

Report No.: RZA1109-1510SAR Page 1 of 142

OET 65 TEST REPORT

Product Name	WCDMA/GSM (GPRS)	Dual-Mode Digital Mobile Phone
Model	Z431	
FCC ID	Q78-Z431	
Client	ZTE CORPORATION	

TA Technology (Shanghai) Co., Ltd.

Report No.: RZA1109-1510SAR Page 2 of 142

GENERAL SUMMARY

Product Name	WCDMA/GSM (GPRS) Dual-Mode Digital Mobile Phone	Model	Z431
FCC ID	Q78-Z431		
Report No.	RZA1109-1510SAR		
Client	ZTE CORPORATION		
Manufacturer	ZTE CORPORATION		
Reference Standard(s)	IEEE Std C95.1, 1999: IEEE Standard for Safe Exposure to Radiofrequency Electromagnetic Fiel IEEE Std 1528™-2003: IEEE Recommended Spatial-Average Specific Absorption Rate (SAR) Communications Devices: Measurement Techniques SUPPLEMENT C Edition 01-01 to OET BULL including DA 02-1438, published June 2002 Guidelines for Human Exposure to Radiofrequent Information for Evaluation Compliance of Mobile as for Human Exposure to Radiofrequency Emissions	Practice for Detain the Human Hues. ETIN 65 Edition Evaluating Corcy Electromagnet	ermining the Peak lead from Wireless 97-01 June 2001 mpliance with FCC tic Fields Additional
Conclusion	This portable wireless equipment has been mear relevant standards. Test results in Chapter 7 specified in the relevant standards. General Judgment: Pass (Stamp) Date of i	130	trace below limits
Comment	The test result only responds to the measured sar	mple.	

Approved by Director Revised by SAR Manager SAR Engineer

Report No.: RZA1109-1510SAR Page 3 of 142

TABLE OF CONTENT

General Information	5
1. Notes of the Test Report	5
2. Testing Laboratory	5
3. Applicant Information	6
4. Manufacturer Information	6
5. Information of EUT	7
6. The Maximum SAR _{1g} Values	8
7. Maximum Conducted Power of each tested Mode	9
8. Test Date	9
Operational Conditions during Test	10
1. General Description of Test Procedures	
2. GSM Test Configuration	10
3. WCDMA Test Configuration	11
2.3.1. Output Power Verification	11
2.3.2. Head SAR Measurements	11
2.3.3. Body SAR Measurements	11
4. HSDPA Test Configuration	11
5. Test Positions	14
2.5.1. Against Phantom Head	14
2.5.2. Body Worn Configuration	14
SAR Measurements System Configuration	15
1. SAR Measurement Set-up	
2. DASY4 E-field Probe System	16
3.2.1. EX3DV4 Probe Specification	16
3.2.2. E-field Probe Calibration	17
3. Other Test Equipment	17
3.3.1. Device Holder for Transmitters	17
3.3.2. Phantom	18
4. Scanning Procedure	18
5. Data Storage and Evaluation	20
3.5.1. Data Storage	20
3.5.2. Data Evaluation by SEMCAD	20
6. System Check	23
7. Equivalent Tissues	24
Laboratory Environment	25
•	
·	
2. Conducted Power Results	
12345678	Notes of the Test Report. Testing Laboratory. Applicant Information Manufacturer Information Information of EUT The Maximum SAR1g Values Maximum Conducted Power of each tested Mode. Test Date Operational Conditions during Test General Description of Test Procedures GSM Test Configuration WCDMA Test Configuration WCDMA Test Configuration 3.2. Head SAR Measurements 3.3. Body SAR Measurements 4. HSDPA Test Configuration 5. Test Positions 2.5.1 Against Phantom Head 2.5.2 Body Worn Configuration SAR Measurement System Configuration SAR Measurement Set-up 3.2.1 EX3DV4 Probe Specification 3.2.1 EX3DV4 Probe Specification 3.2.2 E-field Probe Calibration 3.3.1. Device Holder for Transmitters 3.3.1. Device Holder for Transmitters 3.3.2. Phantom Scanning Procedure Data Storage and Evaluation 3.5.2. Data Evaluation by SEMCAD 5. System Check Equivalent Tissues aboratory Environment Characteristics of the Test Applicable Limit Regulations Conducted Output Power Measurement Summary Summary

Report No.: RZA1109-1510SAR	Page 4 of 142
7. Test Results	28
7.1. Dielectric Performance	
7.2. System Check Results	
7.3. Summary of Measurement Results	
7.3.1. GSM 850 (GPRS/EGPRS)	30
7.3.2. GSM 1900 (GPRS/EGPRS)	31
7.3.3. WCDMA Band II (WCDMA/HSDPA)	32
7.3.4. WCDMA Band V (WCDMA/HSDPA)	33
7.3.5. Bluetooth Function	34
8. Measurement Uncertainty	35
9. Main Test Instruments	37
ANNEX A: Test Layout	38
ANNEX B: System Check Results	41
ANNEX C: Graph Results	45
ANNEX D: Probe Calibration Certificate	105
ANNEX E: D835V2 Dipole Calibration Certificate	116
ANNEX F: D1900V2 Dipole Calibration Certificate	124
ANNEX G: DAE4 Calibration Certificate	132
ANNEX H: The EUT Appearances and Test Configuration	137

Report No.: RZA1109-1510SAR Page 5 of 142

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No.: RZA1109-1510SAR Page 6 of 142

1.3. Applicant Information

Company: ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Address:

Guangdong, 518057, P.R. China

City: Shenzhen

Postal Code: 518057

Country: P.R. China

Contact: Zhang Min

Telephone: 021-68897541

Fax: 021-50801070

1.4. Manufacturer Information

Company: ZTE CORPORATION

Address: ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen,

Guangdong, 518057, P.R. China

City: Shenzhen

Postal Code: 518057

Country: P.R. China

Telephone: 021-68897541

Fax: 021-50801070

Report No.: RZA1109-1510SAR Page 7 of 142

1.5. Information of EUT

General Information

Device Type:	Portable Device				
Exposure Category:	Uncontrolled Environment / General Population				
State of Sample:	Prototype Unit				
Product Name:	WCDMA/GSM (GPRS	S) Dual-Mode Digital N	Mobile Phone		
IMEI:	004401782346411				
Hardware Version:	w5yB				
Software Version:	1.0.0				
Antenna Type:	Internal Antenna				
Device Operating Configurations:					
Supporting Mode(s):	GSM 850/GSM 1900/V Bluetooth; (untested)	VCDMA Band II/WCDM	IA Band V; (tested)		
Test Modulation:	(GSM)GMSK; (WCDM	A)QPSK			
Device Class:	В				
HSDPA UE Category:	6				
	Max Number of Times	2			
GPRS Multislot Class(10):	Max Number of Times	4			
	Max Total Timeslot	5			
	Max Number of Times	2			
EGPRS Multislot Class(10):	Max Number of Times	4			
	Max Total Timeslot		5		
	Mode	Tx (MHz)	Rx (MHz)		
	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8		
Operating Frequency Range(s):	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8		
	WCDMA Band II	1852.4 ~ 1907.6	1932.4 ~ 1987.6		
	WCDMA Band V	826.4 ~ 846.6	871.4 ~ 891.6		
	GSM 850: 4, tested with power level 5				
Power Class:	GSM 1900: 1, tested with power level 0				
TOWER CIACOS.	WCDMA Band II: 3, tested with power control all up bits				
	WCDMA Band V: 3, tested with power control all up bits				
Total Observation	128 - 190 - 251	(GSM 850)	(tested)		
Test Channel: (Low - Middle - High)	512 - 661 - 810 9262 - 9400 - 9538	(GSM 1900) (WCDMA Band II)	(tested)		
(Low - Middle - High)	4132 - 4183 - 4233	(WCDMA Band II) (WCDMA Band V)	(tested) (tested)		

Report No.: RZA1109-1510SAR Page 8 of 142

Auxiliary Equipment Details

AE:Battery

Model: Li3710T42P3h483757

Manufacturer: ZTE CORPORATION

S/N: 60101103020055149

Equipment Under Test (EUT) is a model of WCDMA/GSM(GPRS) Dual-Mode Digital Mobile Phone. The device has an internal antenna for GSM/WCDMA Tx/Rx, and the other is BT antenna that is used for Tx/Rx. The detail about Mobile phone and Lithium Battery is in chapter 1.5 in this report. SAR is tested for GSM 850, GSM 1900, WCDMA Band II, and WCDMA Band V in this report.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR_{1q} Values

Head Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
GSM 850	Middle /190	Right, Cheek	0.683
GSM 1900	High/810	Right, Cheek	0.685
WCDMA Band II	High/9538	Left, Cheek	1.000
WCDMA Band V	High/4233	Right, Cheek	0.585

Body Worn Configuration

Mode	Channel	Separation distance	SAR _{1g} (W/kg)
2Txslots EGPRS 850	Middle /190	15mm	0.866
2Txslots GPRS 1900	High/810	15mm	0.459
WCDMA Band II	High/9538	15mm	0.544
WCDMA Band V	Low/4132	15mm	0.675

Report No.: RZA1109-1510SAR Page 9 of 142

1.7. Maximum Conducted Power of each tested Mode

GSM Maximum Power

Mode		Max Burst Conducted	Max Average Power
		Power (dBm)	(dBm)
	GSM	32.52	23.49
GSM 850	GPRS, 2Txslots	30.76	24.74
	EGPRS, 2Txslots	30.70	24.68
	GSM	29.66	20.63
GSM 1900	GPRS, 2Txslots	27.93	21.91
	EGPRS, 2Txslots	27.92	21.90

WCDMA Maximum Power

Mode	Maximum Conducted Power (dBm)	
WCDMA Band II	22.85	
WCDMA Band V	22.60	

Note: The detail Power refer to Table 9 (Power Measurement Results).

1.8. Test Date

The test is performed from September 13, 2011 to September 15, 2011.

Report No.: RZA1109-1510SAR Page 10 of 142

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radiofrequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, to 512, 661 and 810 in the case of GSM 1900, to 9262, 9400 and 9538 in the case of WCDMA Band II, to 4132, 4183 and 4233 in the case of WCDMA Band V. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" in SAR of GSM 850, set to "0" in SAR of GSM 1900. Since the GPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5; the EGPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 1: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)	
1	0	
2	0 to 3,0	

Report No.: RZA1109-1510SAR Page 11 of 142

2.3. WCDMA Test Configuration

2.3.1. Output Power Verification

Maximum output power is verified on the High, Middle and Low channel according to the procedures described in section 5.2 of 3GPP TS 34. 121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1's" for WCDMA/HSDPA. Results for all applicable physical channel configuration (DPCCH, DPDCH_n and spreading codes, HSDPA) should be tabulated in the SAR report. All configuration that are not supported by the DUT or can not be measured due to technical or equipment limitations should be clearly identified.

2.3.2. Head SAR Measurements

SAR for head exposure configurations in voice mode is measured using a 12.2kbps RMC with TPC bits configured to all "1's". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2kbps AMR with a 3.4 kbps SRB(Signaling radio bearer) using the exposure configuration that results in the highest SAR in 12.2kbps RMC for that RF channel.

2.3.3. Body SAR Measurements

SAR for body exposure configurations in voice and data modes is measured using 12.2kbps RMC with TPC bits configured to all "1's". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average output of each RF channel, for each spreading code and DPDCH_n configuration, are less than 1/4 dB higher than those measured in 12.2kbps RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 kbps RMC. When more than 2 DPDCH_n are supported by the DUT, it may be necessary to configure additional DPDCH_n for a DUT using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2.4. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors($\beta c, \beta d$), and HS-DPCCH power offset

Report No.: RZA1109-1510SAR Page 12 of 142

parameters(\triangle ACK, \triangle NACK, \triangle CQI)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 2: Subtests for UMTS Release 5 HSDPA

Sub-set	ρ	ρ	β_{d}	0.10	eta_{hs}	CM(dB)	MDD(dD)
Sub-set	$eta_{ m c}$	β_d	(SF)	β_c/β_d	(note 1, note 2)	(note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \Leftrightarrow β_{hs} =30/15* β_c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs} =30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQI} = 7 (A_{hs} =24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

Table 3: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (<i>N_{INF}</i>)	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	1	0.67
Number of Physical Channel Codes	Codes	5
Modulation	1	QPSK

Report No.: RZA1109-1510SAR Page 13 of 142

Table 4: HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum Transport Bits/HS-DSCH	Total Channel
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 5: UE maximum output powers with HS-DPCCH (Release 5 Only)

Ratio of β_c	Power	Class 3	Power Class 4		
$\mathbf{to}eta_d$ for all values of eta_{hs}	Power (dBm)	Tolerance (dB)	Power (dBm)	Tolerance (dB)	
$1/15 \le \beta_c/\beta_d \le 12/15$	+24	+1/-3	+21	+2/-2	
13/15 ≤ $β_c$ / $β_d$ ≤15/8	+23	+2/-3	+20	+3/-2	
$15/7 \le \beta_c/\beta_d \le 15/0$	+22	+3/-3	+19	+4/-2	

Report No.: RZA1109-1510SAR Page 14 of 142

2.5. Test Positions

2.5.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

2.5.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

Report No.: RZA1109-1510SAR Page 15 of 142

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

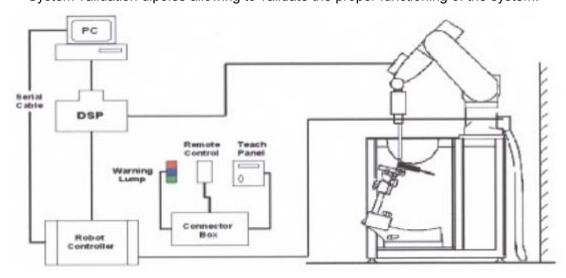


Figure 1 SAR Lab Test Measurement Set-up

Report No.: RZA1109-1510SAR Page 16 of 142

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RZA1109-1510SAR Page 17 of 142

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RZA1109-1510SAR Page 18 of 142

3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Aailable Special

Figure 5 Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

Report No.: RZA1109-1510SAR Page 19 of 142

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Report No.: RZA1109-1510SAR Page 20 of 142

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

 $\begin{array}{ll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{Dcp}_i \end{array}$

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RZA1109-1510SAR Page 21 of 142

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

Report No.: RZA1109-1510SAR Page 22 of 142

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

Report No.: RZA1109-1510SAR Page 23 of 142

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 12 and table 13.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

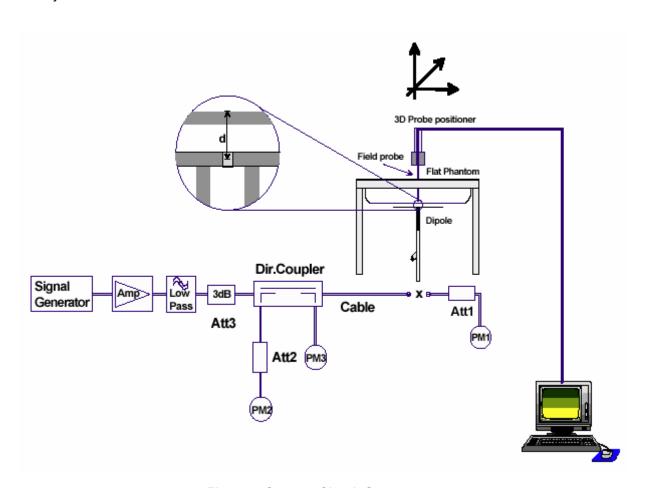


Figure 6 System Check Set-up

Report No.: RZA1109-1510SAR Page 24 of 142

3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 6 and table 7 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 6: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz			
Water	41.45			
Sugar	56			
Salt	1.45			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9			

MIXTURE%	FREQUENCY(Brain) 1900MHz		
Water	55.242		
Glycol monobutyl	44.452		
Salt	0.306		
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40		
Target Value	f=1900MHz ε=40.0 σ=1.40		

Table 7: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz			
Water	52.5			
Sugar	45			
Salt	1.4			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters	f=835MHz ε=55.2 σ=0.97			
Target Value	1-0351VITI2 E-35.2 U-0.31			

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52		

Report No.: RZA1109-1510SAR Page 25 of 142

4. Laboratory Environment

Table 8: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.			

