

SAR TEST REPORT

No. 2011SAR114

FCC ID: Q78-GR221S

Applicant: ZTE CORPORATION

Product: GSM Dual-Band GPRS Digital

Mobile Phone

Model: ZTE-G R221S

Issued Date: 2011-10-26

Test Laboratory:

Shanghai Tejet Communications Technology Co., Ltd Testing Center.

Room 6205-6208, Building 6, No.399 Cailun Rd. Zhangjiang Hi-Tech Park, Shanghai,

China 210203

Tel: +86-21-61650880 Fax: +86-21-61650881

www.tejet.cn

Note:

The following test results relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of the test laboratory.

General Information

			1			
Product Name	GSM Dual-Band GPRS Digital Mobile Phone	Model Name	ZTE-G R221S			
Applicant	ZTE CORPORATION					
Manufacturer	ZTE CORPORATION					
	ANSI/IEEE C95.1-2005 SAFETY LEV EXPOSURE TO RADIO FREQUENCY KHZ TO 300 GHZ					
	IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques					
Reference	OET Bulletin 65-(Edition 97-01) Supplement C (edition01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields—Additional Supplement C (Edition 01-01)Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions					
	ANSI/IEEE C95.3-2002 RECOMMENDED PRACTICE FOR MEASUREMENTS AND COMPUTATIONS OF RADIO FREQUENCY ELECTROMAGNETIC FIELDS WITH RESPECT TO HUMAN EXPOSURE TOSUCH FIELDS. 100 KHZ-300 GHZ					
Test Results	Pass					

Prepared by _

Vin Xiaoming

Xue Jianguo

Date 2011, 10.26

Reviewed by

Approved by

Date_2011. 10.26

GM of Tejet

Wang Jianrong

(Stamp)

Page 2 of 107

CONTENTS:

1. TEST LABORATORY	5
1.1 TESTING LOCATION:	5
1.2 LABORATORY ENVIRONMENT	5
1.3 TESTING DATE	5
2. CLIENT INFORMATION	6
2.1 APPLICANT INFORMATION	6
2.2 MANUFACTURER INFORMATION	6
3.EQUIPMENT UNDER TEST (EUT) AND ACCESSORY EQUIPMENT (A	AE)7
3.1 Information of EUT	7
3.2 Information Of AE	7
4. REFERENCE DOCUMENTS	9
4.1 REFERENCE DOCUMENTS FOR TESTING	9
5. OPERATIONAL CONDITIONS DURING TEST	11
5.1 GENERAL DESCRIPTION OF TEST PROCEDURES	11
5.2 GSM Test Configuration	11
6. SAR MEASUREMENTS SYSTEM CONFIGURATION	12
6.1 SAR MEASUREMENT SET-UP	12
6.2. DASY5 E-FIELD PROBE SYSTEM	13
6.2.1. Ex3DV3 Probe Specification	
6.2.2. E-field Probe Calibration	
6.3. OTHER TEST EQUIPMENT	
6.3.1. Device Holder for Transmitters	
6.3.2. Phantom	
6.4. SCANNING PROCEDURE	
6.5. Data Storage and Evaluation	
6.5.1. Data Storage	
6.5.2. Data Evaluation by SEMCAD	
6.6. SYSTEM CHECK	
6.7. EQUIVALENT TISSUES	
7. CHARACTERISTICS OF THE TEST	23
7.1. APPLICABLE LIMIT REGULATIONS	23
7.2. APPLICABLE MEASUREMENT STANDARDS	23
8. CONDUCTED OUTPUT POWER MEASUREMENT	24
8.1. SUMMARY	24
8.2. CONDUCTED POWER RESULTS	24
9 TEST RESULTS	26

9.1. DIELECTRIC PERFORMANCE	26
9.2. System Check Results	27
9.3. TEST RESULTS	28
9.3.1. Summary of Measurement Results (GSM850)	28
9.3.2. Summary of Measurement Results (GSM1900)	29
9.4. CONCLUSION	30
ANNEX A: EUT PHOTOGRAPH	31
ANNEX B: MEASUREMENT UNCERTAINTY	37
ANNEX C: MAIN TEST INSTRUMENTS	39
ANNEX D: TEST LAYOUT	40
ANNEX E: SYSTEM CHECK RESULTS	43
ANNEX F: GRAPH RESULT	47
ANNEX G: PROBE CALIBRATION CERTIFICATE	75
ANNEX H:DAE4 CALIBRATION CERTIFICATE	86
ANNEX I: D1950V3 CALIBRATION CERTIFICATE	91
ANNEX J: D835V2 CALIBRATION CERTIFICATE	99

1. Test Laboratory

1.1 Testing Location:

Company: Shanghai Tejet Communications Technology Co., Ltd Testing Center.

Address: Room 6205-6208, Building 6, No.399 Cailun Rd. Zhangjiang Hi-Tech Park,

Shanghai, China

Post Code: 210203

Tel: +86-21-61650880 Fax: +86-21-61650881 Website: <u>www.tejet.cn</u>

1.2 Laboratory Environment

Temperature 20 $^{\circ}$ C \sim 25 $^{\circ}$ C

Relative humidity 20%~70%

1.3 Testing date

The test is performed on Sep 26th~ Oct 10th 2011.

2. Client Information

2.1 Applicant information

Company Name: ZTE Corporation

Address: #68 Zijin Hua Road Nanjing, Jiangsu Province, China

contact: Fang yanbo

email: Fang yanbo@zte.com.cn

Tel: +8613770690695

2.2 Manufacturer Information

Company Name: ZTE Corporation

Address: #68 Zijin Hua Road Nanjing, Jiangsu Province, China

contact: Fang yanbo

email: Fang yanbo@zte.com.cn

Tel: +8613770690695

3.Equipment Under Test (EUT) and Accessory Equipment (AE)

3.1 Information of EUT

Device type	Portable device				
Product name	GSM Dual-Band GPRS Digital Mobile Phone				
Exposure category	Uncontrolled environment / general population				
De					
Operation mode	GSM850/1900, WCDMA BAND V				
Test modulation	(GS	SM)GMSK, (WCDM	IA)QPSK		
GPRS		Class B			
GPRS multislot Class		12			
Poted output nower	GSM850: 33dBm				
Rated output power	GSM1900: 30dBm				
Antenna type:		Internal antenn	ıa		
	Band	Tx(MHz)	Rx(MHz)		
Operating frequency range(s):	GSM850	824.2~848.8	869.2~893.8		
range(s).	GSM1900	1850.2~1909.8	1930.2~1989.8		
Dower along	GSM850: 4,test with power level 5				
Power class	GSM1900: 1,test with power level 0				
HW Version	GMAJb				
SW Version	ZTE-	ZTE-CN-9SF-P120A20V0.0.1B01			

Note: Equipment under test (EUT) is GSM Dual-Band GPRS Digital Mobile Phone with internal antenna. It consists of mobile phone ,battery and adaptor and the detail about these is in this report. SAR is tested for GSM850/1900,

3.2 Information Of AE

AE ID*	Description
AE1	Battery
AE2	Travel Adaptor

AE1

Model Li3710T42P3h553457 Manufacturer ZTE CORPORATION

Capacitance 1000mAh Nominal Voltage 3.7V

AE2

Model STC-A22O501400UM5-C Manufacturer ZTE CORPORATION

Length of DC line 120cm

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1 Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference Title

IEEE Std 1528™-2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

EN 62209-1-2006 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures – Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

YD/T 1643-2007 Technical Specification and Testing Methods for compatibility between wireless communication devices and hearing aids

YD/T 1644.1-2007 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures Part1:procedure to determine the specific absorption rate (sar)for hand-held devices used in close proximity to the ear (frequency range of 300MHz~3GHz)

EN 50360-2001 Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)

IEC 62209-2-2010 Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices -Human models, Instrumentation, and Procedures -Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

OET Bulletin 65-(Edition 97-01) Supplement C (edition01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields---Additional Supplement C (Edition 01-01)Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

47 CFR Ch. I- Hearing aid-compatible mobile handsets.

ANSI/IEEE C95.1-2005 SAFETY LEVELS WITH RESPECT TO HUMAN EXPOSURE TO RADIO FREQUENCY ELECTROMAGNETIC FIELDS. 3 KHZ TO 300 GHZ

ANSI/IEEE C95.3-2002 RECOMMENDED PRACTICE FOR MEASUREMENTS AND COMPUTATIONS OF RADIO FREQUENCY ELECTROMAGNETIC FIELDS WITH RESPECT TO HUMAN EXPOSURE TOSUCH FIELDS. 100 KHZ-300 GHZ

ANSI C63.19-2007 Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids -Test Plan for Hearing Aid Compatibility-2006 Revision 1.0-Test Plan for Hearing Aid Compatibility

RSS-102-2005 Spectrum Management and Telecommunications Radio Standards Specification Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands)

5. Operational Conditions During Test

5.1 General description of test procedures

A communication link is set up with a system simulator by air link, and a call is established. The absolute radio frequency channel number(ARFCN) is allocated to 128,189,251 in the case of GSM850, to 512,661 and 810 respectively. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with CMU200, and the EUT is set to maximum output power by CMU200. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB .

5.2 GSM Test Configuration

SAR test for GSM 850 and GSM 1900, a communication link is set up with a system simulator by air link. Using CMU200 the power level is set to "0" in SAR of GSM850/1900. The tests in the band of GSM850/1900 are performed in the mode of speech transfer function and GPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink.DTM is not supported, so the testing of GPRS with head is not required.

6. SAR Measurements system configuration

6.1 SAR Measurement set-up

The DASY5 system for performing compliance tests consists of the following items:

- ·A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •An isotropic _field probe optimized and calibrated for the targeted measurement.
- ·A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- •The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- •The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- •The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- •A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- •The generic twin phantom enabling the testing of left-hand and right-hand usage.
- •The device holder for handheld mobile phones.
- •Tissue simulating liquid mixed according to the given recipes.
- · System validation dipoles allowing to validate the proper functioning of the system.

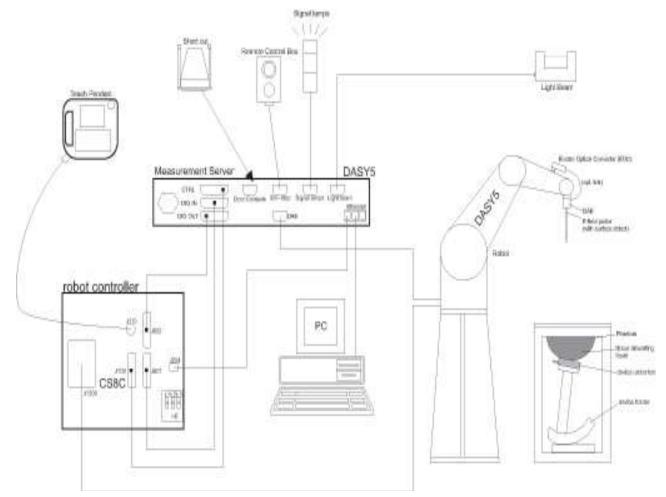


Figure 1. SAR Lab Test Measurement Set-up

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

6.2.1. Ex3DV3 Probe Specification

Construction Symmetrical design with triangular core Built-in shielding against static

charges PEEK enclosure material (resistant to organic solvents, e.g.,

DGBE)

Calibration Basic Broad Band Calibration in air Conversion Factors (CF) for HSL

850 and HSL 1750

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material

Page 13 of 107

(rotation normal to probe axis)

Dynamic Range **Dimensions**

10 μ W/g to > 100 mW/g Linearity: \pm 0.2dB (noise: typically < 1 μ W/g) Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12

mm) Typical distance from probe tip to dipole centers: 1 mm

Application

High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better

30%.

