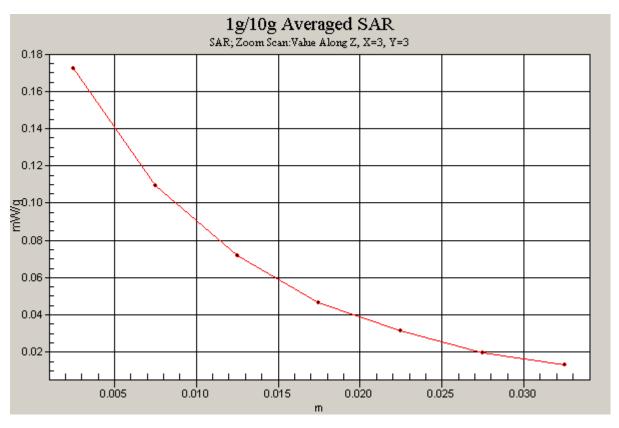




Figure 57 Body, Towards Phantom, GSM 1900 Channel 661

No. RZA2009-0333 Page 82of 118



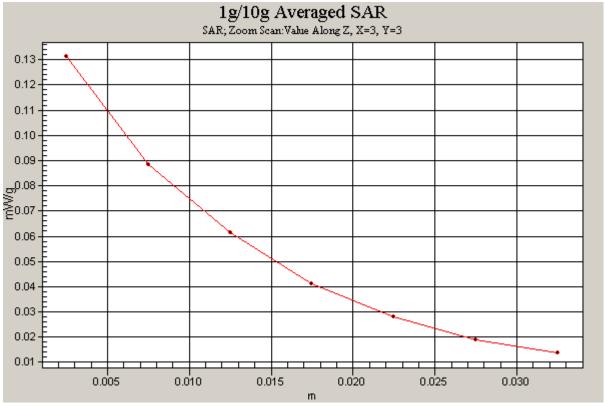



Figure 58 Z-Scan at power reference point (Body, Towards Phantom, GSM 1900 Channel 661)

No. RZA2009-0333 Page 83of 118

## ANNEX D: PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

#### Certificate No: EX3-3660\_Sep08 TA (Auden) CALIBRATION CERTIFICATE EX3DV4 - SN:3660 Object Calibration procedure(s) QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes September 3, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID# 1-Apr-08 (No. 217-00788) Power meter E4419B GB41293874 Apr-09 MY41495277 Power sensor E4412A 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00665) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013 Jan08) Jan-09 DAE4 SN: 660 3-Sep-07 (No. DAE4-660\_Sep07) Sep-08 Secondary Standards ID# Check Date (in house) Scheduled Check 4-Aug-99 (in house check Oct-07) In house check: Oct-09 RF generator HP 8648C US3642U01700 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Name Function Calibrated by: Technical Manager Approved by: Fin Bomholt R&D Director Issued: September 3, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

## TA Technology (Shanghai) Co., Ltd. **Test Report**

No. RZA2009-0333 Page 84of 118

## Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

TSL NORMx,y,z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP Polarization o Polarization 9

φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

## Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

### Methods Applied and Interpretation of Parameters:

- NORMx,v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of . power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-0333 Page 85of 118

EX3DV4 SN:3660

September 3, 2008

## Probe EX3DV4

SN:3660

Manufactured: Calibrated:

April 29, 2008 September 3, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3660\_Sep08

Page 3 of 9