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

Report No.: RZA1109-1510SAR Page 26 of 142

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable.

This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 9: Conducted Power Measurement Results

			ducted Po	wer(dBm)		Aver	age power(dBm)
GSN	1 850	Channel	Channel	Channel		Channel	Channel	Channel
		128	190	251		128	190	251
G	SM	32.52	32.51	32.5	-9.03dB	23.49	23.48	23.47
GPRS	1Txslot	32.53	32.52	32.5	-9.03dB	23.5	23.49	23.47
(GMSK)	2Txslots	30.76	30.75	30.74	-6.02dB	24.74	24.73	24.72
EGPRS	1Txslot	32.46	32.43	32.42	-9.03dB	23.43	23.4	23.39
(GMSK)	2Txslots	30.7	30.68	30.68	-6.02dB	24.68	24.66	24.66
		Burst Conducted Power(dBm)				Average power(dBm)		
GSM	1900	Channel	Channel	Channel		Channel	Channel	Channel
		512	661	810		512	661	810
G:	SM	29.66	29.48	29.44	-9.03dB	20.63	20.45	20.41
GPRS	1Txslot	29.64	29.44	29.41	-9.03dB	20.61	20.41	20.38
(GMSK)	2Txslots	27.93	27.68	27.77	-6.02dB	21.91	21.66	21.75
EGPRS	1Txslot	29.63	29.42	29.4	-9.03dB	20.6	20.39	20.37
(GMSK)	2Txslots	27.92	27.66	27.74	-6.02dB	21.9	21.64	21.72

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

2) Average power numbers

The maximum power numbers are marks in bold.

Report No.: RZA1109-1510SAR Page 27 of 142

WCDMA Band II		C	conducted Power(dBr	n)		
VVCDIV	IA Ballu II	Channel 9262	Channel 9400	Channel 9538		
	12.2kbps	22.67	22.85	22.75		
RMC	64kbps	22.63	22.84	22.73		
RIVIC	144kbps	22.64	22.83	22.7		
	384kbps	22.59	22.79	22.71		
	Sub-Test 1	22.61	22.77	22.63		
HSDPA	Sub-Test 2	22.6	22.77	22.63		
ПЭПРА	Sub-Test 3	22.6	22.73	22.62		
	Sub-Test 4	22.6	22.73	22.56		
WCDM	IA Band V	Conducted Power(dBm)				
WCDIV	IA Banu V	Channel 4132	Channel 4183	Channel 4233		
	12.2kbps	22.6	22.55	22.52		
RMC	64kbps	22.56	22.54	22.5		
RIVIC	144kbps	22.55	22.5	22.49		
	384kbps	22.53	22.51	22.44		
	Sub-Test 1	22.57	22.52	22.53		
HSDPA	Sub-Test 2	22.5	22.47	22.5		
ПЭПЬЯ	Sub-Test 3	22.54	22.46	22.52		
	Sub-Test 4	22.51	22.46	22.5		

Report No.: RZA1109-1510SAR Page 28 of 142

7. Test Results

7.1. Dielectric Performance

Table 10: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Dielectric Parameters		
Frequency	Description	ε _r	σ(s/m)	${\mathbb C}$	
	Target value	41.50	0.90	,	
835MHz (head)	± 5% window	39.43 — 43.58	0.86 — 0.95	,	
	Measurement value	42.30	0.07	21.8	
	2011-9-15	42.30	0.87	21.0	
	Target value	40.00	1.40	,	
1900MHz	±5% window	38.00 — 42.00	1.33 — 1.47	,	
(head)	Measurement value	39.92	1.43	21.9	
	2011-9-13	39.92	1.43	21.9	

Table 11: Dielectric Performance of Body Tissue Simulating Liquid

Eroguency	Description	Dielectric Parameters		
Frequency	Description	٤r	σ(s/m)	${\mathfrak C}$
	Target value	55.20	0.97	,
835MHz (body)	±5% window	52.44 — 57.96	0.92 — 1.02	′
	Measurement value	55.39	1.00	21.9
	2011-9-14	55.59	1.00	21.9
	Target value	53.30	1.52	,
1900MHz	±5% window	50.64 — 55.97	1.44 — 1.60	,
(body)	Measurement value	54.00		21.7
	2011-9-14	51.98	1.56	21.7

Report No.: RZA1109-1510SAR Page 29 of 142

7.2. System Check Results

Table 12: System Check for Head Tissue Simulating Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	ε _r	σ(s/m)	$^{\circ}$
	Recommended result	1.52	2.32	41.1	0.89	,
835MHz	±10% window	1.37 — 1.67	2.09 — 2.55	41.1		1
OSSIVITIZ	Measurement value	1.6	2.42	42.30	0.87	21.8
	2011-9-15	1.6 2.42	2.42			
	Recommended result	5.3	10.2	39.5	1.40	,
1900MHz	±10% window	4.77 — 5.83	9.18 — 11.22	39.5	1.42	1
	Measurement value	5.34	10.3	20.02	1.43	21.9
	2011-9-13	5.54	10.3	39.92		

Note: 1. The graph results see ANNEX B.

Table 13: System Check for Body Tissue Simulating Liquid

Frequency	Description	SAR	Diele Paran	Temp		
		10g	1g	٤r	σ(s/m)	$^{\circ}$
835MHz	Recommended result ±10% window	1.59 1.43 — 1.75			0.99	1
033WIF12	Measurement value 2011-9-14	1.65 2.52	2.52	55.39	1.00	21.9
4000 MH~	Recommended result ±10% window	5.55 5.00 — 6.11	10.6 9.54 — 11.66	53.9	1.57	1
1900 MHz	Measurement value 2011-9-14	5.34	10.18	51.98	1.56	21.7

Note: 1. The graph results see ANNEX B.

^{2.} Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

^{2.} Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

Report No.: RZA1109-1510SAR Page 30 of 142

7.3. Summary of Measurement Results

7.3.1. GSM 850 (GPRS/EGPRS)

Table 14: SAR Values [GSM 850 (GPRS/EGPRS)]

		10 g Average	1 g Average	Power Drift				
Limit of SAR		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph			
Different Teet Decition	Channal	Measurement	Result(W/kg)	Power Drift	Results			
Different Test Position	Channel	10 g Average	1 g Average	(dB)				
	Test F	Position of Head						
Left hand, Touch Cheek	Middle/190	0.489	0.688	-0.091	Figure 11			
Left hand, Tilt 15 Degree	Middle/190	0.282	0.370	0.062	Figure 12			
Right hand, Touch Cheek	High/251	0.453	0.633	0.016	Figure 13			
	Middle/190	0.491	0.683	-0.174	Figure 14			
	Low/128	0.348	0.488	-0.018	Figure 15			
Right hand, Tilt 15 Degree	Middle/190	0.294	0.386	0.018	Figure 16			
Т	est position o	of Body (Distanc	e 15mm)					
Towards Ground (GSM/1Txslots)	Middle/190	0.478	0.645	0.109	Figure 17			
	High/251	0.510	0.690	0.061	Figure 18			
Towards Ground (2Txslots)	Middle/190	0.638	0.860	-0.070	Figure 19			
	Low/128	0.630	0.848	-0.048	Figure 20			
Towards Phantom (2Txslots)	Middle/190	0.551	0.741	-0.005	Figure 21			
Worst Case Position of Body with Earphone (Distance 15mm)								
Towards Ground (GSM)	Middle/190	0.365	0.499	-0.047	Figure 22			
Worst Case Po	sition of Body	y with EGPRS (G	MSK, Distance	15mm)				
Towards Ground (2Txslots)	Middle/190	0.642	0.866	-0.052	Figure 23			

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.</p>
- When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

Report No.: RZA1109-1510SAR Page 31 of 142

7.3.2. GSM 1900 (GPRS/EGPRS)

Table 15: SAR Values [GSM 1900(GPRS/EGPRS)]

Limit of SAR		10 g Average 2.0 W/kg	1 g Average 1.6 W/kg	Power Drift ± 0.21 dB	Graph Results			
Different Test Position Channel		Measurement	Power					
Different fest Position	Chamilei	10 g Average	1 g Average	Drift (dB)	ı			
	Position of Head							
Left hand, Touch cheek	Middle/661	0.325	0.553	0.040	Figure 24			
Left hand, Tilt 15 Degree	Middle/661	0.119	0.203	-0.015	Figure 25			
	High/810	0.420(max.cube)	0.685(max.cube)	-0.022	Figure 26			
Right hand, Touch cheek	Middle/661	0.349(max.cube)	0.562(max.cube)	0.158	Figure 27			
	Low/512	0.308(max.cube)	0.495(max.cube)	-0.022	Figure 28			
Right hand, Tilt 15 Degree	Middle/661	0.102	0.170	0.020	Figure 29			
	Test position	of Body (Distance	15mm)					
Towards Ground (GSM/1Txslots)	Middle/661	0.179	0.311	-0.017	Figure 30			
	High/810	0.269	0.459	0.020	Figure 31			
Towards Ground (2Txslots)	Middle/661	0.219	0.371	-0.019	Figure 32			
	Low/512	0.198	0.341	0.011	Figure 33			
Towards Phantom (2Txslots)	Middle/661	0.203	0.341	-0.002	Figure 34			
Worst Case Position of Body with Earphone (Distance 15mm)								
Towards Ground (GSM)	High/810	0.211	0.366	0.003	Figure 35			
Worst Case P	osition of Bo	dy with EGPRS (GI	MSK, Distance 15n	nm)				
Towards Ground (2Txslots)	High/810	0.256	0.444	0.039	Figure 36			

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 5. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above.

Report No.: RZA1109-1510SAR Page 32 of 142

7.3.3. WCDMA Band II (WCDMA/HSDPA)

Table 16: SAR Values [WCDMA Band II (WCDMA/HSDPA)]

Table 10. OAK values [10 g Average	1 g Average	Power Drift				
Limit of SAR		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph			
Different Took Decition	Observat	Measurement	Result(W/kg)	Power Drift	Results			
Different Test Position	Channel	10 g Average	1 g Average	(dB)				
	•	Test Position of He	ead					
	High/9538	0.580	1.000	-0.031	Figure 37			
Left Hand, Touch Cheek	Middle/9400	0.540	0.919	0.103	Figure 38			
	Low/9262	0.580	0.984	-0.098	Figure 39			
Left Hand, Tilt 15 Degree Middle/940		0.189	0.323	-0.137	Figure 40			
	High/9538	0.573(max.cube)	0.935(max.cube)	-0.125	Figure 41			
Right Hand, Touch Cheek	Middle/9400	0.575(max.cube)	0.925(max.cube)	-0.064	Figure 42			
	Low/9262	0.620(max.cube)	0.997(max.cube)	0.141	Figure 43			
Right Hand, Tilt 15 Degree	Middle/9400	0.166	0.276	0.003	Figure 44			
	Test Pos	ition of Body (Dist	ance 15mm)					
	High/9538	0.319	0.544	0.031	Figure 45			
Towards Ground	Middle/9400	0.290	0.503	-0.118	Figure 46			
	Low/9262	0.284	0.494	0.114	Figure 47			
Towards Phantom	Middle/9400	0.274 0.462		0.137	Figure 48			
Worst Case Position of Body with Earphone (Distance 15mm)								
Towards Ground	Towards Ground High/9538 0.282 0.483 0.076 Figure 49							
Wors	t Case Positio	n of Body with HS	DPA (Distance 15r	mm)				
Towards Ground	High/9538	0.334	0.578	-0.052	Figure 50			

Note: 1.The value with blue color is the maximum SAR Value of each test band.

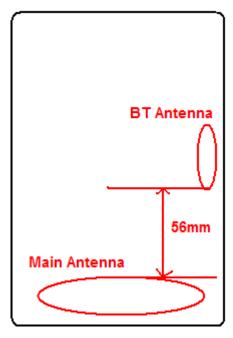
- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.</p>
- 4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above.

Report No.: RZA1109-1510SAR Page 33 of 142

7.3.4. WCDMA Band V (WCDMA/HSDPA)

Table 17: SAR Values [WCDMA Band V (WCDMA/HSDPA)]

Tuble 17: OAK Valdes	-	10 g Average	1 g Average	Power Drift				
Limit of SAR		2.0 W/kg	1.6 W/kg	± 0.21 dB	Graph			
D. (T. 1. D.)		Measurement	: Result(W/kg)	Power Drift	Results			
Different Test Position	Channel	10 g Average 1 g Average		(dB)				
		Test Position of F	lead	1				
Left Hand, Touch Cheek	Middle/4183	0.345	0.486	-0.080	Figure 51			
Left Hand, Tilt 15 Degree	Middle/4183	0.220	0.289	0.059	Figure 52			
	High/4233	0.408	0.585	0.015	Figure 53			
Right Hand, Touch Cheek	Middle/4183	0.351	0.501	-0.030	Figure 54			
	Low/4132	0.354	0.500	0.022	Figure 55			
Right Hand, Tilt 15 Degree	Middle/4183	0.226	0.296	0.144	Figure 56			
	Test Pos	sition of Body (Dis	tance 15mm)	1				
	High/4233	0.436	0.588	-0.041	Figure 57			
Towards Ground	Middle/4183	0.486	0.656	-0.020	Figure 58			
	Low/4132	0.493	0.675	0.027	Figure 59			
Towards Phantom	Middle/4183	0.306	0.411	0.035	Figure 60			
Worst	Worst Case Position of Body with Earphone (Distance 15mm)							
Towards Ground	Low/4132	0.306	0.415	-0.076	Figure 61			
Worst Case Position of Body with HSDPA (Distance 15mm)								
Towards Ground	Low/4132	0.477	0.639	0.068	Figure 62			


Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

Report No.: RZA1109-1510SAR Page 34 of 142

7.3.5. Bluetooth Function

The distance between BT antenna and GSM/WCDMA antenna is >5cm. The location of the antennas inside mobile phone is shown in Annex H:

The output power of BT antenna is as following:

Mode	Ch 0	Ch 39	Ch 78
lviode	2402 MHz	2441 MHz	2480 MHz
GFSK(dBm)	5.13	6.52	7.99
EDR2M-4_DQPSK(dBm)	4.73	5.92	7.56
EDR3M-8DPSK(dBm)	4.31	5.56	7.25

Output Power Thresholds for Unlicensed Transmitters

	2.45	5.15 - 5.35	5.47 - 5.85	GHz
P _{Ref}	12	6	5	mW
		_		

Device output power should be rounded to the nearest mW to compare with values specified in this table.