Figure 2.ES3DV3 E-field Probe

Figure 3. ES3DV3 E-field probe

6.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$, C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure. Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

6.3. Other Test Equipment

6.3.1. Device Holder for Transmitters

The DASY5 device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4.Device Holder

6.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on

the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special

Figure 5.Generic Twin Phantom

6.4. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

· Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

6.5. Data Storage and Evaluation

6.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

6.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, aio, ai1, ai2

Conversion factor ConvFi
 Diode compression point Dcpi
 Frequency f

- Crest factor cf

Media parameters: - Conductivity

Device parameters:

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)_{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f_2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot)/(\cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the

density of the simulation liquid. The power flow density is calculated assuming the excitation field to

be a free space field.

$$P_{pwe} = E_{tot^2} / 3770$$
 or $P_{pwe} = H_{tot^2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

6.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the 9.1 and 9.2.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY 5 system.

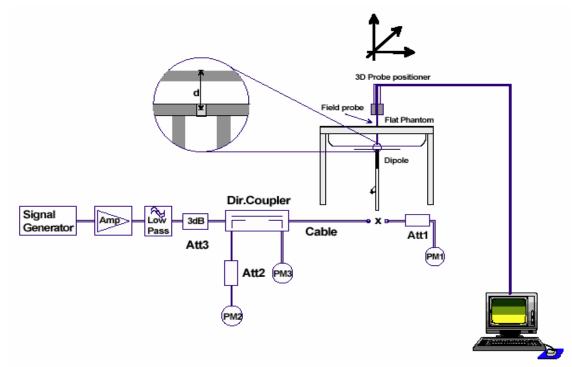


Figure 6. System Check Set-up

6.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

MIXTURE%	FREQUENCY(head) 835MHz
Water	41.45
Sugar	56
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters	f=835MHz ε=41.5 σ=0.9
Target Value	1=635WHZ E-41.5 U-0.9
MIXTURE%	FREQUENCY(body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters	6_925MH= 6=55.2
Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY(head)1950MHz
Water	55.242
Glycol monobutyl	44.452
Salt	0.306
Dielectric Parameters	f=1950MHz ε=40.0 σ=1.40
Target Value	1=1930WIHZ E-40.0 0-1.40
MIXTURE%	FREQUENCY(body)1950MHz
MIXTURE% Water	FREQUENCY(body)1950MHz
	, , , , ,
Water	69.91
Water Glycol monobutyl	69.91 29.96

7. Characteristics of the Test

7.1. Applicable Limit Regulations

ANSI/IEEE C95.1-2005 SAFETY LEVELS WITH RESPECT TO HUMAN EXPOSURE TO RADIO FREQUENCY ELECTROMAGNETIC FIELDS. 3 KHZ TO 300 GHZ

7.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

OET Bulletin 65-(Edition 97-01) Supplement C(edition01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields---Additional Supplement C (Edition 01-01)Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

ANSI/IEEE C95.3-2002 RECOMMENDED PRACTICE FOR MEASUREMENTS AND COMPUTATIONS OF RADIO FREQUENCY ELECTROMAGNETIC FIELDS WITH RESPECT TO HUMAN EXPOSURE TOSUCH FIELDS. 100 KHZ-300 GHZ

8. Conducted Output Power Measurement

8.1. Summary

The DUT is tested using an CMU200 communications tester as controller unit to set test channels

and maximum output power to the DUT, as well as for measuring the conducted power. Conducted output power was measured using an integrated RF connector and attached RF cable.

This result contains conducted output power for the EUT.

8.2. Conducted Power Results

0011050	Conducted power				
GSM850	Channel 128 Channel 189		Channel 251		
Results (dBm)	32.41	32.41 32.52 32.58			
00144000	Conducted power				
GSM1900	Channel 512	Channel 661	Channel 810		
Results (dBm)	29.42	29.47	29.48		

CCMOEOLCDDC	CONDUCTED POWER						
GSM850+GPRS	Ch 128	Ch 189	Ch 251	(dB)	Ch 128	Ch 189	Ch 251
1 TX-slot result	32.56	32.62	32.78	-9.03	23.53	23.59	23.75
2 TX-slot result	31.61	31.66	31.81	-6.02	25.59	25.64	25.79
3 TX-slot result	30.58	30.62	30.75	-4.26	26.32	26.36	26.49
4 TX-slot result	29.37	29.44	29.58	-3.01	26.36	26.43	26.57
CCM1000+CDDC	CONDUCTED POWER						
GSM1900+GPRS	Ch 512	Ch 661	Ch 810	(dB)	Ch 512	Ch 661	Ch 810
1 TX-slot result	29.03	28.92	29.28	-9.03	20.00	19.89	20.25
2 TX-slot result	28.08	27.96	28.31	-6.02	22.06	21.94	22.29
3 TX-slot result	27.05	26.92	27.25	-4.26	22.79	22.66	22.99
4 TX-slot result	25.84	25.74	26.08	-3.01	22.83	22.73	23.07

Note:

To average the power, the division factor is as follows:

- 1 TX-slot =1 transmit time slot of 8 time slots
 - =>conducted power divided by (8/1) =>-9.03dB
- 2 TX-slot =2 transmit time slot of 8 time slots
 - =>conducted power divided by (8/2) =>-6.02dB
- 3 TX-slot =3 transmit time slot of 8 time slots
 - =>conducted power divided by (8/3) =>-4.26dB
- 4 TX-slot =4 transmit time slot of 8 time slots
 - =>conducted power divided by (8/4) =>-3.01dB

9 Test Results

9.1. Dielectric Performance

Dielectric Performance of Head and body Tissue Simulating Liquid

Frequency	Description	Dielectric	σ(s/m)	temp ℃	
		Parameters εr			
	Target value	41.5	0.9	,	
835MHz	5% window	39. 42-43. 57	0.85— 0.945	,	
(head)	Measurement value	41.7	0.88	21.8	
	2011-09-26	41.7	0.00	21.0	
	Target value	55.2	0.97	,	
835MHz	5% window	52.44-57.96	0.92-1.02	/	
(body)	Measurement value	54.02	0.97	21.9	
	2011-10-10	34.02	0.97		
	Target value	40.0	1.40	,	
1950MHz	5% window	38-42	1.33 — 1.47	/	
(head)	Measurement value	39.1	1.36	21.6	
	2011-09-28	39.1	1.30	21.0	
	Target value	53.3	1.52	,	
1950MHz	5% window	50.63-55.96	1.44 — 1.60	/	
(body)	Measurement value	52.4	1.49	21.6	
	2011-09-27	J2. 4	1.40	21.0	

9.2. System Check Results

System Check for Head and body tissue simulation liquid

Frequen	Description	SAR(W/kg)		Dielectri c	σ(s/m	Temp
су	Description	10g	1g	Paramet ers εr)	°C
	Recommended result	1.53	2.37	41.5	0.9	/
835MHz	±10% window	1.38-1.69	2.13-2.61		0.0	,
(head)	Measurement value 2011-09-26	1.46	2.23	41.7	0.88	21.8
	Recommended result	1.59	2.45	55.2	0.97	/
835MHz	±10% window	1.43-1.75	2.20-2.70	33.2	0.97	,
(body)	Measurement value 2011-10-10	1.55	2.36	54.02	0.97	21.9
1950MH	Recommended result ±10% window	5.27 4.73-5.79	10 8.93-10.91	40.0	1.40	/
z(head)	Measurement value 2011-09-28	4.75-5.79	9.87	39.12	1.44	21.4
1950MH	Recommended result ±10% window	5.14 4.63-5.65	9.75 8.77-10.72	53.3	1.52	/
z(body)	Measurement value 2011-09-27	5.07	10.05	52.4	1.49	21.4

Note: 1. the graph results see ANNEX D.

^{2 .}Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

9.3. Test Results

9.3.1. Summary of Measurement Results (GSM850)

SAR Values (GSM850)

Test Case	,	Measu Result		Power	Note
Different Test	Channel	10 g	1 g	Drift(dB)	
Position	Chamilei	Average	Average		
	Te	st position of I	Head		
Right head, Touch cheek	middle	0.797	1.12	-0.0033	
Right head, Tilt 15 Degree	middle	0.432	0.579	-0.00813	
Left head, Touch cheek	middle	0.785	1.11	-0.00132	
Left head, Tilt 15 Degree	middle	0.448	0.602	0.018	
Right head, Touch	low	0.594	0.832	0.029	
cheek	high	0.953	1.35	-0.146	max
	Test position	on of Body (Dis	tance 15mm)		
Towards phantom	middle	0.661	0.915	-0.026	
Towards Ground	middle	0.716	1	-0.00468	
Towards Ground	low	0.565	0.789	-0.048	
Towards Ground	high	0.701	0.985	-0.00621	
Test p	oosition of Bod	y with Earpho	ne (Distance	15mm)	
Towards Ground	high	0.163	0.251	0.176	
Test po	sition of Body	with GPRS(4เ	ıp)(Distan	ce 15mm)	
Towards Ground	high	0.910	1.28	0.141	max

Note: 1.The value with blue color is the maximum SAR Value of test case of head and body in each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test

configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

9.3.2. Summary of Measurement Results (GSM1900)

SAR Values (GSM1900)

Test Case		Measurement		Power	Nata
		Result(W/kg)			
Different Test Position	Channel	10 g	1 g	Drift(dB)	Note
		Average	Average		
Test position of Head					
Right head, Touch cheek	middle	0.417	0.714	-0.045	
Right head, Tilt 15 Degree	middle	0.213	0.351	0.038	
Left head, Touch cheek	middle	0.526	0.936	-0.047	
Left head, Tilt 15 Degree	middle	0.180	0.290	0.033	
left head, Touch cheek	low	0.449	0.805	0.032	
	high	0.588	1.06	0.055	max
Test position of Body (Distance 15mm)					
Towards phantom	middle	0.138	0.226	-0.022	
Towards Ground	middle	0.265	0.446	0.00452	
Towards Ground	low	0.218	0.366	-0.066	
	high	0.290	0.488	-0.019	
Test position of Body with Earphone (Distance 15mm)					
Towards Ground	high	0.325	0.553	-0.00285	max
Test position of Body with GPRS (4up) (Distance 15mm)					
Towards Ground	high	0.118	0.188	-0.135	