Stand-alone SAR

According to the output power measurement result and the distance between BT antenna and GSM/WCDMA antenna we can draw the conclusion that:

stand-alone SAR are not required for BT, because the output power of BT transmitter is \leq $2P_{Ref}$ =13.8dBm and its antenna is >5cm from GSM/WCDMA antenna.

Simultaneous SAR

About BT and GSM/WCDMA Antenna, because BT antenna is >5cm from GSM/WCDMA Antenna, stand-alone SAR are not required for BT, so Simultaneous SAR are not required for BT and GSM/WCDMA.

Report No.: RZA1109-1510SAR Page 35 of 142

8. Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom
1	System repetivity	Α	0.5	N	1	1	0.5	9
		Mea	asurement syste	em				
2	-probe calibration	В	5.9	N	1	1	5.9	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	В	1.0	N	1	1	1.0	8
10	-response time	В	0	R	$\sqrt{3}$	1	0	8
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	8
12	-noise	В	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	80
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞
		Tes	st sample Relate	ed				
17	-Test Sample Positioning	Α	2.9	N	1	1	4.92	71
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞
		Ph	ysical paramete	er	T	1		1
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞

Report No.: RZA1109-1510SAR Page 36 of 142

21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0. 64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	0.77	N	1	0. 64	0. 493	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	0.29	N	1	0.6	0. 174	9
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					11.36	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N k=2		22.72		

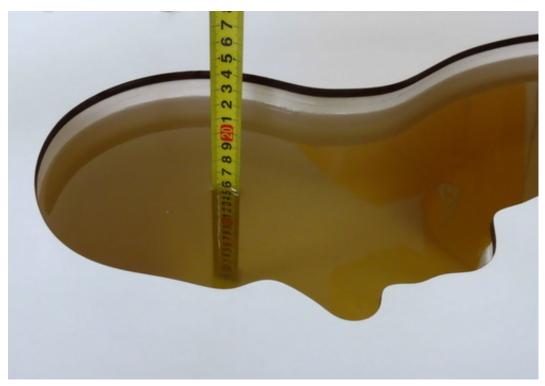
Report No.: RZA1109-1510SAR Page 37 of 142

9. Main Test Instruments

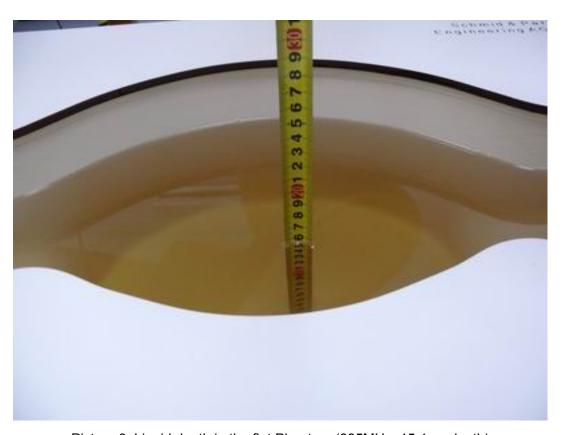
Table 18: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 12, 2011	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 12, 2011	One year
04	Power sensor	Agilent N8481H	MY50350004	September 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 12, 2011	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	MY48360988	December 3, 2010	One year
08	E-field Probe	EX3DV4	3677	November 24, 2010	One year
09	DAE	DAE4	871	November 18, 2010	One year
10	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	One year
11	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	One year

*****END OF REPORT BODY*****


Report No.: RZA1109-1510SAR Page 38 of 142

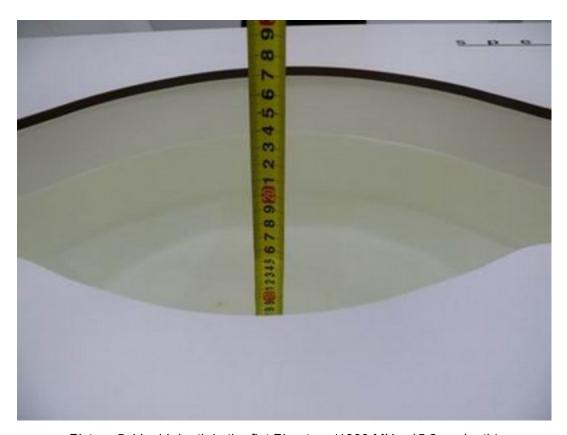
ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout

Report No.: RZA1109-1510SAR Page 39 of 142

Picture 2: Liquid depth in the head Phantom (835MHz, 15.3cm depth)



Picture 3: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Report No.: RZA1109-1510SAR Page 40 of 142

Picture 4: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Picture 5: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Report No.: RZA1109-1510SAR Page 41 of 142

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 9/15/2011 9:40:13 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.87 \text{ mho/m}$; $\epsilon_r = 42.30$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.56 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.61 mW/g

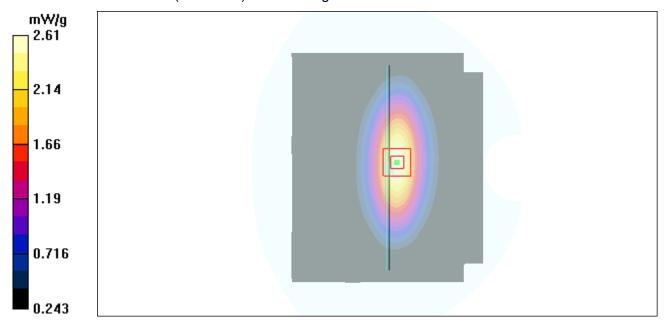


Figure 7 System Performance Check 835MHz 250mW

Report No.: RZA1109-1510SAR Page 42 of 142

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 9/14/2011 10:30:20 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 1.00 \text{ mho/m}$; $\epsilon_r = 55.39$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.9 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g

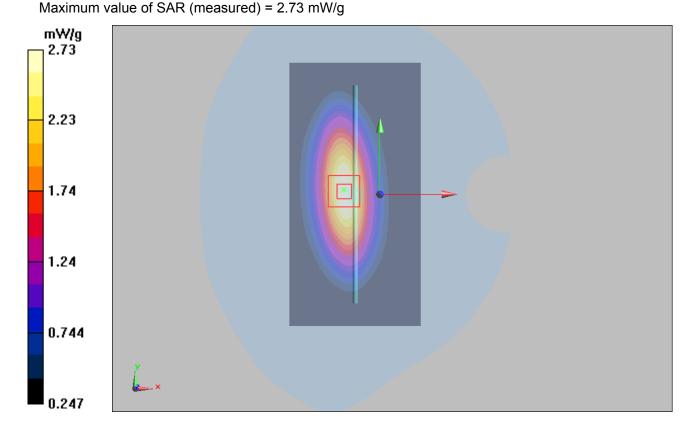


Figure 8 System Performance Check 835MHz 250mW

Report No.: RZA1109-1510SAR Page 43 of 142

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 9/13/2011 8:14:34 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.43 mho/m; ε_r = 39.92; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.9 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.0 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 11.5 mW/g

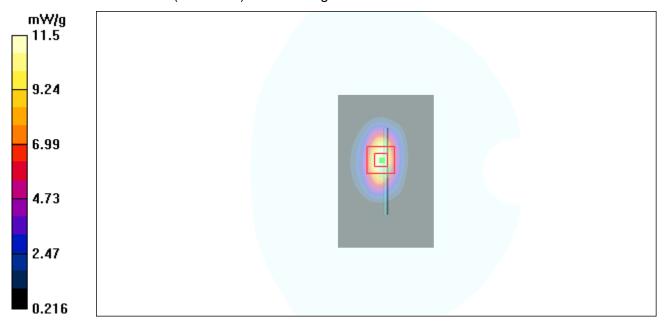


Figure 9 System Performance Check 1900MHz 250mW

Report No.: RZA1109-1510SAR Page 44 of 142

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 9/14/2011 9:05:19 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.56 mho/m; ε_r = 51.98; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.7 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 10.18 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 11 mW/g

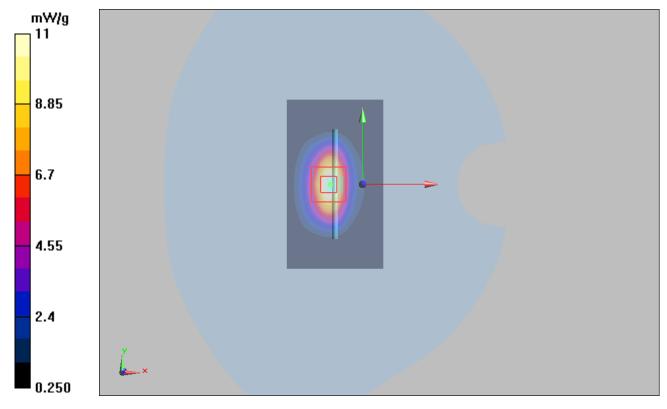


Figure 10 System Performance Check 1900MHz 250mW

Report No.: RZA1109-1510SAR Page 45 of 142

ANNEX C: Graph Results

GSM 850 Left Cheek Middle

Date/Time: 9/15/2011 7:05:59 PM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz; σ = 0.872 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.725 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 0.890 W/kg

SAR(1 g) = 0.688 mW/g; SAR(10 g) = 0.489 mW/g

Maximum value of SAR (measured) = 0.737 mW/g

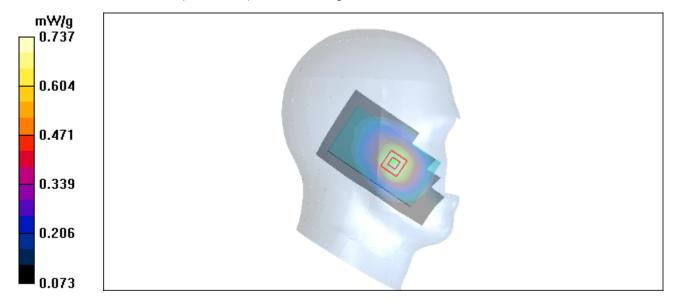


Figure 11 Left Hand Touch Cheek GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 46 of 142

GSM 850 Left Tilt Middle

Date/Time: 9/15/2011 7:23:54 PM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz; σ = 0.872 mho/m; ε_r = 42.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.387 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.1 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 0.441 W/kg

SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.282 mW/g Maximum value of SAR (measured) = 0.389 mW/g

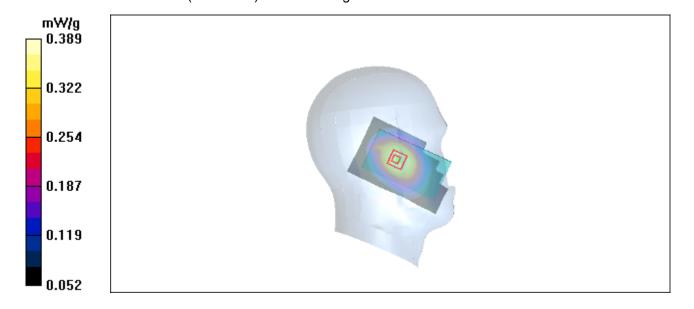


Figure 12 Left Hand Tilt 15° GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 47 of 142

GSM 850 Right Cheek High

Date/Time: 9/15/2011 11:23:46 AM

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 849 MHz; $\sigma = 0.884$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.670 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 0.825 W/kg

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.453 mW/g

Maximum value of SAR (measured) = 0.665 mW/g

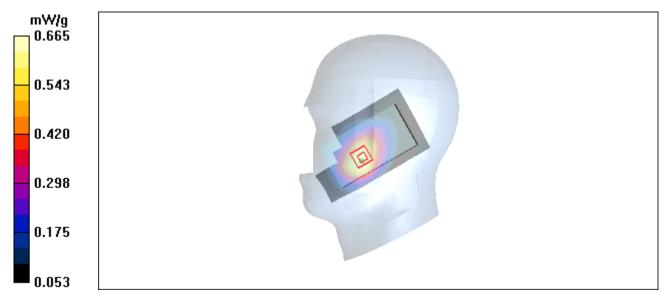


Figure 13 Right Hand Touch Cheek GSM 850 Channel 251

Report No.: RZA1109-1510SAR Page 48 of 142

GSM 850 Right Cheek Middle

Date/Time: 9/15/2011 11:08:40 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz; σ = 0.872 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

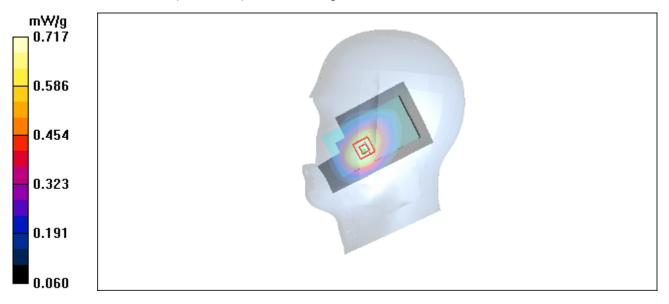
Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.731 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.873 W/kg