Note: 1.The value with blue color is the maximum SAR Value of test case of head and body in each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test

configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

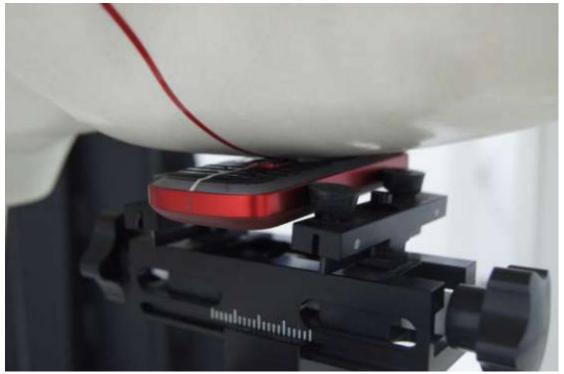
9.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR1g of GSM 850 is 1.35 W/kg (head) and 1.28 W/kg (body), and maximum localized SAR1g of GSM1900 is 1.06 W/kg (head) and 0.553 W/kg (body) , they are below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

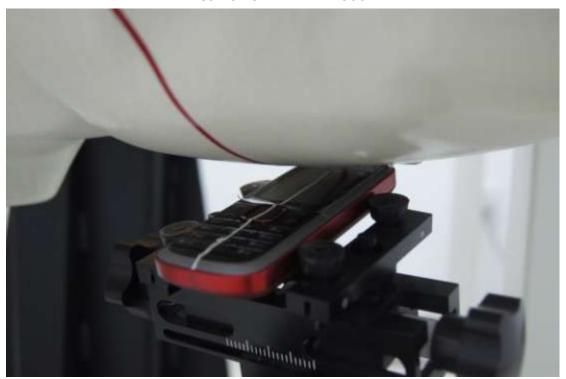
General Judgment: PASS

ANNEX A: EUT Photograph

EUT



Battery



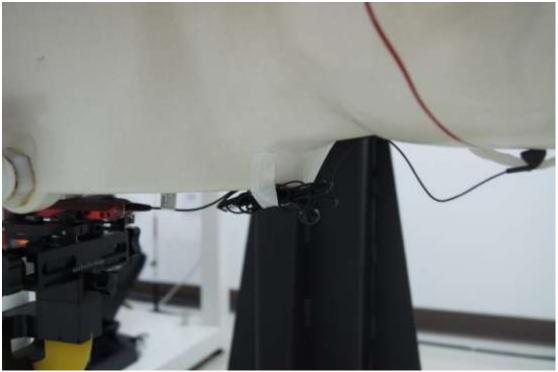
Travel Adaptor

POSITION OF LEFT HEAD TOUCH

POSITION OF LEFT HEAD TILT

POSITION OF RIGHT HEAD TOUCH

POSITION OF RIGHT HEAD TILT



POSITION OF BODY TOWARDS PHANTOM WITH 15mm DISTANCE

POSITION OF BODY TOWARDS GROUND WITH 15mm DISTANCE

POSITION OF BODY TOWARDS GROUND WITH 15mm DISTANCE (WITH EARPHONE)

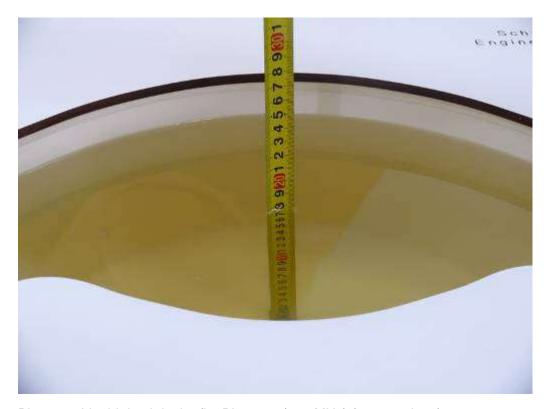
ANNEX B: Measurement Uncertainty

							Standa	
			Uncer	Proba			rd	Degree
No.	source	type	taint	t bility	k	Ci		-
			у	Distri			ncertai	of
			Value	butio			nty	freedom
			(%)	n			,	Veffor vi
			(7-5)				i U (%	
1	-System repetivity	A	0.3	N	1	1	0.3	9
Measurement system								
2	-probe calibration	В	7	N	2	1	3. 5	∞
3	-axial isotropy of the probe	В	4. 7	R	$\sqrt{3}$	0. 5	4. 3	∞
4	Hemispherical isotropy of	D	0.4	D	<u></u>			
4	the probe	В	9. 4	R	$\sqrt{3}$			
_	1 2 3	D.	4.7	D	<u></u>		0.7	
5	-probe linearity	В	4. 7	R	$\sqrt{3}$	1	2. 7	∞
		_		_	<u></u>	_		
6	—System detection limits	В	1.0	R	$\sqrt{3}$	1	0. 6	∞
7	-boundary effect	В	11.0	R	$\sqrt{3}$	1	6. 4	∞
8	-response time	В	0	R	$\sqrt{3}$	1	0	∞
9	-noise	В	0	N	$\sqrt{3}$	1	0	∞
10	-integration time	В	5. 0	R	$\sqrt{3}$	1	2. 9	∞
11	-readout Electronics	В	0. 4	R	$\sqrt{3}$	1	0. 2	∞
12	phantom	В	2. 9	R	$\sqrt{3}$	1	1. 7	∞
13	-Probe Positioning with	В	2. 9	R	$\sqrt{3}$	1	1. 7	∞
	respect to Phantom Shell				V 3			
14	-Device Holder Uncertainty	A	4. 9	R	1	1	4. 9	5
		物	理参数					
15	-liquid density	В	0	R		1	0	8
19	-iiquiu uerisity	α α	U	1/	$\sqrt{3}$	1	U	\sim
16	-liquid conductivity (deviation		F ^	r.	<u></u>	0.5	0.0	
	from target)	В	5. 0	R	$\sqrt{3}$	0. 5	2. 9	∞
	-liquid conductivity							
17	(measurement uncertainty)	A	0. 23	N	1	1	0. 23	9
L	(l					

Report No. 2011SAR114

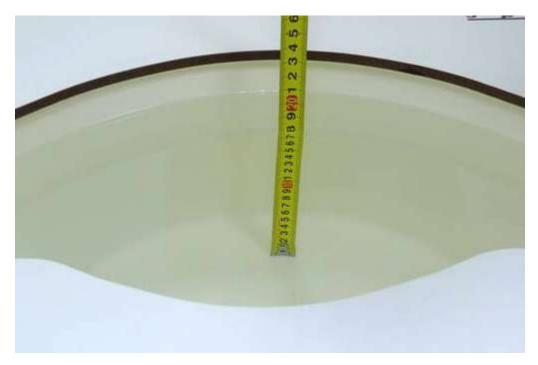
18	-liquid permittivity (deviation from target)	В	5. 0	R	$\sqrt{3}$	0. 5	2. 9	∞
19	-liquid permittivity (measurement uncertainty)	A	0. 46	N	1	1	0.46	9
20	-Probe Positioner Mechanical Tolerance	В	5. 0	R	$\sqrt{3}$	1	2. 9	∞
21	-Environment	В	3. 0	R	$\sqrt{3}$	1	1. 7	8
22	Extrapolation, interpolationand Integration Algorithms forMax. SAR Evaluation	В	3. 9	R	$\sqrt{3}$	1	2. 3	8
Combined standard uncertainty		$u_c' = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$				11. 2	83.4	
Expanded uncertainty (confidence interval of95 %)		$u_e =$	= 2 <i>u</i> _c	N	K=	2	22. 4	

ANNEX C: Main Test Instruments


No.	Name	Туре	Calibration Date	Valid Period	
01	Network analyzer	Agilent E5071E	Oct 14 st , 2011	One year	
02	Dielectric Probe Kit	Agilent 85070E	No Calibration Requested		
03	Power meter	Agilent E4418B	Oct 14 st , 2011	One year	
04	Power sensor	Agilent E9200B	Oct 14 st , 2011	One year	
05	Signal Generator	Agilent N5182A	Oct 14 st , 2011	One year	
06	Amplifier	ZHL-42W	No Calibration Requested		
07	BTS	CMU200	Oct 14 st , 2011	One year	
08	E-field Probe	ES3DV3	June 22 th ,2011	One year	
09	DAE	DAE4	June 13 th ,2011	One year	
10	Validation Kit 850MHz	D850V2	June 14 th '2011	One year	
11	Validation Kit 1950MHz	D1950V3	June 17 th ² 011	One year	

ANNEX D: Test Layout

Picture 1: Specific Absorption Rate Test Layout



Picture 2: Liquid depth in the flat Phantom (850 MHz) (17.5cm deep)



Picture 3: Liquid depth in the head Phantom (850MHz) (16cm deep)

Picture 4: Liquid depth in the flat Phantom (1950 MHz) (16cm deep)

Picture 5: liquid depth in the head Phantom (1950 MHz) (15.2cm deep)

ANNEX E: System Check Results

SYSTEM CHECK 835 head Date/Time: 9/26/2011 7:38:45 AM

Communication System: CW; Communication System Band: D835 (835.0 MHz);

Frequency: 835 MHz; Communication System PAR: 0 dB

Medium parameters used : f = 835 MHz; $\sigma = 0.882$ mho/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

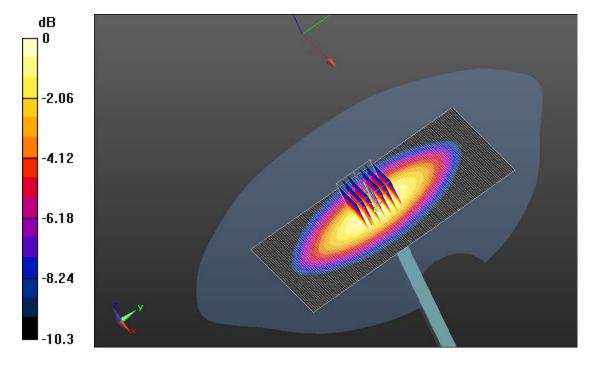
- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

Configuration/d=15mm,Pin=250mW,dist=3.0mm (ES-Probe)-head/Area

Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR = 2.48 mW/g

Configuration/d=15mm,Pin=250mW,dist=3.0mm ES-Probe)-head/Zoom


Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.6 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 3.31 W/kg

SAR(1 g) = 2.23 mW/g; SAR(10 g) = 1.46 mW/g

Maximum value of SAR (measured) = 2.53 mW/g

0 dB = 2.53 mW/g

SYSTEM CHECK 835body

Date/Time: 10/10/2011 8:57:41 AM

Communication System: CW; Communication System Band: D835 (835.0 MHz);

Frequency: 835 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 835 MHz; $\sigma = 0.948 \text{ mho/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

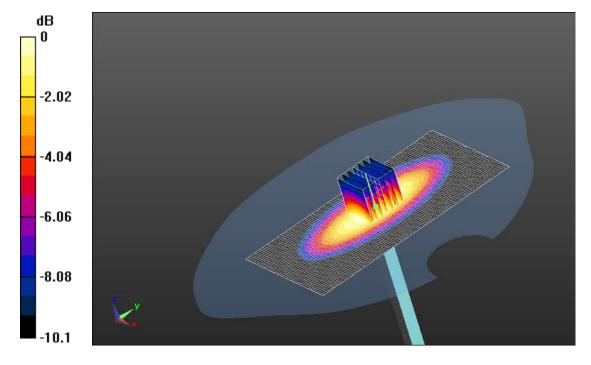
- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

835 BODY/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)-BODY/Area

Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR = 2.72 mW/g

835 BODY/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)-BODY/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.3 V/m; Power Drift = 0.000613 dB

Peak SAR (extrapolated) = 3.49 W/kg

SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.75 mW/g

0 dB = 2.75 mW/g

Page 44 of 107

SYSTEM CHECK 1950 head

Date/Time: 9/28/2011 8:26:37 AM

Communication System: CW; Communication System Band: D1950 (1950.0 MHz);

Frequency: 1950 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 1950 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

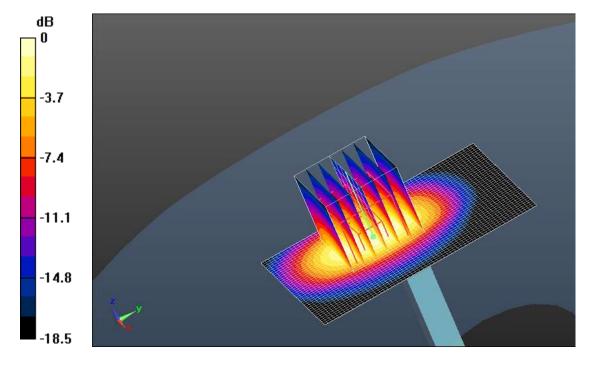
- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

1950 head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe) 3/Area Scan

(41x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR = 13 mW/g

1950 head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe) 3/Zoom Scan


(7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 75.3 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 9.87 mW/g; SAR(10 g) = 4.96 mW/g

Maximum value of SAR (measured) = 12.7 mW/g

0 dB = 12.7 mW/g

SYSTEM CHECK 1950 body

Date/Time: 9/27/2011 2:35:28 PM

Communication System: CW; Communication System Band: D1950 (1950.0 MHz);

Frequency: 1950 MHz; Communication System PAR: 0 dB

Medium parameters used: f = 1950 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

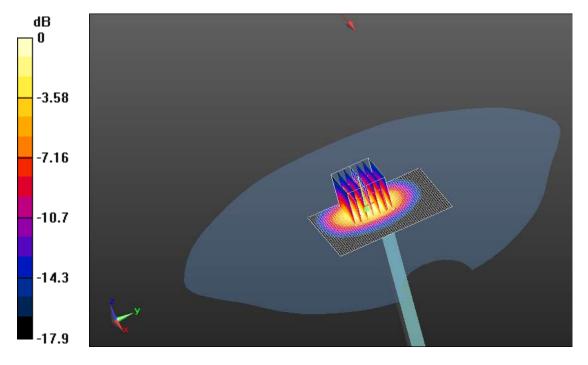
- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

1950 BODY/d=10mm, Pin=250mW, dist=3.0mm (ES-Probe) 3/Area Scan

(41x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR = 13.6 mW/g

1950 BODY/d=10mm, Pin=250mW, dist=3.0mm (ES-Probe) 3/Zoom


Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 64.6 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.05 mW/g; SAR(10 g) = 5.07 mW/g

Maximum value of SAR (measured) = 13 mW/g

0 dB = 13 mW/g

ANNEX F: Graph Result

GSM850 right touch mid

Date/Time: 9/26/2011 8:18:35 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 836.6 MHz; $\sigma = 0.883$ mho/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

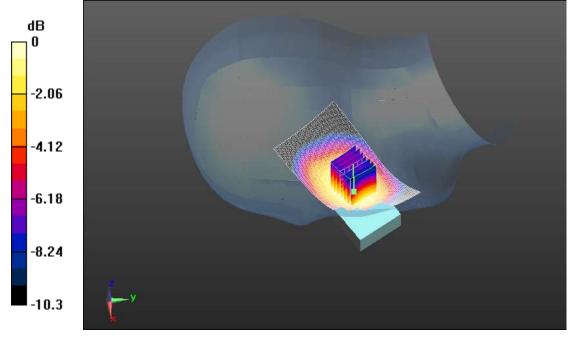
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Touch Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 1.19 mW/g


right/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.0033 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.797 mW/g

Maximum value of SAR (measured) = 1.2 mW/g

0 dB = 1.2 mW/g

GSM850 right tilt mid

Date/Time: 9/26/2011 8:57:25 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 836.6 MHz; $\sigma = 0.883$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

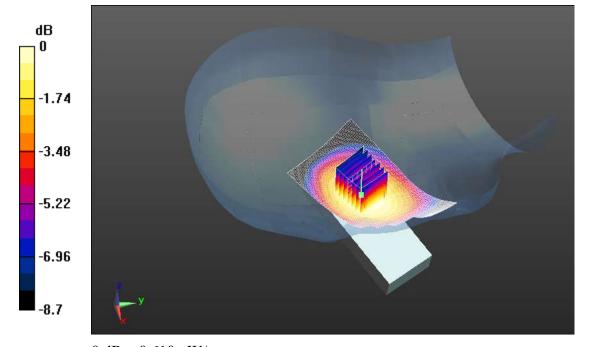
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Tilt Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.610 mW/g

right/Tilt Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = -0.00813 dB

Peak SAR (extrapolated) = 0.739 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.432 mW/g

Maximum value of SAR (measured) = 0.610 mW/g

0 dB = 0.610 mW/g

GSM850 left touch mid

Date/Time: 9/26/2011 6:28:21 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 836.6 MHz; $\sigma = 0.883$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

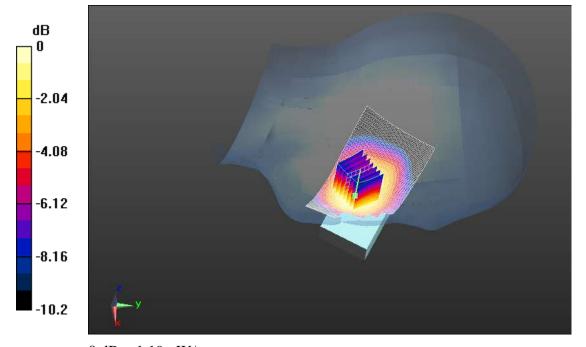
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

left/Touch Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 1.17 mW/g

left/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -0.00132 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.785 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

0 dB = 1.19 mW/g

GSM850 left tilt mid

Date/Time: 9/26/2011 7:27:59 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 836.6 MHz; $\sigma = 0.883$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

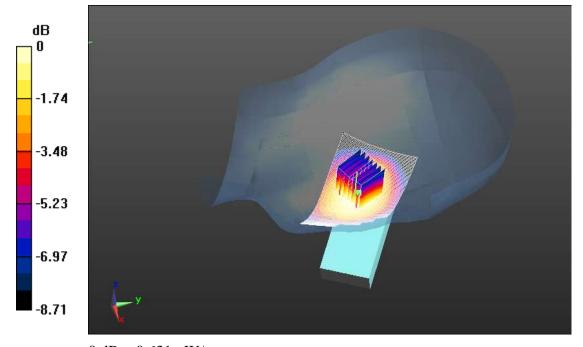
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

left/Tilt Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.643 mW/g

left/Tilt Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.602 mW/g; SAR(10 g) = 0.448 mW/g

Maximum value of SAR (measured) = 0.631 mW/g

0 dB = 0.631 mW/g

GSM850 right touch low

Date/Time: 9/26/2011 9:24:53 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 824.2 MHz; $\sigma = 0.871$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

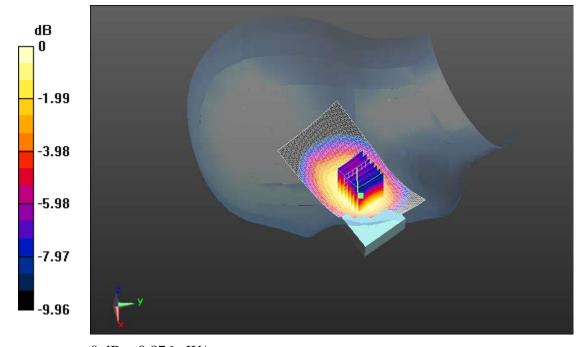
- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Touch Position - Low/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 0.886 mW/g

right/Touch Position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.832 mW/g; SAR(10 g) = 0.594 mW/g

Maximum value of SAR (measured) = 0.876 mW/g

0 dB = 0.876 mW/g

GSM850 right touch high

Date/Time: 9/26/2011 10:09:30 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 848.6 MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

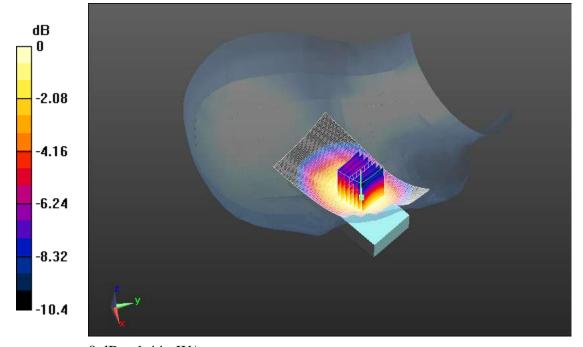
- Probe: ES3DV3 SN3071; ConvF(5.78, 5.78, 5.78); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Touch Position - high/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

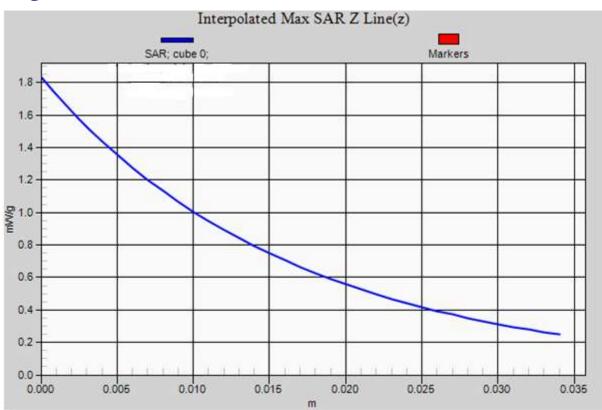
Maximum value of SAR = 1.45 mW/g

right/Touch Position - high/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.146 dB

Peak SAR (extrapolated) = 1.83 W/kg


SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.953 mW/g

Maximum value of SAR (measured) = 1.44 mW/g

0 dB = 1.44 mW/g

GSM850 Towards phantom - Mid

Date/Time: 10/10/2011 3:10:14 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used: f = 837 MHz; $\sigma = 0.951$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

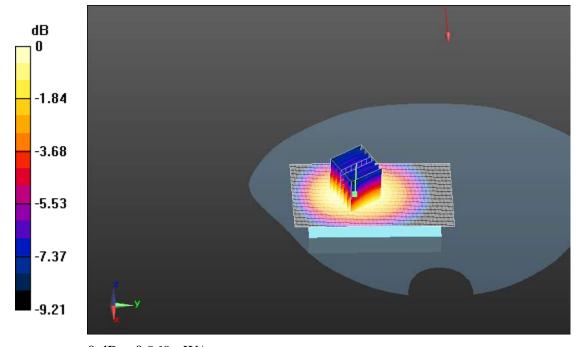
- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards phantom - Mid/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 0.975 mW/g

body/Towards phantom - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.915 mW/g; SAR(10 g) = 0.661 mW/g