SAR(1 g) = 0.683 mW/g; SAR(10 g) = 0.491 mW/g

Maximum value of SAR (measured) = 0.717 mW/g

Report No.: RZA1109-1510SAR Page 49 of 142

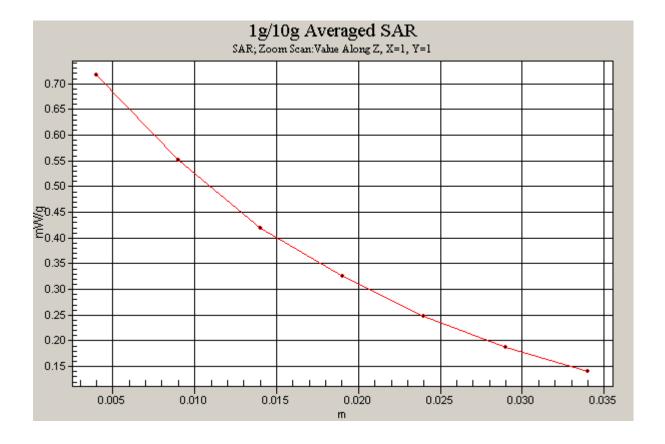


Figure 14 Right Hand Touch Cheek GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 50 of 142

GSM 850 Right Cheek Low

Date/Time: 9/15/2011 11:38:40 AM

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.863 \text{ mho/m}$; $\epsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.508 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.55 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 0.633 W/kg

SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.348 mW/g

Maximum value of SAR (measured) = 0.512 mW/g

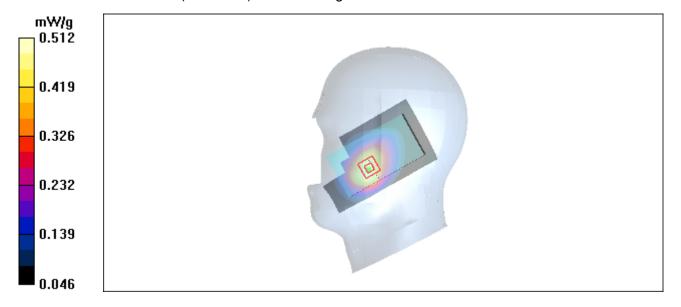


Figure 15 Right Hand Touch Cheek GSM 850 Channel 128

Report No.: RZA1109-1510SAR Page 51 of 142

GSM 850 Right Tilt Middle

Date/Time: 9/15/2011 11:54:24 AM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 837 MHz; σ = 0.872 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.408 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.0 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.457 W/kg

SAR(1 g) = 0.386 mW/g; SAR(10 g) = 0.294 mW/g Maximum value of SAR (measured) = 0.403 mW/g

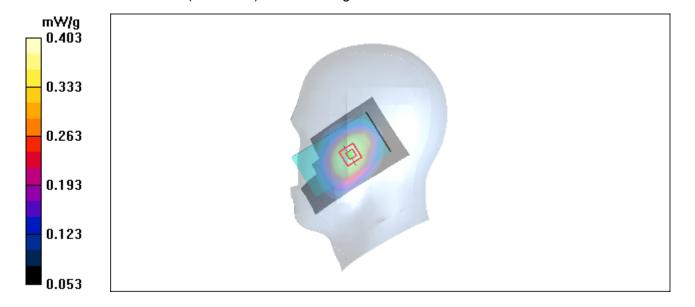


Figure 16 Right Hand Tilt 15° GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 52 of 142

GSM 850 Towards Ground Middle

Date/Time: 9/14/2011 1:29:22 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.676 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.645 mW/g; SAR(10 g) = 0.478 mW/g Maximum value of SAR (measured) = 0.683 mW/g

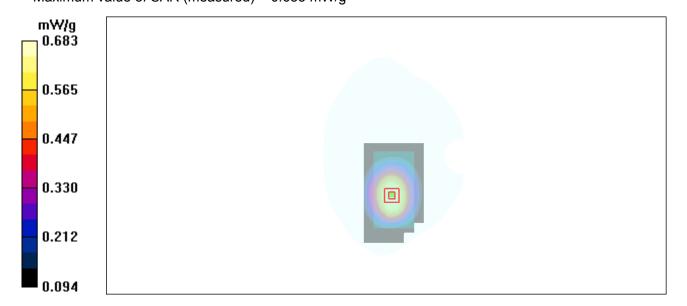


Figure 17 Body, Towards Ground, GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 53 of 142

GSM 850 GPRS (2Txslots) Towards Ground High

Date/Time: 9/14/2011 12:21:03 PM

Communication System: GSM850 + GPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ε_r = 55.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.727 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.850 W/kg

SAR(1 g) = 0.690 mW/g; SAR(10 g) = 0.510 mW/g

Maximum value of SAR (measured) = 0.730 mW/g

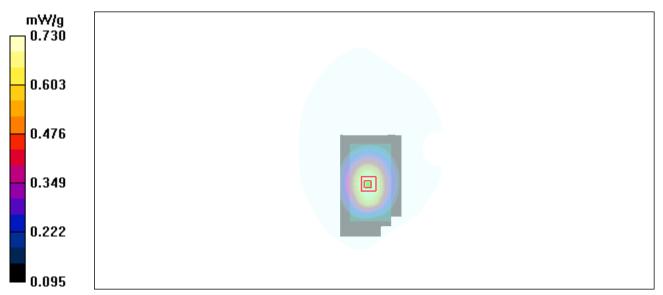


Figure 18 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 251

Report No.: RZA1109-1510SAR Page 54 of 142

GSM 850 GPRS (2Txslots) Towards Ground Middle

Date/Time: 9/14/2011 11:48:43 AM

Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 837 MHz; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.902 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.1 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.860 mW/g; SAR(10 g) = 0.638 mW/g

Maximum value of SAR (measured) = 0.913 mW/g

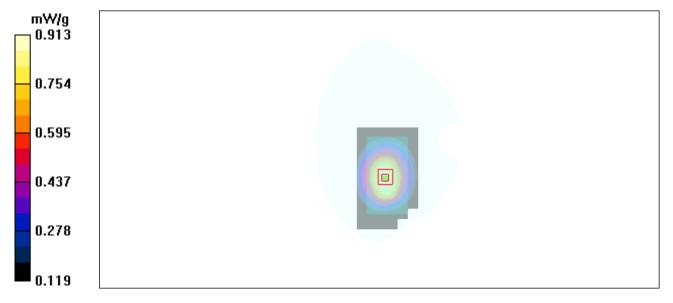


Figure 19 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 190

Report No.: RZA1109-1510SAR Page 55 of 142

GSM 850 GPRS (2Txslots) Towards Ground Low

Date/Time: 9/14/2011 5:40:53 PM

Communication System: GSM850 + GPRS(2Up); Frequency: 824.2 MHz;Duty Cycle: 1:4.15

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.99 \text{ mho/m}$; $\varepsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.882 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.848 mW/g; SAR(10 g) = 0.630 mW/g

Maximum value of SAR (measured) = 0.885 mW/g

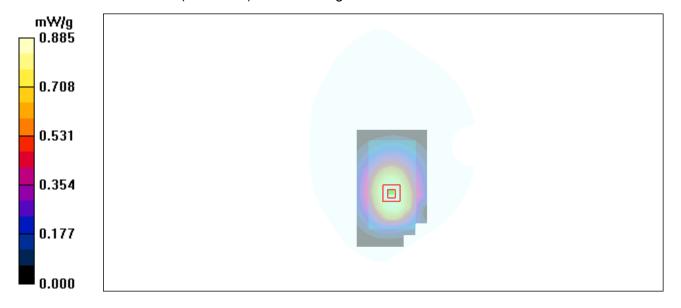


Figure 20 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 128

Report No.: RZA1109-1510SAR Page 56 of 142

GSM 850 GPRS (2Txslots) Towards Phantom Middle

Date/Time: 9/14/2011 2:02:58 PM

Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 837 MHz; $\sigma = 1 \text{ mho/m}$; $\epsilon_r = 55.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.782 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 14.2 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.741 mW/g; SAR(10 g) = 0.551 mW/g

Maximum value of SAR (measured) = 0.779 mW/g

Figure 21 Body, Towards Phantom, GSM 850 GPRS (2Txslots) Channel 190

Report No.: RZA1109-1510SAR Page 57 of 142

GSM 850 with Earphone Towards Ground Middle

Date/Time: 9/14/2011 1:44:40 PM

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.519 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 0.601 W/kg

SAR(1 g) = 0.499 mW/g; SAR(10 g) = 0.365 mW/g

Maximum value of SAR (measured) = 0.530 mW/g

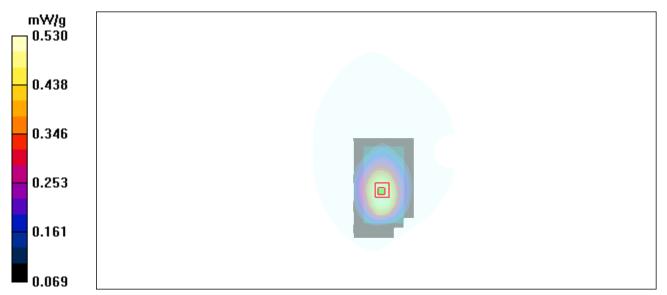


Figure 22 Body with Earphone, Towards Ground, GSM 850 Channel 190

Report No.: RZA1109-1510SAR Page 58 of 142

GSM 850 EGPRS (2Txslots) Towards Ground Middle

Date/Time: 9/14/2011 12:36:35 PM

Communication System: GSM850 + EGPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.916 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.2 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.866 mW/g; SAR(10 g) = 0.642 mW/g

Maximum value of SAR (measured) = 0.913 mW/g

Report No.: RZA1109-1510SAR Page 59 of 142

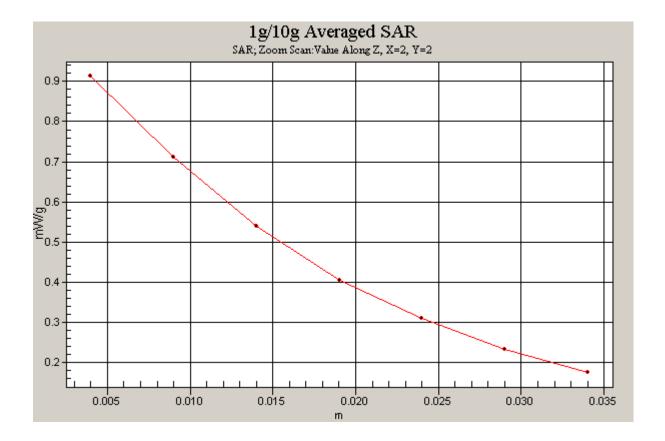


Figure 23 Body, Towards Ground, GSM 850 EGPRS (2Txslots) Channel 190

Report No.: RZA1109-1510SAR Page 60 of 142

GSM 1900 Left Cheek Middle

Date/Time: 9/13/2011 10:05:20 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.623 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.25 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.553 mW/g; SAR(10 g) = 0.325 mW/g

Maximum value of SAR (measured) = 0.610 mW/g

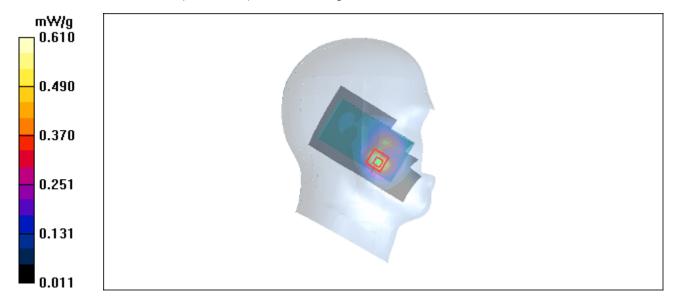


Figure 24 Left Hand Touch Cheek GSM 1900 Channel 661

Report No.: RZA1109-1510SAR Page 61 of 142

GSM 1900 Left Tilt Middle

Date/Time: 9/13/2011 10:21:42 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.231 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.223 mW/g

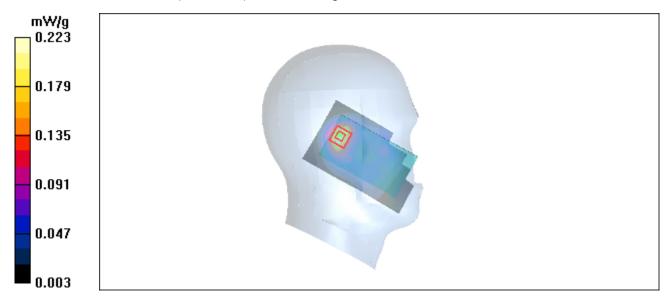


Figure 25 Left Hand Tilt 15° GSM 1900 Channel 661

Report No.: RZA1109-1510SAR Page 62 of 142

GSM 1900 Right Cheek High

Date/Time: 9/13/2011 10:53:36 AM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.771 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.46 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.505 mW/g; SAR(10 g) = 0.321 mW/g

Maximum value of SAR (measured) = 0.610 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.46 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.420 mW/g

Maximum value of SAR (measured) = 0.751 mW/g

Report No.: RZA1109-1510SAR Page 63 of 142

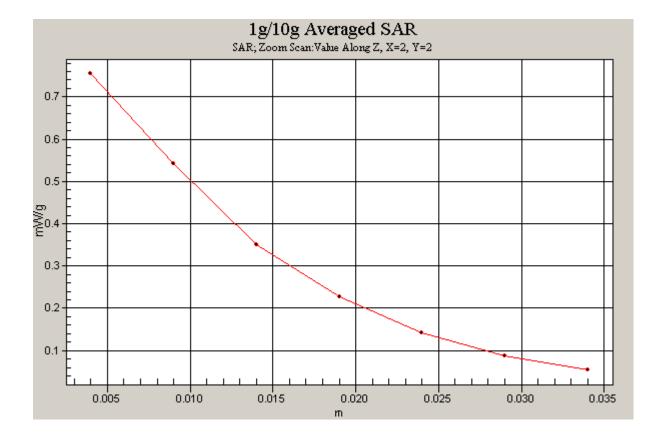


Figure 26 Right Hand Touch Cheek GSM 1900 Channel 810

Report No.: RZA1109-1510SAR Page 64 of 142

GSM 1900 Right Cheek Middle

Date/Time: 9/13/2011 10:57:57 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.643 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.60 V/m; Power Drift = 0.158 dB

Peak SAR (extrapolated) = 0.548 W/kg

SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.272 mW/g

Maximum value of SAR (measured) = 0.502 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.60 V/m; Power Drift = 0.158 dB

Peak SAR (extrapolated) = 0.749 W/kg

SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.349 mW/g

Maximum value of SAR (measured) = 0.612 mW/g

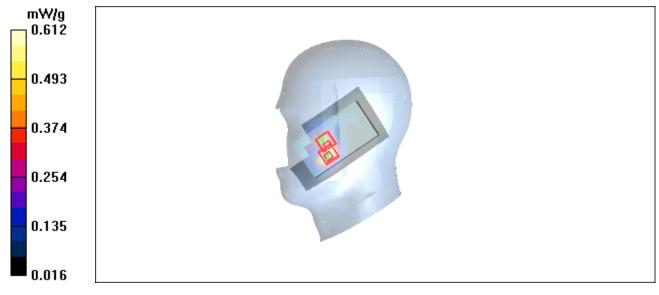


Figure 27 Right Hand Touch Cheek GSM 1900 Channel 661

Report No.: RZA1109-1510SAR Page 65 of 142

GSM 1900 Right Cheek Low

Date/Time: 9/13/2011 10:31:40 AM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.564 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.226 mW/g