Maximum value of SAR (measured) = 0.969 mW/g

0 dB = 0.969 mW/g

GSM850 Towards ground - Mid

Date/Time: 10/10/2011 3:37:39 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used: f = 837 MHz; $\sigma = 0.951$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - Mid/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 1.06 mW/g

body/Towards ground - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.00468 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 1 mW/g; SAR(10 g) = 0.716 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

0 dB = 1.07 mW/g

GSM850 Towards ground - low

Date/Time: 10/10/2011 4:04:31 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 824.2 MHz; Communication System PAR: 9.191 dB Medium parameters used : f = 824.2 MHz; $\sigma = 0.933$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

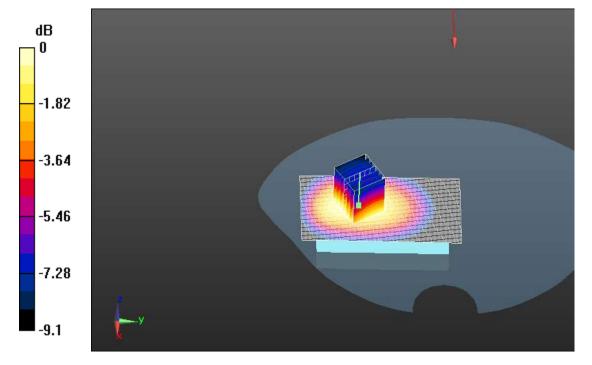
- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - low/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 0.839 mW/g

body/Towards ground - low/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.45 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.789 mW/g; SAR(10 g) = 0.565 mW/g

Maximum value of SAR (measured) = 0.838 mW/g

0 dB = 0.838 mW/g

GSM850 Towards ground - high

Date/Time: 10/10/2011 4:31:31 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 848.6 MHz; Communication System PAR: 9.191 dB Medium parameters used: f = 849 MHz; σ = 0.967 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

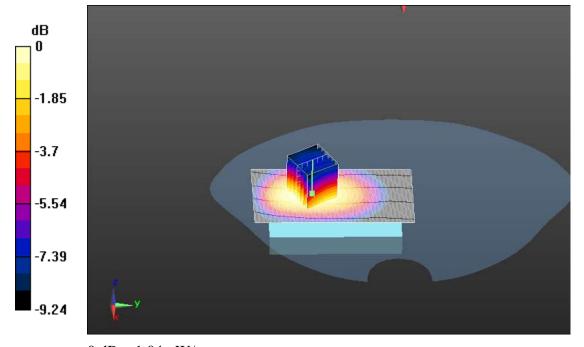
- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - high/Area Scan (71x131x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 1.05 mW/g

body/Towards ground - high/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.00621 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.985 mW/g; SAR(10 g) = 0.701 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

0 dB = 1.04 mW/g

GSM850 Towards ground with earphone - Mid

Date/Time: 10/10/2011 5:01:16 PM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used: f = 837 MHz; $\sigma = 0.951$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

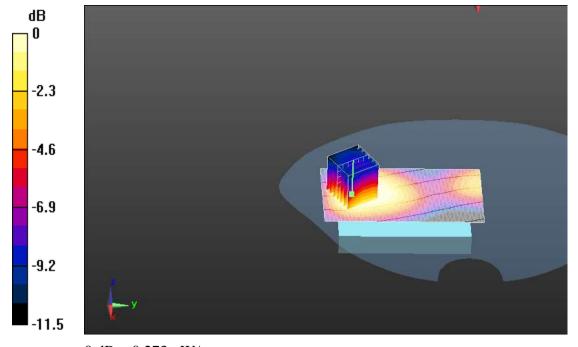
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground with earphone - Mid/Area Scan (71x131x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR = 0.348 mW/g

body/Towards ground with earphone - Mid/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.2 V/m; Power Drift = 0.176 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.273 mW/g

0 dB = 0.273 mW/g

GSM850 Towards ground with GPRS - Mid

Date/Time: 10/11/2011 8:14:07 AM

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Frequency: 836.6 MHz; Communication System PAR: 9.191 dB Medium parameters used: f = 837 MHz; $\sigma = 0.951$ mho/m; $\epsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

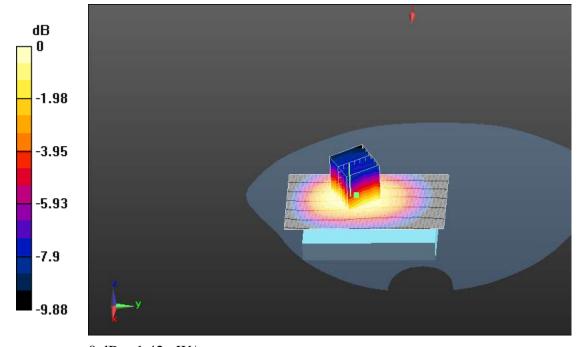
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(5.68, 5.68, 5.68); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM1; Type: SAM; Serial: TP1576
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground with GPRS - Mid/Area Scan (71x131x1):

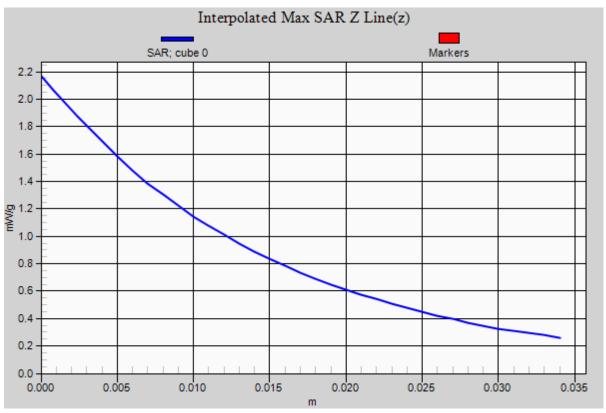
Measurement grid: dx=10mm, dy=10mm Maximum value of SAR = 1.36 mW/g

body/Towards ground with GPRS - Mid/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = 0.141 dB

Peak SAR (extrapolated) = 1.78 W/kg


SAR(1 g) = 1.28 mW/g; SAR(10 g) = 0.910 mW/g

Maximum value of SAR (measured) = 1.42 mW/g

0 dB = 1.42 mW/g

GSM1900 right touch mid

Date/Time: 9/28/2011 9:03:28 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

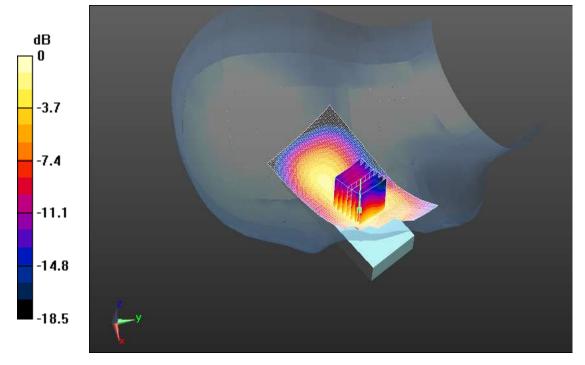
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Touch Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.792 mW/g

right/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.417 mW/g

Maximum value of SAR (measured) = 0.788 mW/g

0 dB = 0.788 mW/g

Page 61 of 107

GSM1900 right tilt mid

Date/Time: 9/28/2011 9:28:19 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

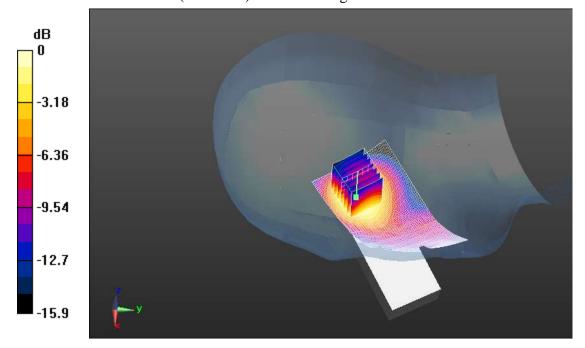
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

right/Tilt Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.387 mW/g

right/Tilt Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.385 mW/g

0 dB = 0.385 mW/g

GSM1900 left touch mid

Date/Time: 9/28/2011 8:04:46 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191

dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

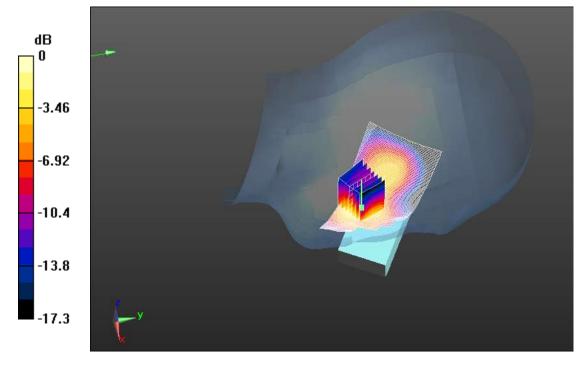
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

left/Touch Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 1.05 mW/g

left/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.936 mW/g; SAR(10 g) = 0.526 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

0 dB = 1.03 mW/g

Page 63 of 107

GSM1900 left tilt mid

Date/Time: 9/28/2011 8:35:01 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

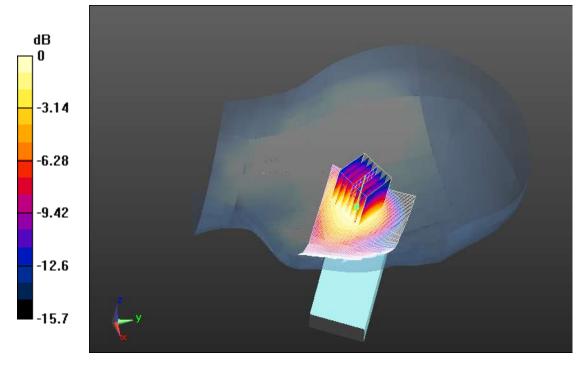
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

left/Tilt Position - Mid/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.314 mW/g

left/Tilt Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.447 W/kg

SAR(1 g) = 0.290 mW/g; SAR(10 g) = 0.180 mW/g

Maximum value of SAR (measured) = 0.316 mW/g

0 dB = 0.316 mW/g

Page 64 of 107

GSM1900 left touch low

Date/Time: 9/28/2011 9:58:26 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.191 dB

Medium parameters used : f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

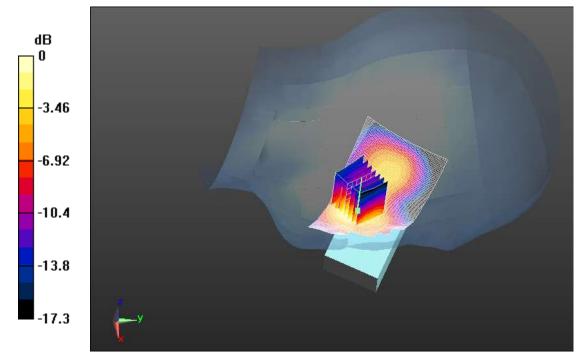
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