Maximum value of SAR (measured) = 0.434 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.640 W/kg

SAR(1 g) = 0.495 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.543 mW/g

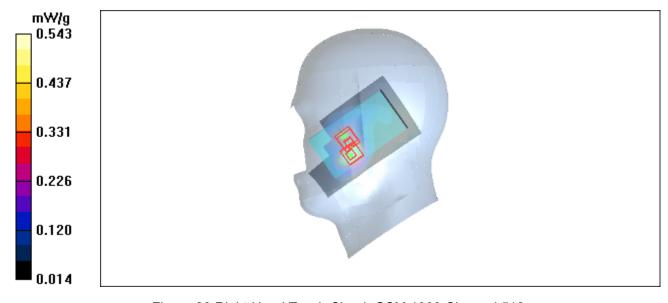


Figure 28 Right Hand Touch Cheek GSM 1900 Channel 512

Report No.: RZA1109-1510SAR Page 66 of 142

GSM 1900 Right Tilt Middle

Date/Time: 9/13/2011 10:13:28 AM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.186 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.170 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.176 mW/g

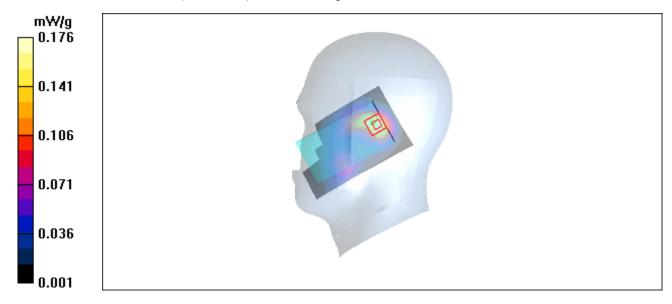


Figure 29 Right Hand Tilt 15° GSM 1900 Channel 661

Report No.: RZA1109-1510SAR Page 67 of 142

GSM 1900 Towards Ground Middle

Date/Time: 9/14/2011 6:15:56 PM

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.327 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.00 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.572 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.179 mW/g

Maximum value of SAR (measured) = 0.332 mW/g

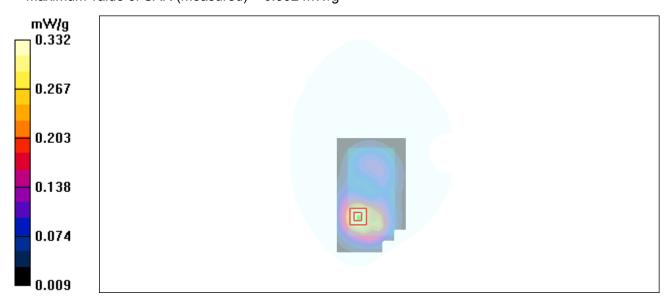


Figure 30 Body, Towards Ground, GSM 1900 Channel 661

Report No.: RZA1109-1510SAR Page 68 of 142

GSM 1900 GPRS (2Txslots) Towards Ground High

Date/Time: 9/14/2011 10:12:32 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1910 MHz; σ = 1.57 mho/m; ε_r = 52; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

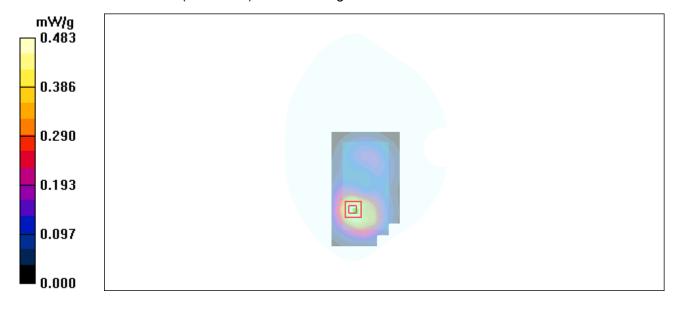
Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.481 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 9.84 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.483 mW/g

Report No.: RZA1109-1510SAR Page 69 of 142

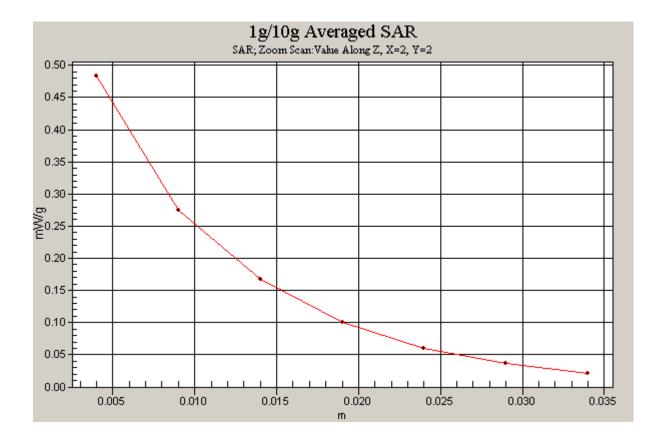


Figure 31 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 810

Report No.: RZA1109-1510SAR Page 70 of 142

GSM 1900 GPRS (2Txslots) Towards Ground Middle

Date/Time: 9/14/2011 9:57:55 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.399 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.32 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.371 mW/g; SAR(10 g) = 0.219 mW/g

Maximum value of SAR (measured) = 0.405 mW/g

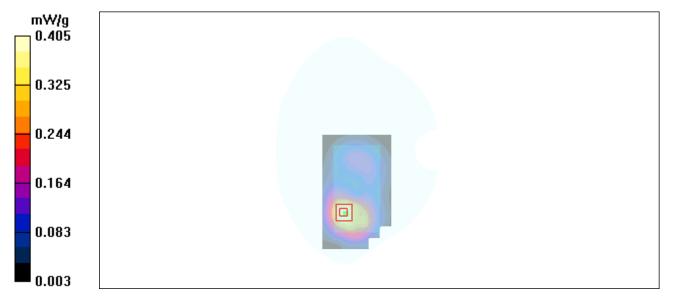


Figure 32 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 661

Report No.: RZA1109-1510SAR Page 71 of 142

GSM 1900 GPRS (2Txslots) Towards Ground Low

Date/Time: 9/14/2011 10:26:39 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.357 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.08 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.616 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.198 mW/g

Maximum value of SAR (measured) = 0.366 mW/g

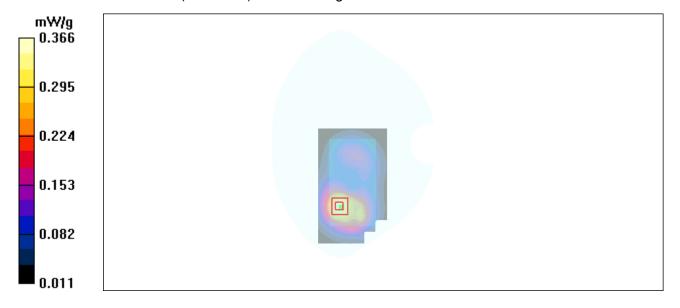


Figure 33 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 512

Report No.: RZA1109-1510SAR Page 72 of 142

GSM 1900 GPRS (2Txslots) Towards Phantom Middle

Date/Time: 9/14/2011 10:43:47 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.369 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.06 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.580 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.203 mW/g

Maximum value of SAR (measured) = 0.367 mW/g

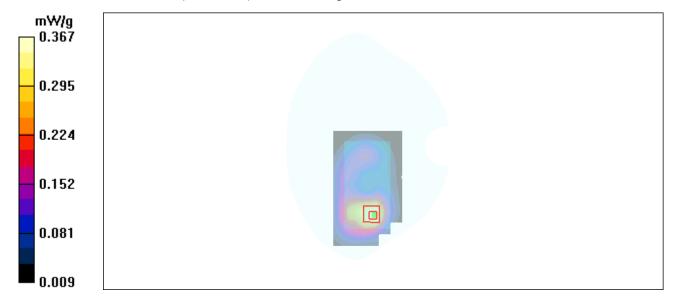


Figure 34 Body, Towards Phantom, GSM 1900 GPRS (2Txslots) Channel 661

Report No.: RZA1109-1510SAR Page 73 of 142

GSM 1900 with Earphone Towards Ground High

Date/Time: 9/14/2011 11:06:06 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.385 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 8.20 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.684 W/kg

SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.211 mW/g

Maximum value of SAR (measured) = 0.384 mW/g

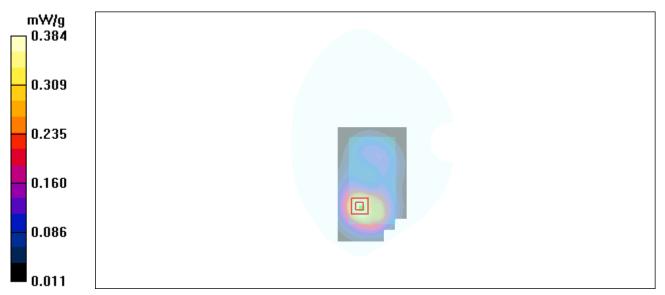


Figure 35 Body with Earphone, Towards Ground, GSM 1900 Channel 810

Report No.: RZA1109-1510SAR Page 74 of 142

GSM 1900 EGPRS (2Txslots) Towards Ground High

Date/Time: 9/14/2011 11:37:38 PM

Communication System: PCS 1900+EGPRS(2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 1910 MHz; $\sigma = 1.57 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.464 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.00 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.822 W/kg

SAR(1 g) = 0.444 mW/g; SAR(10 g) = 0.256 mW/g

Maximum value of SAR (measured) = 0.471 mW/g

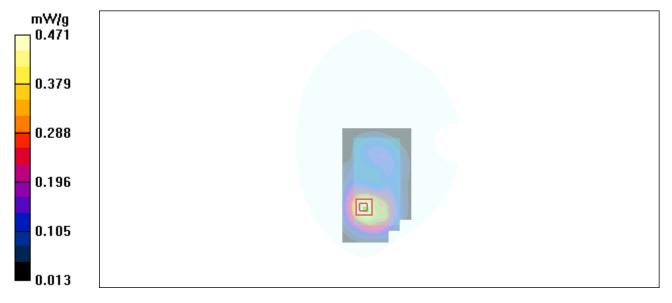


Figure 36 Body, Towards Ground, GSM 1900 EGPRS (2Txslots) Channel 810

Report No.: RZA1109-1510SAR Page 75 of 142

WCDMA Band II Left Cheek High

Date/Time: 9/13/2011 9:12:22 PM

Communication System: WCDMA Band II; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

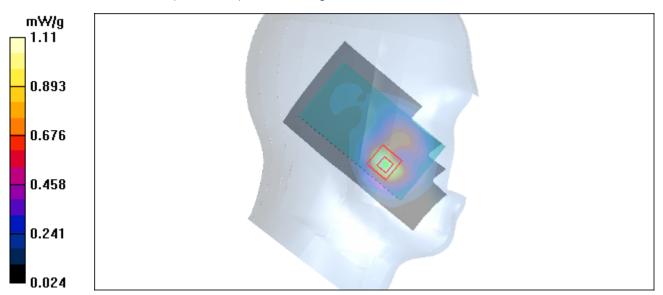
Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.15 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1 mW/g; SAR(10 g) = 0.580 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

Report No.: RZA1109-1510SAR Page 76 of 142

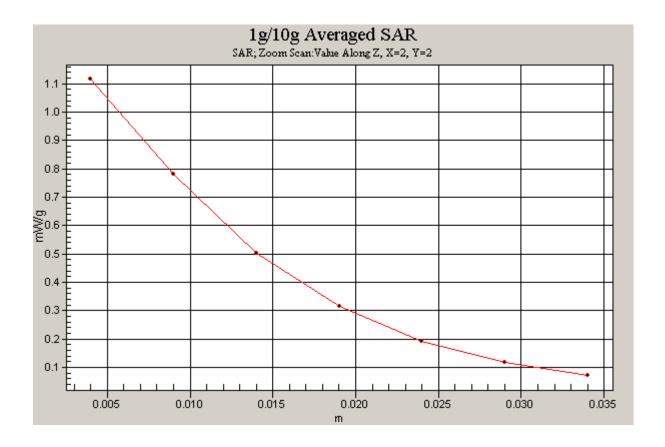


Figure 37 Left Hand Touch Cheek WCDMA Band II Channel 9538

Report No.: RZA1109-1510SAR Page 77 of 142

WCDMA Band II Left Cheek Middle

Date/Time: 9/13/2011 9:27:49 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.08 V/m; Power Drift = 0.103 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.919 mW/g; SAR(10 g) = 0.540 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

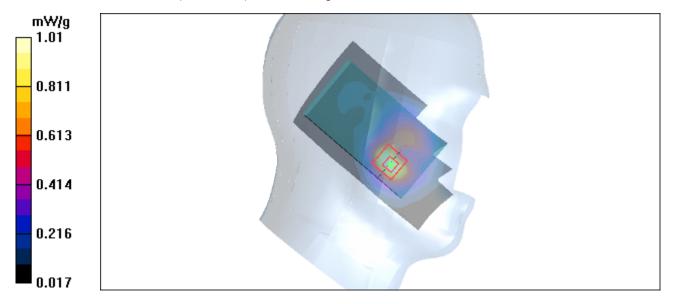


Figure 38 Left Hand Touch Cheek WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 78 of 142

WCDMA Band II Left Cheek Low

Date/Time: 9/13/2011 9:43:00 PM

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.15 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.26 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.984 mW/g; SAR(10 g) = 0.580 mW/g

Maximum value of SAR (measured) = 1.08 mW/g

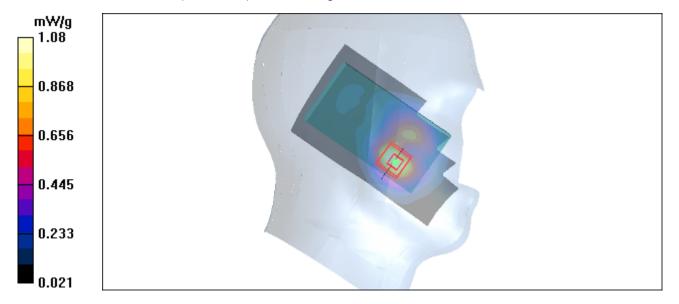


Figure 39 Left Hand Touch Cheek WCDMA Band II Channel 9262

Report No.: RZA1109-1510SAR Page 79 of 142

WCDMA Band II Left Tilt Middle

Date/Time: 9/13/2011 10:38:39 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.372 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.1 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.189 mW/g