Maximum value of SAR = 0.929 mW/g

left/Touch Position - low/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.805 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.878 mW/g

0 dB = 0.878 mW/g

Page 65 of 107

GSM1900 left touch high

Date/Time: 9/28/2011 10:24:04 AM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1910 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

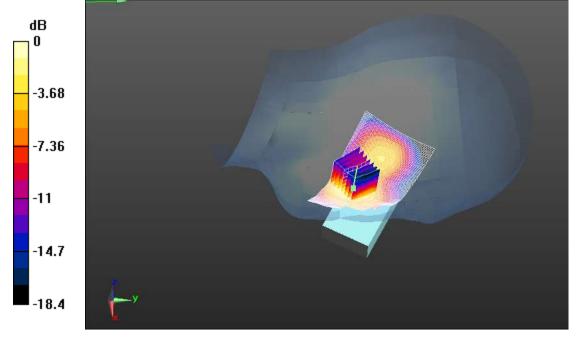
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.83, 4.83, 4.83); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

left/Touch Position - high/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

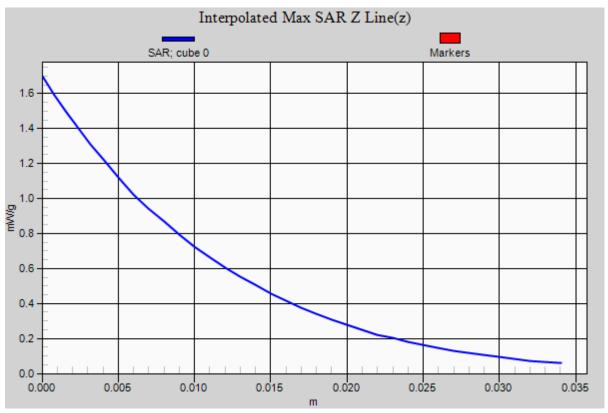
Maximum value of SAR = 1.18 mW/g

left/Touch Position - high/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 1.7 W/kg


SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 1.23 mW/g

0 dB = 1.23 mW/g

GSM1900 Towards phantom - Mid

Date/Time: 9/27/2011 3:58:46 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191

dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards phantom - Mid/Area Scan (71x141x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 0.245 mW/g

body/Towards phantom - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.36 V/m; Power Drift = -0.022 dB

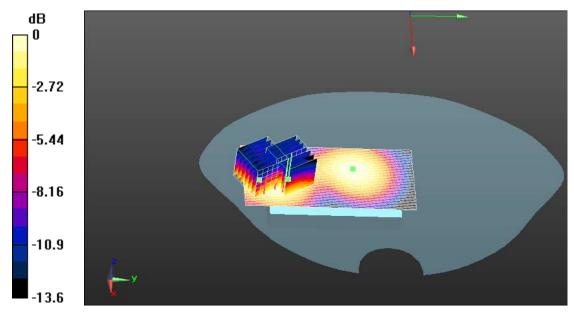
Peak SAR (extrapolated) = 0.376 W/kg

SAR(1 g) = 0.226 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.247 mW/g

body/Towards phantom - Mid/Zoom Scan (7x7x7)/Cube 1: Measurement

grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 8.36 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.354 W/kg

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.134 mW/g

Maximum value of SAR (measured) = 0.235 mW/g

 $0\ dB=0.235mW/g$

GSM1900 Towards ground - Mid

Date/Time: 9/27/2011 4:47:55 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1880 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

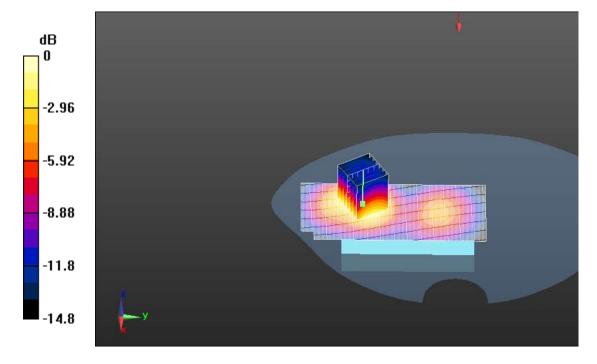
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - Mid/Area Scan (71x151x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.491 mW/g

body/Towards ground - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.48 V/m; Power Drift = 0.00452 dB

Peak SAR (extrapolated) = 0.717 W/kg

SAR(1 g) = 0.446 mW/g; SAR(10 g) = 0.265 mW/g

Maximum value of SAR (measured) = 0.487 mW/g

0 dB = 0.487 mW/g

GSM1900 Towards ground -low

Date/Time: 9/27/2011 5:20:56 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1850.2 MHz; Communication System PAR: 9.191 dB

Medium parameters used : f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

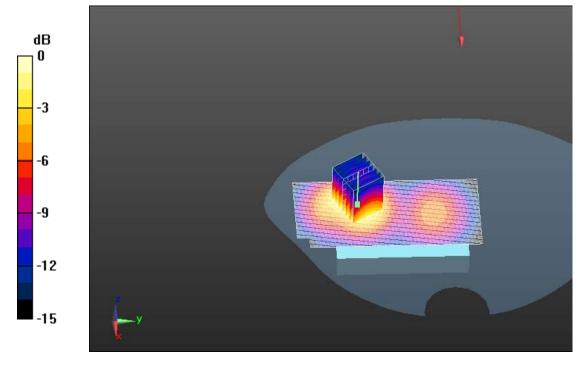
DASY5 Configuration:

- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground -low/Area Scan (71x151x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.404 mW/g

body/Towards ground -low/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.21 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.588 W/kg

SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.218 mW/g

Maximum value of SAR (measured) = 0.402 mW/g

0 dB = 0.402 mW/g

Page 71 of 107

GSM1900 Towards ground -high

Date/Time: 9/27/2011 5:53:25 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1910 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

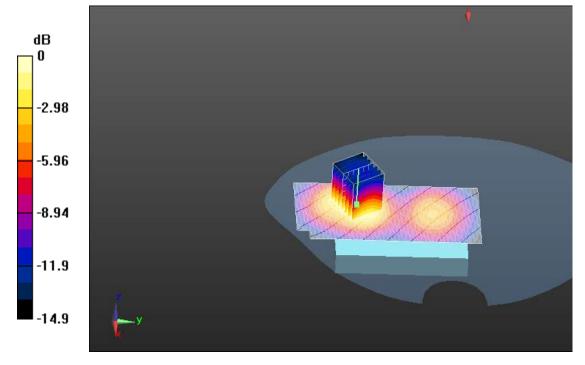
- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - high/Area Scan (71x151x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR = 0.537 mW/g

body/Towards ground - high/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.791 W/kg

SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.290 mW/g

Maximum value of SAR (measured) = 0.530 mW/g

0 dB = 0.530 mW/g

Page 72 of 107

GSM1900 Towards ground - high with earphone

Date/Time: 9/27/2011 8:18:46 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1910 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

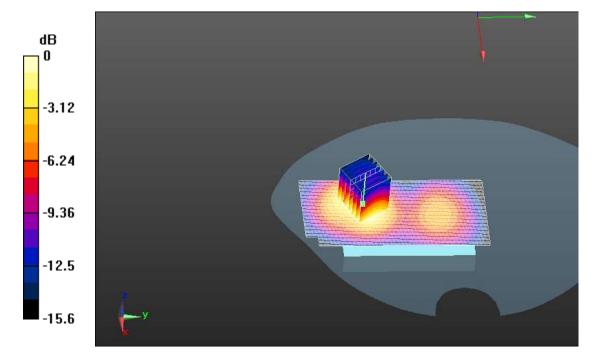
- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - high with earphone/Area Scan (71x151x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.609 mW/g

body/Towards ground - high with earphone/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.73 V/m; Power Drift = -0.00285 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.553 mW/g; SAR(10 g) = 0.325 mW/g

Maximum value of SAR (measured) = 0.600 mW/g

0 dB = 0.600 mW/g

GSM1900 Towards ground - high with GPRS

Date/Time: 9/27/2011 10:16:04 PM

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Frequency: 1909.8 MHz; Communication System PAR: 9.191 dB

Medium parameters used: f = 1910 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

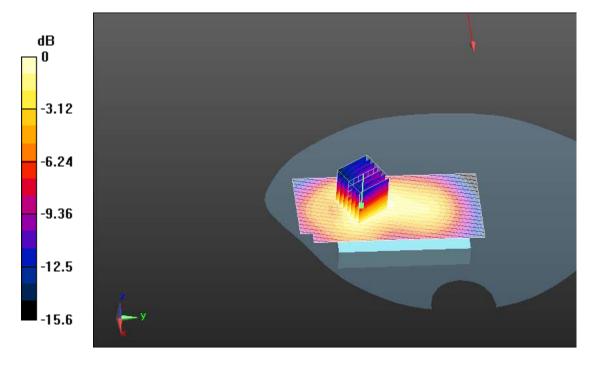
- Probe: ES3DV3 SN3071; ConvF(4.32, 4.32, 4.32); Calibrated: 6/22/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1226; Calibrated: 6/13/2011
- Phantom: SAM2; Type: SAM; Serial: TP-1575
- Measurement SW: DASY52, V52.2 Build 0; Postprocessing SW: SEMCAD X, V14.2 Build 2Version 14.2.2 (1685) (Deployment Build)

body/Towards ground - high with GPRS/Area Scan (71x151x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR = 0.210 mW/g

body/Towards ground - high with GPRS/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.61 V/m; Power Drift = -0.135 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.188 mW/g; SAR(10 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.203 mW/g

0 dB = 0.203 mW/g

ANNEX G: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

¢

Accreditation No.: SCS 108

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Auden

Certificate No: ES3-3071_Jun11

Name and the state of the state	
CALIBRATION	CERTIFICATE
Object	ES3DV3 SN:3071
Calibration procedure(s)	QA GAL-01 v8; QA GAL-23 v4; QA GAL-25 v4 Calibration procedure for dosimetric E-field probes
Calibration date:	June 22, 2011
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	ducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.
Calibration Equipment used (#ATE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Jeton Kastrali	Laboratory Technician	Stylle.
Approved by:	Kana Pokovic	Technical Manager	
This calibration certificate	e shall not be reproduced except in	n full without written approval of the lab	Issued: June 23, 2011

Certificate No: ES3-3071_Jun11

Page 1 of 11

S

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3071_Jun11

ES3DV3 - SN:3071

June 22, 2011

Probe ES3DV3

SN:3071

Manufactured:

December 14, 2004

Calibrated:

June 22, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3071_Jun11

Page 3 of 11

ES3DV3- SN:3071

June 22, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3071

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.12	1.21	0.96	± 10.1 %
DCP (mV) ^B	101.2	101.2	97.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	102.4	±3.0 %
			Υ	0.00	0.00	1.00	110.9	
			Z	0.00	0.00	1.00	130.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-- SN:3071 June 22, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3071