Maximum value of SAR (measured) = 0.355 mW/g

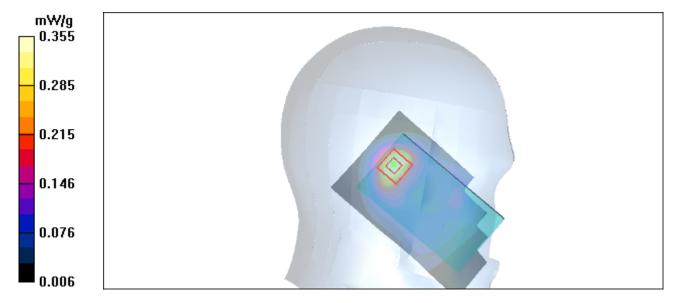


Figure 40 Left Hand Tilt 15° WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 80 of 142

WCDMA Band II Right Cheek High

Date/Time: 9/13/2011 9:30:41 AM

Communication System: WCDMA Band II; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.08 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.935 mW/g; SAR(10 g) = 0.573 mW/g

Maximum value of SAR (measured) = 1.02 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.904 W/kg

SAR(1 g) = 0.676 mW/g; SAR(10 g) = 0.433 mW/g

Maximum value of SAR (measured) = 0.817 mW/g

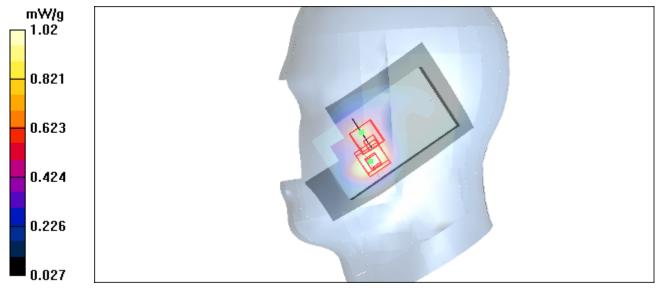


Figure 41 Right Hand Touch Cheek WCDMA Band II Channel 9538

Report No.: RZA1109-1510SAR Page 81 of 142

WCDMA Band II Right Cheek Middle

Date/Time: 9/13/2011 11:20:37 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.07 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.71 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.925 mW/g; SAR(10 g) = 0.575 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.71 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.897 W/kg

SAR(1 g) = 0.715 mW/g; SAR(10 g) = 0.448 mW/g

Maximum value of SAR (measured) = 0.821 mW/g

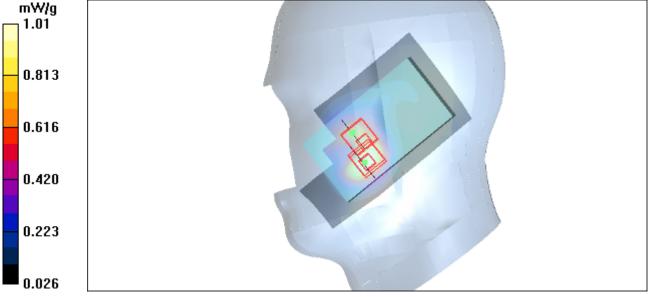


Figure 42 Right Hand Touch Cheek WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 82 of 142

WCDMA Band II Right Cheek Low

Date/Time: 9/13/2011 11:44:45 PM

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.13 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.63 V/m; Power Drift = 0.141 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.997 mW/g; SAR(10 g) = 0.620 mW/g

Maximum value of SAR (measured) = 1.10 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.63 V/m; Power Drift = 0.141 dB

Peak SAR (extrapolated) = 0.962 W/kg

SAR(1 g) = 0.766 mW/g; SAR(10 g) = 0.477 mW/g

Maximum value of SAR (measured) = 0.894 mW/g

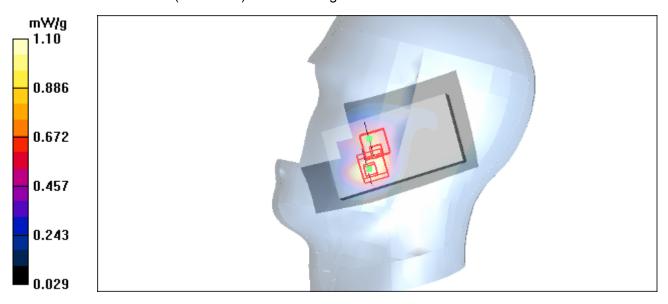


Figure 43 Right Hand Touch Cheek WCDMA Band II Channel 9262

Report No.: RZA1109-1510SAR Page 83 of 142

WCDMA Band II Right Tilt Middle

Date/Time: 9/13/2011 9:53:56 AM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.94, 7.94, 7.94); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.301 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.396 W/kg

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.166 mW/g

Maximum value of SAR (measured) = 0.288 mW/g

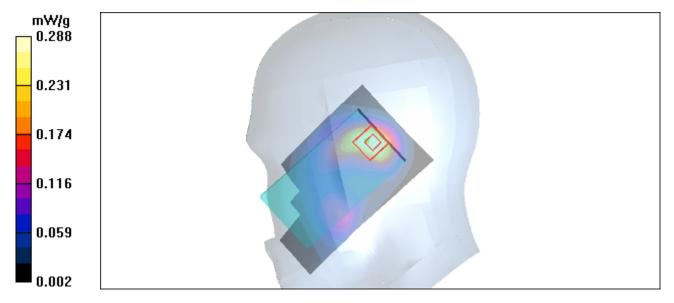


Figure 44 Right Hand Tilt 15° WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 84 of 142

WCDMA Band II Towards Ground High

Date/Time: 9/14/2011 9:03:38 PM

Communication System: WCDMA Band II; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

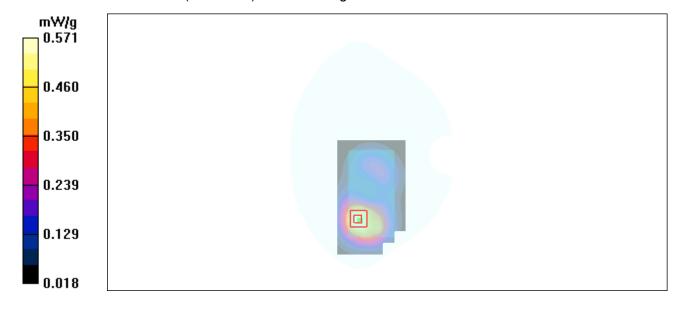
Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.573 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 10.3 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.544 mW/g; SAR(10 g) = 0.319 mW/g

Maximum value of SAR (measured) = 0.571 mW/g

Report No.: RZA1109-1510SAR Page 85 of 142

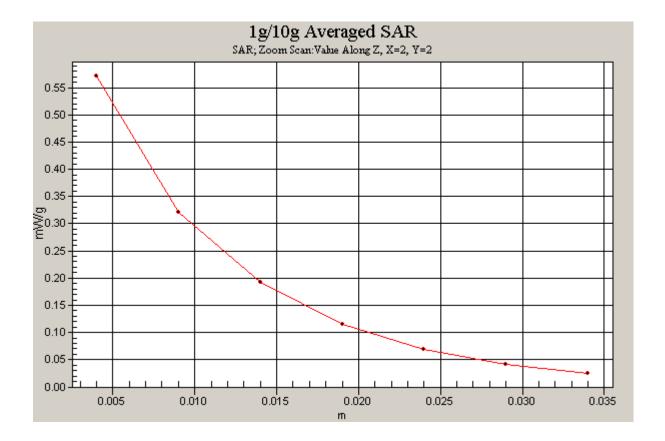


Figure 45 Body, Towards Ground, WCDMA Band II Channel 9538

Report No.: RZA1109-1510SAR Page 86 of 142

WCDMA Band II Towards Ground Middle

Date/Time: 9/14/2011 8:35:28 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.526 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 0.928 W/kg

SAR(1 g) = 0.503 mW/g; SAR(10 g) = 0.290 mW/g

Maximum value of SAR (measured) = 0.538 mW/g

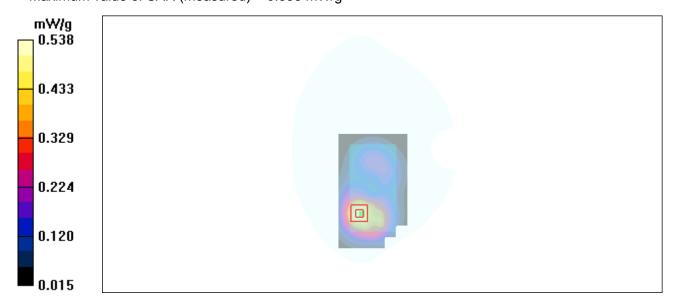


Figure 46 Body, Towards Ground, WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 87 of 142

WCDMA Band II Towards Ground Low

Date/Time: 9/14/2011 8:49:29 PM

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.512 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.2 V/m; Power Drift = 0.114 dB

Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.494 mW/g; SAR(10 g) = 0.284 mW/g

Maximum value of SAR (measured) = 0.533 mW/g

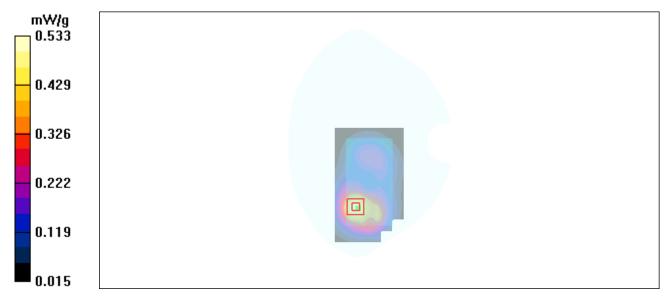


Figure 47 Body, Towards Ground, WCDMA Band II Channel 9262

Report No.: RZA1109-1510SAR Page 88 of 142

WCDMA Band II Towards Phantom Middle

Date/Time: 9/14/2011 8:18:20 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.501 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.137 dB

Peak SAR (extrapolated) = 0.773 W/kg

SAR(1 g) = 0.462 mW/g; SAR(10 g) = 0.274 mW/g

Maximum value of SAR (measured) = 0.502 mW/g

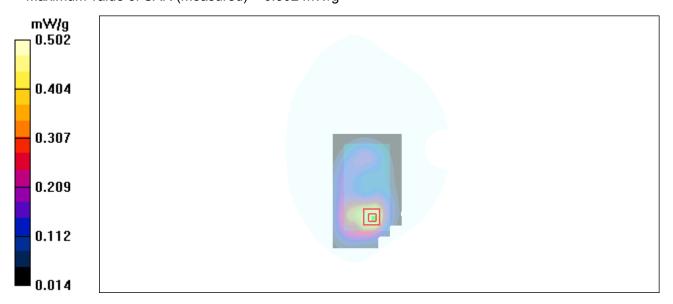


Figure 48 Body, Towards Phantom, WCDMA Band II Channel 9400

Report No.: RZA1109-1510SAR Page 89 of 142

WCDMA Band II with Earphone Towards Ground High

Date/Time: 9/14/2011 9:18:21 PM

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.509 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.076 dB

Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.507 mW/g

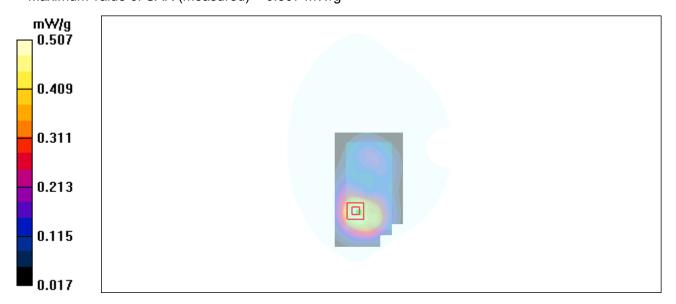


Figure 49 Body with Earphone, Towards Ground, WCDMA Band II Channel 9538

Report No.: RZA1109-1510SAR Page 90 of 142

WCDMA Band II HSDPA Towards Ground High

Date/Time: 9/14/2011 9:37:46 PM

Communication System: WCDMA Band II + HSDPA(6); Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1908 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.623 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.8 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.334 mW/g

Maximum value of SAR (measured) = 0.610 mW/g

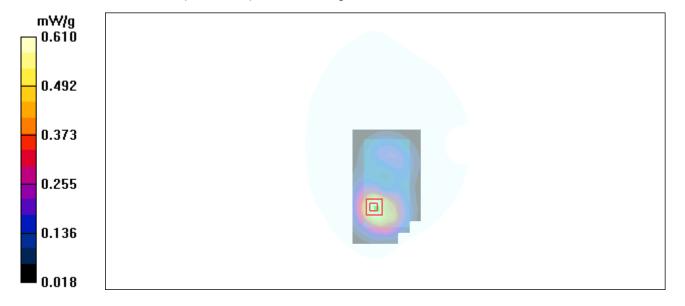


Figure 50 Body, Towards Ground, WCDMA Band II HSDPA Channel 9538

Report No.: RZA1109-1510SAR Page 91 of 142

WCDMA Band V Left Cheek Middle

Date/Time: 9/15/2011 7:45:09 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.515 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.79 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.486 mW/g; SAR(10 g) = 0.345 mW/g

Maximum value of SAR (measured) = 0.527 mW/g

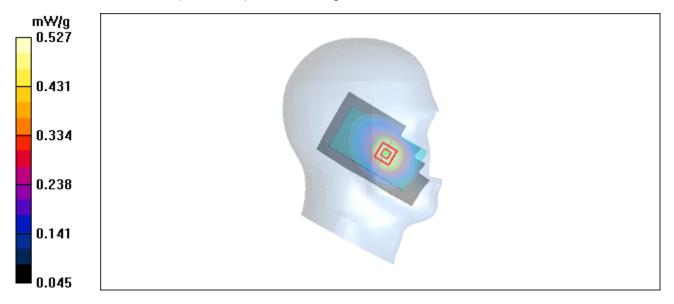


Figure 51 Left Hand Touch Cheek WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 92 of 142

WCDMA Band V Left Tilt Middle

Date/Time: 9/15/2011 6:17:47 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.305 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.059 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.289 mW/g; SAR(10 g) = 0.220 mW/g Maximum value of SAR (measured) = 0.306 mW/g

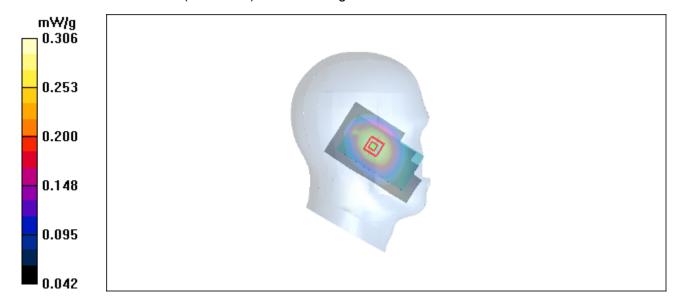


Figure 52 Left Hand Tilt 15° WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 93 of 142

WCDMA Band V Right Cheek High

Date/Time: 9/15/2011 5:17:13 PM

Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; $\sigma = 0.881$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

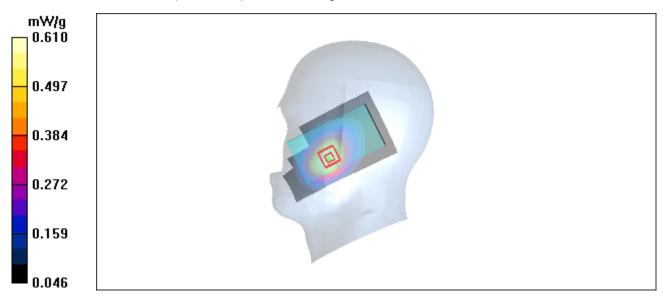
Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.613 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.59 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.788 W/kg

SAR(1 g) = 0.585 mW/g; SAR(10 g) = 0.408 mW/g

Maximum value of SAR (measured) = 0.610 mW/g

Report No.: RZA1109-1510SAR Page 94 of 142

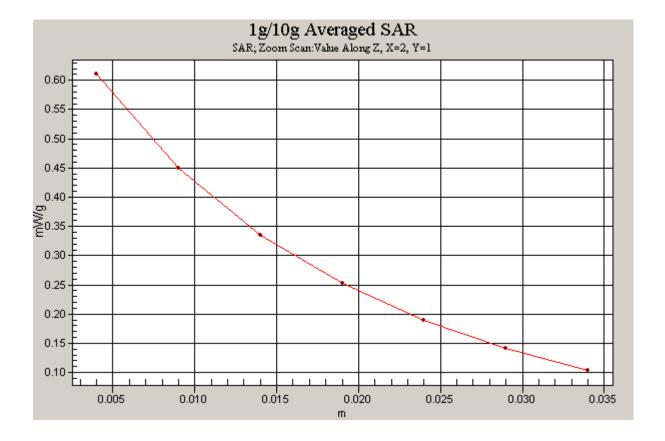


Figure 53 Right Hand Touch Cheek WCDMA Band V Channel 4233

Report No.: RZA1109-1510SAR Page 95 of 142

WCDMA Band V Right Cheek Middle

Date/Time: 9/15/2011 4:32:48 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.525 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.08 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.665 W/kg

SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.351 mW/g

Maximum value of SAR (measured) = 0.525 mW/g

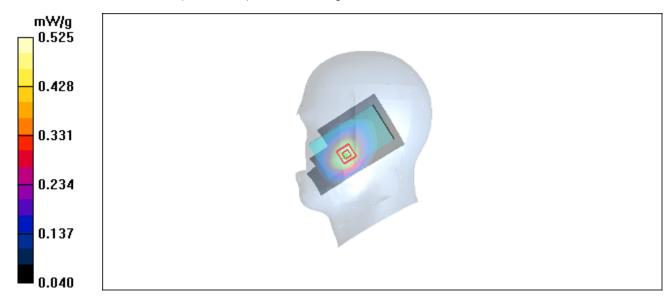


Figure 54 Right Hand Touch Cheek WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 96 of 142

WCDMA Band V Right Cheek Low

Date/Time: 9/15/2011 4:48:42 PM

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.865 \text{ mho/m}$; $\epsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.539 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.22 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.661 W/kg

SAR(1 g) = 0.500 mW/g; SAR(10 g) = 0.354 mW/g

Maximum value of SAR (measured) = 0.525 mW/g

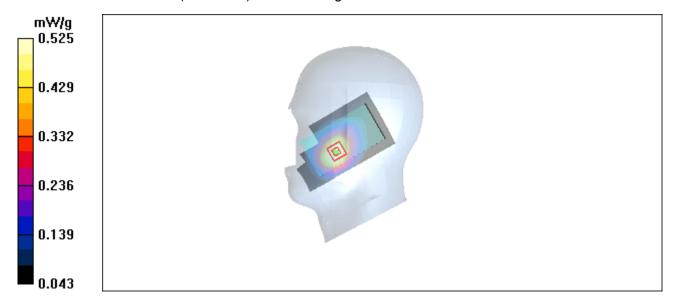


Figure 55 Right Hand Touch Cheek WCDMA Band V Channel 4132

Report No.: RZA1109-1510SAR Page 97 of 142

WCDMA Band V Right Tilt Middle

Date/Time: 9/15/2011 5:45:49 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 0.872$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(9.5, 9.5, 9.5); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.308 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.144 dB

Peak SAR (extrapolated) = 0.347 W/kg

SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 0.305 mW/g

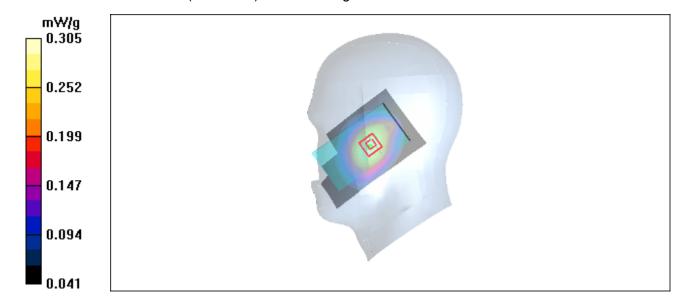


Figure 56 Right Hand Tilt 15° WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 98 of 142

WCDMA Band V Towards Ground High

Date/Time: 9/14/2011 2:59:22 PM

Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.627 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 11.4 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.718 W/kg

SAR(1 g) = 0.588 mW/g; SAR(10 g) = 0.436 mW/g

Maximum value of SAR (measured) = 0.621 mW/g

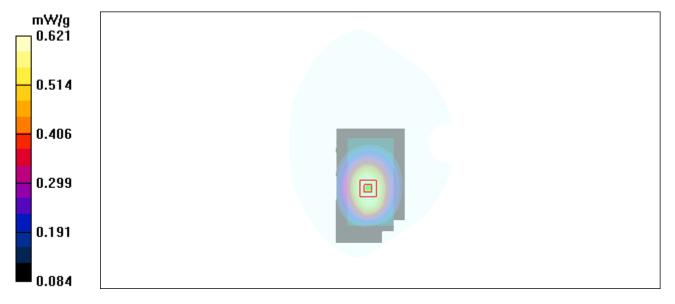


Figure 57 Body, Towards Ground, WCDMA Band V Channel 4233

Report No.: RZA1109-1510SAR Page 99 of 142

WCDMA Band V Towards Ground Middle

Date/Time: 9/14/2011 2:46:04 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.686 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.656 mW/g; SAR(10 g) = 0.486 mW/g Maximum value of SAR (measured) = 0.695 mW/g

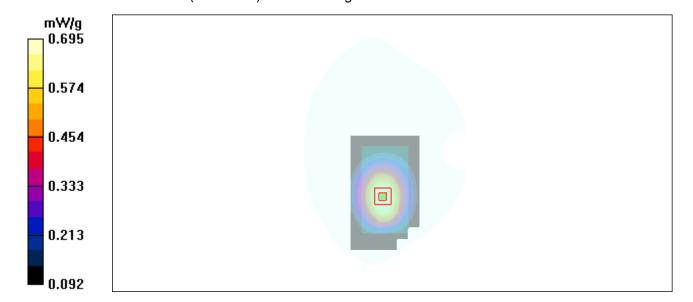


Figure 58 Body, Towards Ground, WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 100 of 142

WCDMA Band V Towards Ground Low

Date/Time: 9/14/2011 5:23:31 PM

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.992 \text{ mho/m}$; $\epsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

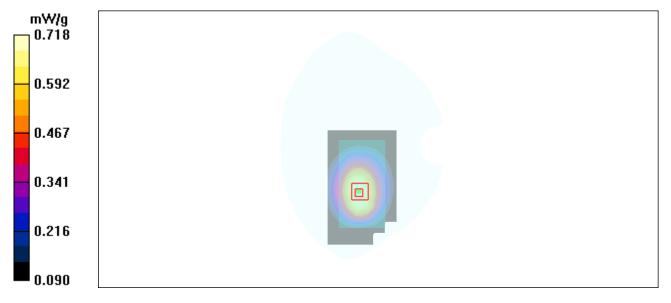
Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.706 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 12.0 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.830 W/kg

SAR(1 g) = 0.675 mW/g; SAR(10 g) = 0.493 mW/g

Maximum value of SAR (measured) = 0.718 mW/g

Report No.: RZA1109-1510SAR Page 101 of 142

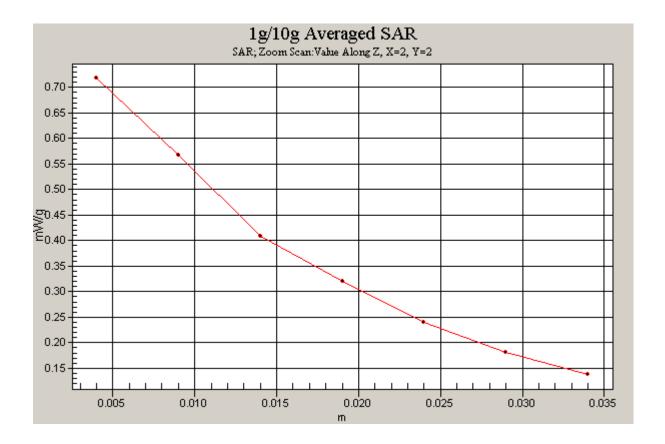


Figure 59 Body, Towards Ground, WCDMA Band V Channel 4132

Report No.: RZA1109-1510SAR Page 102 of 142

WCDMA Band V Towards Phantom Middle

Date/Time: 9/14/2011 3:15:45 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.436 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.28 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.411 mW/g; SAR(10 g) = 0.306 mW/g Maximum value of SAR (measured) = 0.433 mW/g

0.433
0.357
0.281
0.204
0.128
0.052

Figure 60 Body, Towards Phantom, WCDMA Band V Channel 4183

Report No.: RZA1109-1510SAR Page 103 of 142

WCDMA Band V with Earphone Towards Ground Low

Date/Time: 9/14/2011 7:23:53 PM

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.992 \text{ mho/m}$; $\epsilon_r = 55.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.465 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 0.509 W/kg

SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.306 mW/g

Maximum value of SAR (measured) = 0.439 mW/g

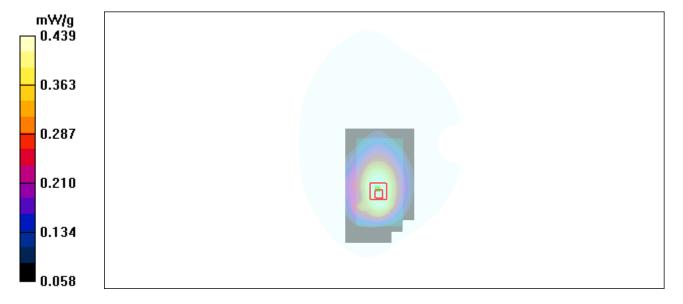


Figure 61 Body with Earphone, Towards Ground, WCDMA Band V Channel 4132

Report No.: RZA1109-1510SAR Page 104 of 142

WCDMA Band V HSDPA Towards Ground Low

Date/Time: 9/14/2011 7:54:12 PM

Communication System: WCDMA Band V +HSDPA(6); Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.992$ mho/m; $\varepsilon_r = 55.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3677; ConvF(10.33, 10.33, 10.33); Calibrated: 11/24/2010

Electronics: DAE4 Sn871; Calibrated: 11/18/2010 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.707 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 0.786 W/kg

SAR(1 g) = 0.639 mW/g; SAR(10 g) = 0.477 mW/g Maximum value of SAR (measured) = 0.673 mW/g

0.673

0.555

0.436

0.318

0.199

0.081

Figure 62 Body, Towards Ground, WCDMA Band V HSDPA Channel 4132

Report No.: RZA1109-1510SAR Page 105 of 142

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

TA-SH (Auden) Certificate No: EX3-3677_Nov10 CALIBRATION CERTIFICATE EX3DV4 - SN:3677 Object QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes November 24, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed liaboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration 1-Apr-10 (No. 217-01136) Power meter E4419B GB41293874 Apr-11 Power sensor F4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 SN: 3013 Reference Probe ES3DV2 30-Dec-09 (No. ES3-3013 Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Katja Pokovic Technical Manager Quality Manag Approved by: Niels Kuster Issued: November 25, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3677 Nov10

Page 1 of 11

Report No.: RZA1109-1510SAR Page 106 of 142

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

ConvF DCP CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C Polarization φ

Polarization 9

φ rotation around probe axis
9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003
- Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Report No.: RZA1109-1510SAR Page 107 of 142

EX3DV4 SN:3677

November 24, 2010

Probe EX3DV4

SN:3677

Manufactured:

Last calibrated: Recalibrated: September 9, 2008

September 23, 2009

November 24, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Report No.: RZA1109-1510SAR Page 108 of 142

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)²) ^A	0.41	0.47	0.39	± 10.1%
DCP (mV) ⁸	96.8	98.9	98.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^e (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	143.2	± 2.4 %
			Υ	0.00	0.00	1.00	140.9	
			Z	0.00	0.00	1.00	135.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 8).