Calibration Parameter Determined in Head Tissue Simulating Media

					_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.00	6.00	6.00	0.90	1.10	± 12.0 %
835	41.5	0.90	5.78	5.78	5.78	0.90	1.10	± 12.0 %
900	41.5	0.97	5.67	5.67	5.67	0.90	1.10	± 12.0 %
1450	40.5	1.20	5.22	5.22	5.22	0.83	1.23	± 12.0 %
1750	40.1	1.37	5.03	5.03	5.03	0.90	1.15	± 12.0 %
1900	40.0	1.40	4.83	4.83	4.83	0.86	1.19	± 12.0 %
2000	40.0	1.40	4.80	4.80	4.80	0.89	1.14	± 12.0 %
2450	39.2	1.80	4.19	4.19	4.19	0.74	1.29	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3-SN:3071

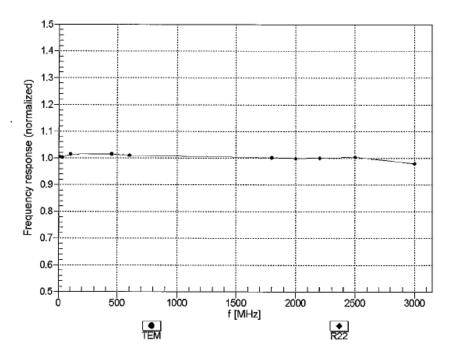
June 22, 2011

DASY/EASY - Parameters of Probe: ES3DV3- SN:3071

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	5.78	5.78	5.78	0.80	1.20	± 12.0 %
835	55.2	0.97	5.68	5.68	5.68	0.80	1.20	± 12.0 %
900	55.0	1.05	5.63	5.63	5.63	0.90	1.10	± 12.0 %
1450	54.0	1.30	5.22	5.22	5.22	1.00	1.21	± 12.0 %
1750	53.4	1.49	4.66	4.66	4.66	0.72	1.43	± 12.0 %
1900	53.3	1.52	4.32	4.32	4.32	0.72	1.37	± 12.0 %
2000	53.3	1.52	4.29	4.29	4.29	0.74	1.30	± 12.0 %
2450	52.7	1.95	3.89	3.89	3.89	0.75	1.22	± 12.0 %

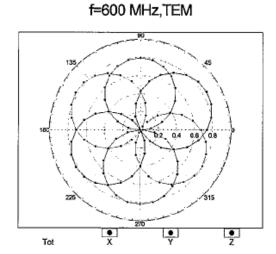
Certificate No: ES3-3071_Jun11


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

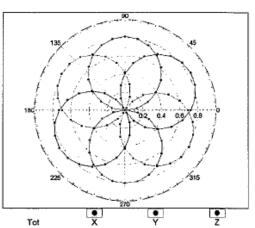
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

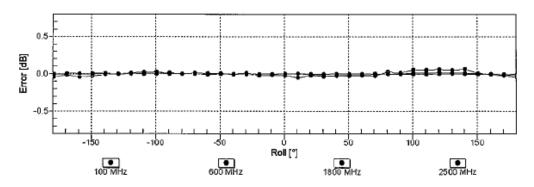
ES3DV3-SN:3071 June 22, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

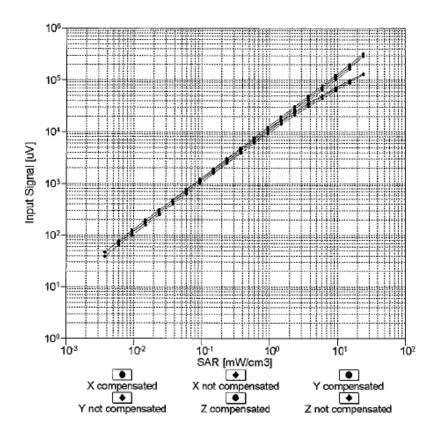


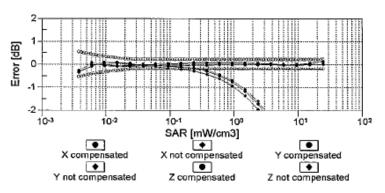
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




ES3DV3- SN:3071 June 22, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

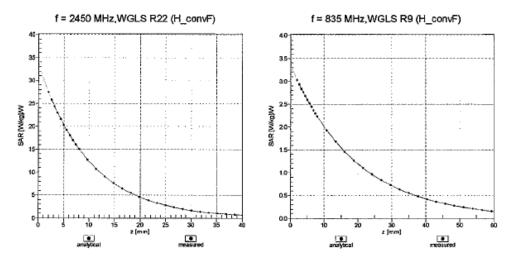



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

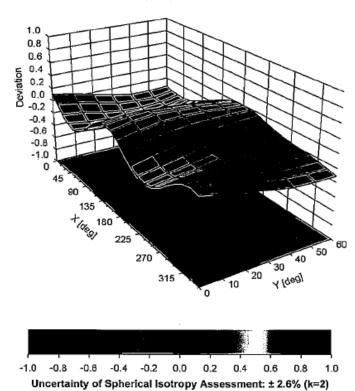
ES3DV3-SN:3071

June 22, 2011

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ES3DV3- SN:3071 June 22, 2011

Conversion Factor Assessment

Deviation from Isotropy in Liquid

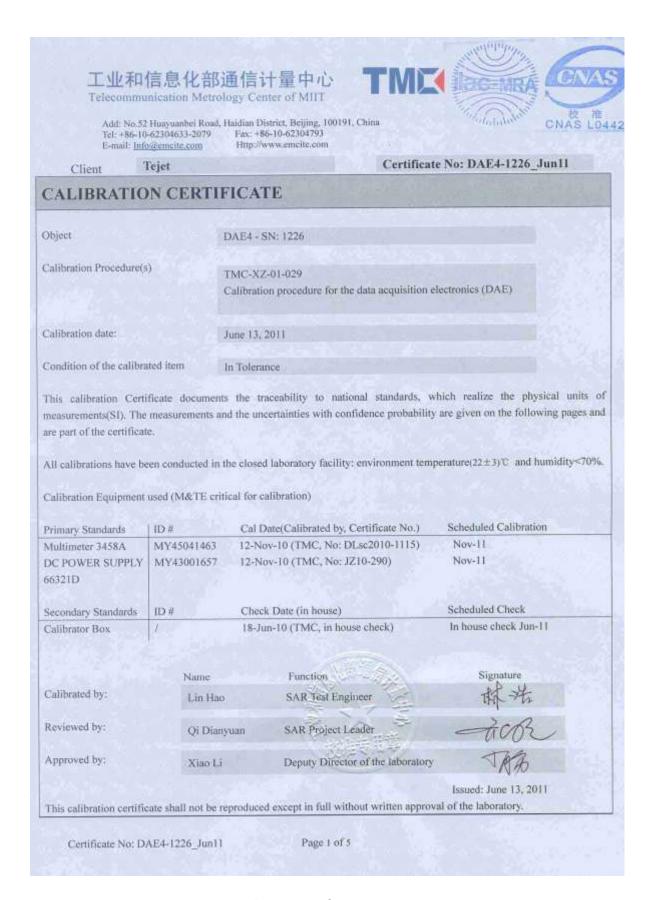
Error (ϕ, ϑ) , f = 900 MHz

Certificate No: ES3-3071_Jun11

Page 10 of 11

ES3DV3-SN:3071

June 22, 2011


DASY/EASY - Parameters of Probe: ES3DV3 - SN:3071

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ANNEX H:DAE4 Calibration Certificate

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to

the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage.
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.

Certificate No: DAE4-1226_Jun11 Page 2 of 5

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304793

Http://www.emcite.com E-mail: Info@emcite.com

DC Voltage Measurement

A/D - Converter Resolution nominal

6.1μV, 61nV, High Range: 1LSB = full range = -100...+300 mV 1LSB = full range = -1.....+3mV Low Range: DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.837 ± 0.1% (k=2)	405.272 ± 0.1% (k=2)	405.326 ± 0.1% (k=2)
Low Range	3.99601 ± 0.7% (k=2)	4.01768 ± 0.7% (k=2)	4.02083 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	112.5 ° ± 1 °
---	---------------

Certificate No: DAE4-1226_Jun11 Page 3 of 5

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Appendix

1. DC Voltage Linearity

High Range		Input (µ V)	Reading (µ V)	Error (%)
Channel X	+ Input	200000	200000	0.00
Channel X	+ Input	20000	20003.91	0.03
Channel X	- Input	20000	-20002.26	0.01
Channel Y	+ Input	200000	200000	0.00
Channel Y	+ Input	20000	20004.30	0.02
Channel Y	- Input	20000	-20001.84	0.01
Channel Z	+ Input	200000	200000.6	0.00
Channel Z	+ Input	20000	20002.05	0.01
Channel Z	- Input	20000	-20003.32	0.02

Low Range		Input (μ V)	Reading (µ V)	Error (%)
Channel X	+ Input	2000	1999.9	0.00
Channel X	+ Input	200	199.61	-0.19
Channel X	- Input	200	-200.68	0.36
Channel Y	+ Input	2000	1999.9	0.00
Channel Y	+ Input	200	199.40	-0.29
Channel Y	- Input	200	-200.46	0.23
Channel Z	+ Input	2000	2000	0.00
Channel Z	+ Input	200	199.33	-0.34
Channel Z	- Input	200	-201.29	0.66

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µ V)	Low Range Average Reading (µ V)
Channel X	200	3.40	3.47
	- 200	-2.47	-3.10
Channel Y	200	0.15	-0.51
	- 200	-0.60	-1.12
Channel Z	200	-9.89	-10.17
	- 200	7.71	8.15

Certificate No: DAE4-1226_Jun11 Page 4 of 5

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µ V)	Channel Y (µ V)	Channel Z (µ V)
Channel X	200	-	2.59	-0.31
Channel Y	200	0.57	-	2.47
Channel Z	200	-1.89	0.23	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16128	16441
Channel Y	15957	16202
Channel Z	15979	16032

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10M Ω

	Average (µ V)	min. Offset (μ V)	max. Offset (μV)	Std. Deviation(µ V)
Channel X	0.57	-1.05	2.02	0.41
Channel Y	-1.02	-1.96	-0.02	0.39
Channel Z	1.15	-0.07	1.94	0.34

6. Input Offset Current

Nominal Input Circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	200.0
Channel Y	0.2000	200.0
Channel Z	0.2000	200.0

Certificate No: DAE4-1226_Jun11 Page 5 of 5

ANNEX I: D1950V3 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Tejet (Auden)