⁹ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Report No.: RZA1109-1510SAR Page 109 of 142

EX3DV4 SN:3677

November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	43.5 ± 5%	0.87 ± 5%	10.04	10.04	10.04	0.09	1.00 ± 13.3%
835	±50/±100	41.5 ± 5%	$0.90 \pm 5\%$	9.50	9.50	9.50	0.72	0.64 ± 11.0%
1750	±50/±100	40.1 ± 5%	$1.37\pm5\%$	8.22	8.22	8.22	0.72	0.59 ± 11.0%
1900	±50/±100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	7.94	7.94	7.94	0.81	0,57 ± 11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	7.32	7.32	7.32	0.47	0.75 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Report No.: RZA1109-1510SAR Page 110 of 142

EX3DV4 SN:3677

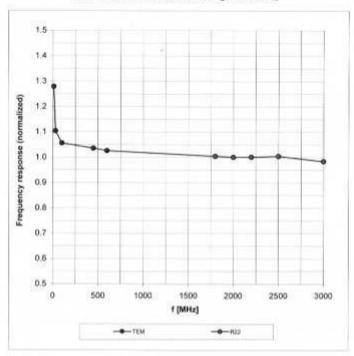
November 24, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3677

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	56.7 ± 5%	0.94 ± 5%	10.62	10.62	10.62	0.02	1.00 ± 13.3%
750	±50/±100	$55.5 \pm 5\%$	0.96 ± 5%	10.14	10.14	10.14	0.59	0.72 ± 11.0%
835	±50/±100	55.2 ± 5%	$0.97 \pm 5\%$	10.33	10.33	10.33	0.20	2.06 ± 11.0%
1450	±50/±100	$54.0 \pm 5\%$	1.30 ± 5%	8.47	8.47	8.47	0.99	0.53 ± 11.0%
1750	±50/±100	53.4 ± 5%	1.49 ± 5%	8.02	8.02	8.02	0.63	0.67 ± 11.0%
1900	±50/±100	$53.3 \pm 5\%$	1.52 ± 5%	7.77	7.77	7.77	0.69	0.67 ± 11.0%
2100	±50/±100	$53.2\pm5\%$	$1.62\pm5\%$	8.04	8.04	8.04	0.16	1.44 ± 11.0%
2450	$\pm 50 / \pm 100$	$52.7 \pm 5\%$	1.95 ± 5%	7.46	7.46	7.46	0.99	0.49 ± 11.0%
3500	±50/±100	51.3 ± 5%	3.31 ± 5%	6.61	6.61	6.61	0.28	1.40 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Report No.: RZA1109-1510SAR Page 111 of 142

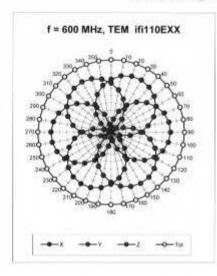
EX3DV4 SN:3677

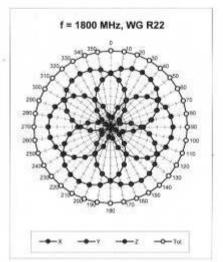
November 24, 2010

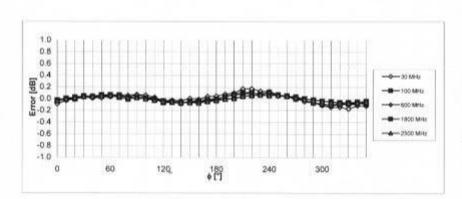
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

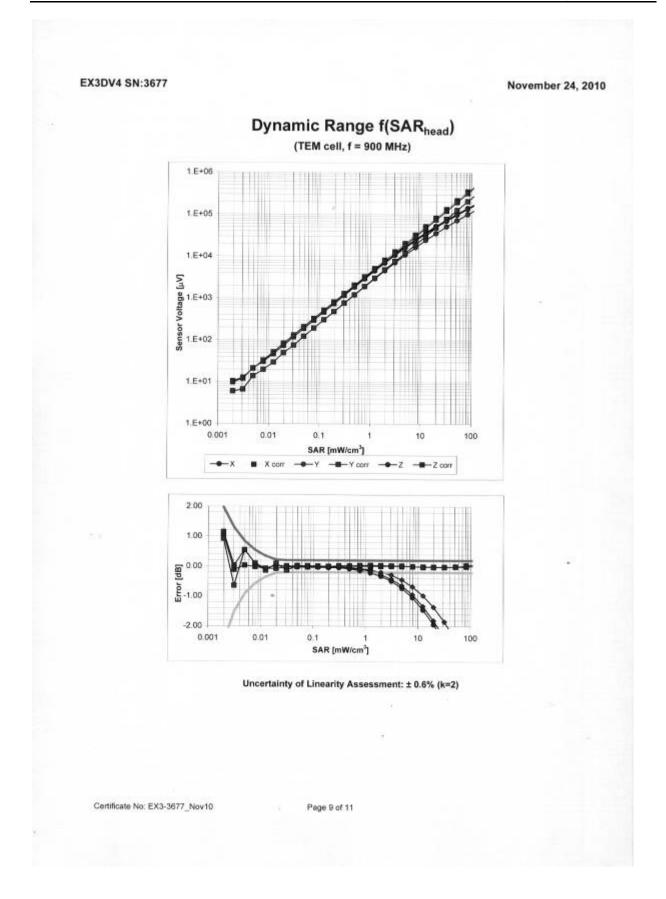

Certificate No: EX3-3677_Nov10


Page 7 of 11


EX3DV4 SN:3677

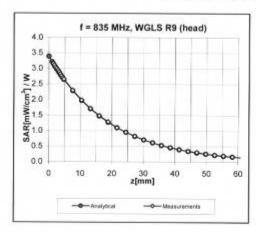
November 24, 2010

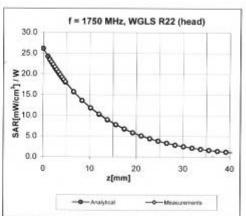
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

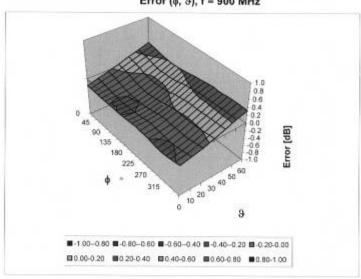
Report No.: RZA1109-1510SAR Page 113 of 142




Report No.: RZA1109-1510SAR Page 114 of 142

EX3DV4 SN:3677

November 24, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3677_Nov10

Page 10 of 11

Report No.: RZA1109-1510SAR Page 115 of 142

EX3DV4 SN:3677

November 24, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Report No.: RZA1109-1510SAR Page 116 of 142

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d020_Aug11

Accreditation No.: SCS 108

TA-Shanghai (Auden) Client CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 **QA CAL-05.v8** Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz August 26, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 26, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d020_Aug11

Page 1 of 8

Report No.: RZA1109-1510SAR Page 117 of 142

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

Page 2 of 8

Report No.: RZA1109-1510SAR Page 118 of 142

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.11 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW inpút power	1.59 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.26 mW / g ± 16.5 % (k=2)

Report No.: RZA1109-1510SAR Page 119 of 142

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 j Ω	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 22, 2004	

Certificate No: D835V2-4d020_Aug11

Report No.: RZA1109-1510SAR Page 120 of 142

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011

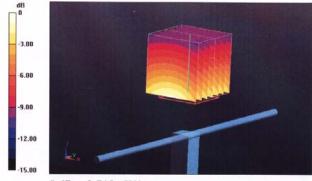
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

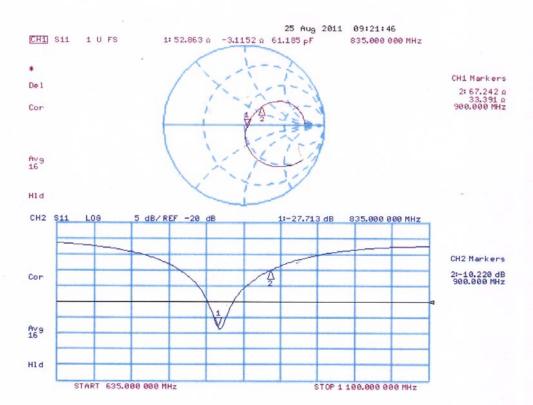
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.930 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.421 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g


Maximum value of SAR (measured) = 2.708 mW/g

0 dB = 2.710 mW/g

Report No.: RZA1109-1510SAR Page 121 of 142

Impedance Measurement Plot for Head TSL

Report No.: RZA1109-1510SAR Page 122 of 142

DASY5 Validation Report for Body TSL

Date: 26.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

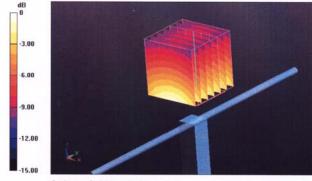
Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

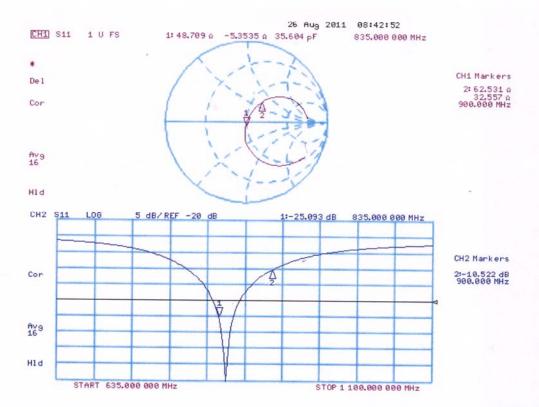
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.406 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.509 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g


Maximum value of SAR (measured) = 2.827 mW/g

0 dB = 2.830 mW/g

Report No.: RZA1109-1510SAR Page 123 of 142

Impedance Measurement Plot for Body TSL

Report No.: RZA1109-1510SAR Page 124 of 142

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TA-Shanghai (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d060_Aug11 **CALIBRATION CERTIFICATE**

Object	D1900V2 - SN: 5	5d060	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits ab	pove 700 MHz
Calibration date:	August 31, 2011		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical urobability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Zier
Approved by:	Katja Pokovic	Technical Manager	D. Ziw Llas
			Issued: August 31, 2011
This calibration certificate shall no	t be reproduced except in	full without written approval of the laborator	

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

Report No.: RZA1109-1510SAR Page 125 of 142

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060_Aug11

Report No.: RZA1109-1510SAR Page 126 of 142

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhố/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Report No.: RZA1109-1510SAR Page 127 of 142

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.6 \Omega + 7.5 j\Omega$	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.3 \Omega + 7.9 j\Omega$	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

	-
Electrical Delay (one direction)	1.194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 10, 2004	

Certificate No: D1900V2-5d060_Aug11

Report No.: RZA1109-1510SAR Page 128 of 142

DASY5 Validation Report for Head TSL

Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

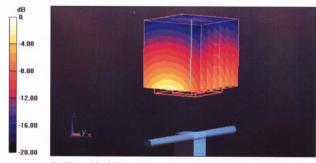
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

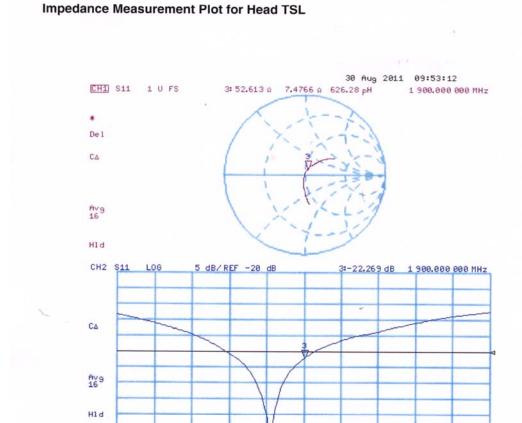
Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001


DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.636 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.535 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.600 mW/g

0 dB = 12.600 mW/g

Report No.: RZA1109-1510SAR Page 129 of 142

START 1 700.000 000 MHz

STOP 2 100.000 000 MHz

Report No.: RZA1109-1510SAR Page 130 of 142

DASY5 Validation Report for Body TSL

Date: 31.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

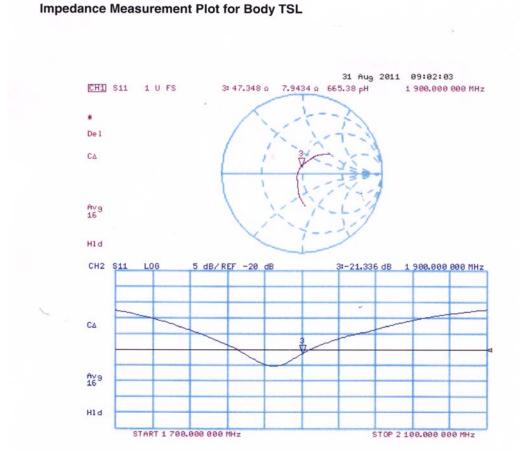
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.435 V/m; Power Drift = -0.0099 dB

Peak SAR (extrapolated) = 18.663 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 13.397 mW/g

0 dB = 13.400 mW/g

Report No.: RZA1109-1510SAR Page 131 of 142

Report No.: RZA1109-1510SAR Page 132 of 142

ANNEX G: DAE4 Calibration Certificate

Calibration Laboratory of Schweizerischer Kalibrierdienst Schmid & Partner Service suisse d'étalonnage C Engineering AG Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE4-871_Nov10 TA - SH (Auden) Client CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BJ - SN: 871 QA CAL-06:v22 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 18, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards Keithley Multimeter Type 2001 SN: 0810278 28-Sep-10 (No:10376) Sep-11 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 07-Jun-10 (in house check) In house check: Jun-11 Calibrator Box V1.1 Function Signature Calibrated by: Approved by: Issued: November 18, 2010

Certificate No: DAE4-871_Nov10

Page 1 of 5

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Report No.: RZA1109-1510SAR Page 133 of 142

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-871_Nov10

Page 2 of 5

Report No.: RZA1109-1510SAR Page 134 of 142

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Χ ·	Y	Z
High Range	404.757 ± 0.1% (k=2)	404.740 ± 0.1% (k=2)	405.181 ± 0.1% (k=2)
Low Range	3.98219 ± 0.7% (k=2)	3.93489 ± 0.7% (k=2)	3.96831 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0°±1°
Connector Angle to be used in DAS1 system	30.0 ±1

Certificate No: DAE4-871_Nov10

Page 3 of 5

Report No.: RZA1109-1510SAR Page 135 of 142

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200001.2	-1.56	-0.00
Channel X + Input	20000.71	0.71	0.00
Channel X - Input	-19997.87	1.63	-0.01
Channel Y + Input	199994.3	1.99	0.00
Channel Y + Input	19998.92	-1.08	-0.01
Channel Y - Input	-20000.26	-0.76	0.00
Channel Z + Input	200009.2	-1.04	-0.00
Channel Z + Input	19998.70	-1,10	-0.01
Channel Z - Input	-20000.16	-0.76	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.1	0.16	0.01
Channel X + Input	199.58	-0.52	-0.26
Channel X - Input	-200.79	-0.89	0.45
Channel Y + Input	1999.9	-0.03	-0.00
Channel Y + Input	199.45	-0.55	-0.27
Channel Y - Input	-200.31	-0.41	0.21
Channel Z + Input	2000.1	0.33	0.02
Channel Z + Input	199.13	-0.77	-0.38
Channel Z - Input	-201.47	-1.37	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.25	12.86
	- 200	-12.68	-14.21
Channel Y	200	-10.04	-10.39
	- 200	9.20	9.17
Channel Z	200	-0.85	-1.40
	- 200	-0.34	-0.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	*	2.85	0.69
Channel Y	200	2.41		2.73
Channel Z	200	2.54	0.73	2

Certificate No: DAE4-871_Nov10

Report No.: RZA1109-1510SAR Page 136 of 142

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15517
Channel Y	. 16171	16732
Channel Z	15803	16474

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MO

Tiput romas	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.03	-2.35	0.86	0.43
Channel Y	-0.50	-1.49	-0.49	0.38
Channel Z	-0.92	-2.21	0.14	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9