Certificate No: D1950V3-1139_Jun11

Accreditation No.: SCS 108

bject	D1950V3 - SN110	39	
falibration procedure(s)	QA CAL-05.v8 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
alibration date:	June 17, 2011		
		robability are given on the following pages an y facility: environment temperature $(22 \pm 3)^{\circ}$	
alibration Equipment used (M&			
alibration Equipment used (M&		Cal Date (Corlificate No.)	Scheduled Calibration
alibration Equipment used (M&	TE critical for calibration)		Scheduled Calibration Oct-11
ilibration Equipment used (M& mary Standards wer meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration Oct-11 Oct-11
ilibration Equipment used (M& imary Standards ower meter EPM-442A ower sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11 Oct-11 Apr-12
illibration Equipment used (M& imary Standards ower meter EPM-442A ower sensor HP 8481A oterence 20 dB Attenuator	TE critical for calibration) 1D # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
imary Standards wer meter EPM-442A wer sensor HP 8481A eference 20 dB Attenuator upe-N mismatch combination	TE critical for calibration) 1D # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
dibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 26 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	TE critical for calibration) 1D # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
silibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eterence 20 dB Attenuator ype-N mismatch combination eterence Probe ES3DV3 AE4	TE critical for calibration) 1D # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eterance 20 dB Attenuator ype-N mismatch combination eterance Probe ES3DV3 AE4	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047,2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Apr-12 Jun-12
silibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eterence 20 dB Attenuator ype-N mismatch combination eterence Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047,2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Corlificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. DAE4-601_Jun11) Check Date (in house)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
	TE critical for calibration) ID # GB97480704 US37292783 SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11
rimary Standards rower meter EPM-442A rower sensor HP 8481A reference 20 dB Attenuator ype-N mismatch combination reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: \$5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 \$4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Juni-11 (No. DAE4-601_Juni1) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination telerence Probe ES3DV3 iAE4 econdary Standards tower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Jun-11 (No. DAE4-601_Jun11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
rimary Standards ower meter EPM-442A ower sensor HP 8481A leterance 20 dB Attenuator ype-N mismatch combination teterance Probe ES3DV3 bAE4 Gecondary Standards Ower sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: \$5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 \$4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 8-Juni-11 (No. DAE4-601_Juni1) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jun-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D1950V3-1139_Jun11

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1950V3-1139_Jun11

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.6.2
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy , $dz = 5 mm$	
1950 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

ite rollowing parameters and a second	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22,0 ± 0.2) °C	39.9 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	41.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.3 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

te following parameters and calculations were approximately	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.49 mho/m ± 6 %
Body TSI, temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.75 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

Certificate No: D1950V3-1139_Jun11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 3.0 jΩ
Return Loss	- 30.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 3.0 JΩ	
Return Loss	- 26.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

SPEAG	
June 04, 2009	

DASY5 Validation Report for Head TSL

Date: 17.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN1139

Communication System: CW; Frequency: 1950 MHz

Medium: HSL BB1.9

Medium parameters used: f = 1950 MHz; $\sigma = 1.34$ mho/m; $\epsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.86, 4.86, 4.86); Calibrated: 29.04.2011

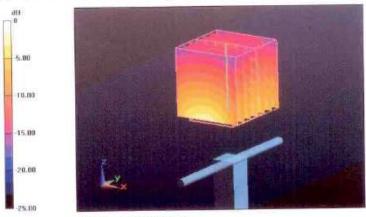
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

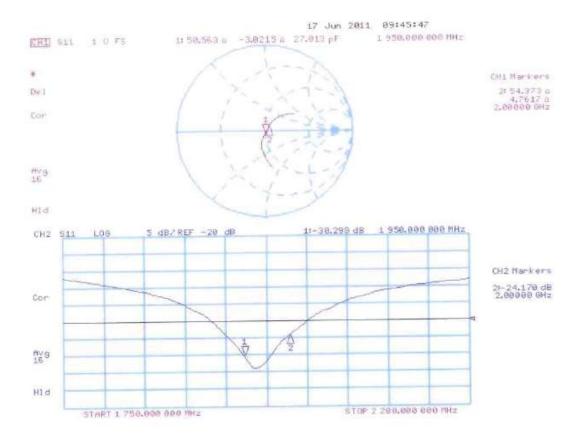
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99,975 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.741 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.27 mW/g


Maximum value of SAR (measured) = 12,442 mW/g

0 dB = 12.440 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.06,2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN1139

Communication System: CW; Frequency: 1950 MHz

Medium: MSL BB1.9

Medium parameters used: f = 1950 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.73, 4.73, 4.73); Calibrated: 29.04.2011

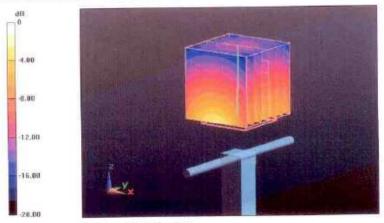
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

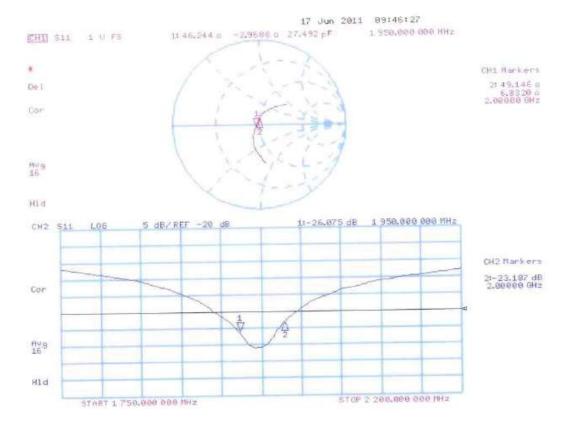
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

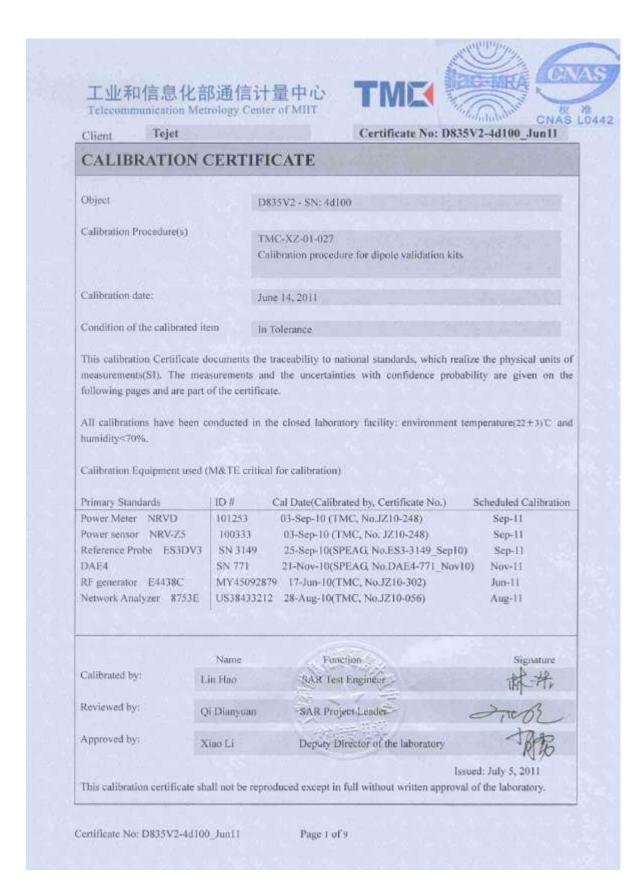
Reference Value = 94.484 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.095 W/kg

SAR(1 g) = 9.75 mW/g; SAR(10 g) = 5.14 mW/g


Maximum value of SAR (measured) = 12.262 mW/g

0 dB = 12.260 mW/g



Impedance Measurement Plot for Body TSL

ANNEX J: D835V2 Calibration Certificate

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d100_Jun11 Page 2 of 9

Measurement Conditions

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		***

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 mW / g
SAR normalized	normalized to 1W	9.48 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.53 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.14 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d100_Jun11 Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6%	1.00mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C	Section 1	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	9.80 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.47 mW /g ± 17.0 % (k=2)

SAR averaged over 10 $ cm^3 $ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.59 mW / g
SAR normalized	normalized to 1W	6.36 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.21 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d100_Jun11 Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.8Ω + 0.22 jΩ	
Return Loss	- 32.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9Ω + 3.6 jΩ	
Return Loss	- 24.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	2.983 ns
	522 (CO. 10)

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 9, 2010

Certificate No: D835V2-4d100_Jun11 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 2011-6-14 8:57:36

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d100

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89 \text{ mho/m}$; $\epsilon_{\text{s}} = 41.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

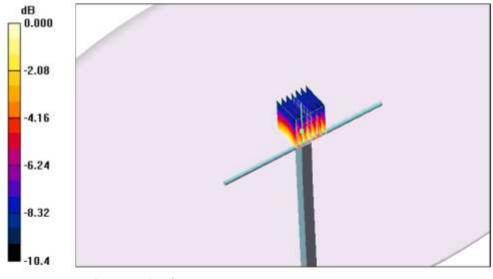
Probe: ES3DV3 - SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.10

Electronics: DAE4 Sn771; Calibration: 21.11.10

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

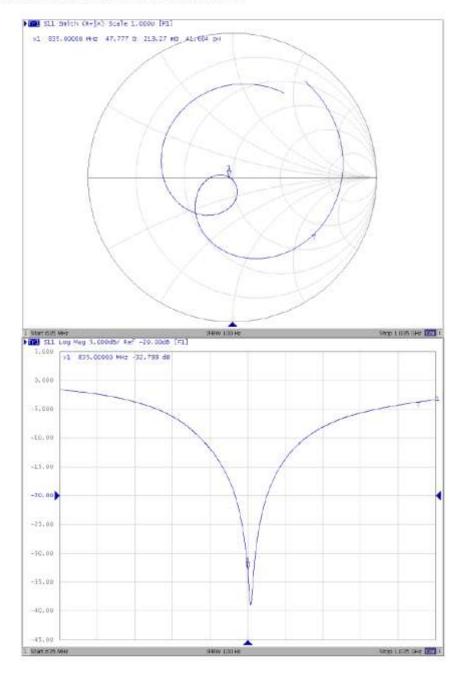

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.1 V/m; Power Drift = 0.096 dB

Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.54 mW/g



0 dB = 2.54 mW/g

Certificate No: D835V2-4d100 Jun11 Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d100_Jun11 Page 7 of 9

DASY5 Validation Report for Body TSL

Date/Time: 2011-6-14 9:52:23

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d100 Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Body 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.00 \text{ mho/m}$; $\epsilon_z = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.10

Electronics: DAE4 Sn771; Calibration: 21.11.10

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

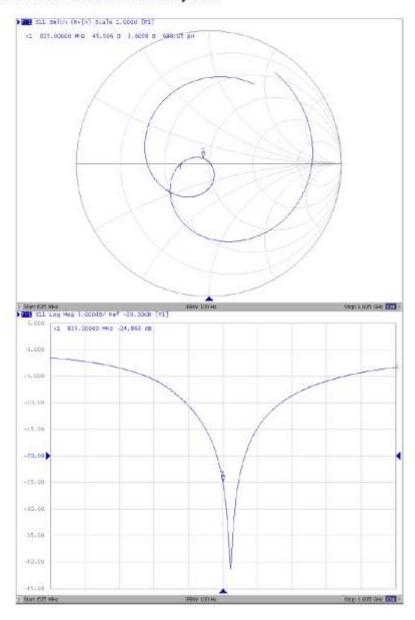
Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.3 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 3.52 W/kg


SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.59 mW/gMaximum value of SAR (measured) = 2.66 mW/g

Certificate No: D835V2-4d100_Jun11 Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d100_Jun11 Page 9 of 9

-----END OF REPORT-----