

Report No.: RZA2010-1540SAR01R2

OET 65 TEST REPORT

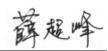
Product Name WCDMA GSM(GPRS) MOBILE PHONE

Model 003Z

FCC ID Q78-003Z

Client ZTE CORPORATION

GENERAL SUMMARY


Product Name	WCDMA GSM(GPRS) MOBILE PHONE	Model	003Z
FCC ID	Q78-003Z	Report No.	RZA2010-1540SAR01R2
Client	ZTE CORPORATION		
Manufacturer	ZTE CORPORATION		
Reference Standard(s)	IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.		
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: October 27th, 2010		
Comment	The test result only responds to the measured sample.		

Approved by 和伟中

Revised by

凌敏宝

Performed by

Yang Weizhong

Ling Minbao

Xue Chaofeng

Report No.: RZA2010- 1540SAR01R2 Page 3 of 111

TABLE OF CONTENT

1.	Gen	eral Information	. 5
	1.1.	Notes of the Test Report	. 5
	1.2.	Testing Laboratory	. 5
	1.3.	Applicant Information	. 6
	1.4.	Manufacturer Information	. 6
	1.5.	Information of EUT	. 7
	1.6.	The Maximum SAR _{1g} Values and Conducted Power of each tested band	. 9
	1.7.	Test Date	. 9
2.	Ope	erational Conditions during Test	10
	2.1.	General Description of Test Procedures	10
	2.2.	GSM Test Configuration	10
	2.3.	WIFI Test Configuration	11
	2.4.	Test Positions	12
	2.4.	1. Against Phantom Head	12
	2.4.	2. Body Worn Configuration	12
3.	SAF	R Measurements System Configuration	13
	3.1.	SAR Measurement Set-up	13
	3.2.	DASY4 E-field Probe System	14
	3.2.	1. EX3DV4 Probe Specification	14
	3.2.	2. E-field Probe Calibration	15
	3.3.	Other Test Equipment	15
	3.3.	1. Device Holder for Transmitters	15
	3.3.	2. Phantom	16
	3.4.	Scanning Procedure	16
	3.5.	Data Storage and Evaluation	18
	3.5.	1. Data Storage	18
	3.5.	2. Data Evaluation by SEMCAD	18
	3.6.	System Check	21
	3.7.	Equivalent Tissues	22
4.		oratory Environment	23
5.	Cha	racteristics of the Test	23
	5.1.	Applicable Limit Regulations	23
	5.2.	Applicable Measurement Standards	23
6.	Con	ducted Output Power Measurement	24
	6.1.	Summary	
	6.2.	Conducted Power Results	
7.	Test	Results	25
	7.1.	Dielectric Performance	
	7.2.	System Check Results	
	7.3.	Summary of Measurement Results	

	Report No.: RZA2010- 1540SAR01R2 Page 4 of		
	7.3.1. GSM 1900 (GPRS/EGPRS)	2	27
		2	
8.	Measurement Uncertainty	3	32
9.	Main Test Instruments	3	}4
ΑN	INEX A: Test Layout	3	35
ΑN	INEX B: System Check Results	3	38
ΑN	INEX C: Graph Results	4	12
ΑN	INEX D: Probe Calibration Certificate		'2
ΑN	INEX E: D1900V2 Dipole Calibration Certific	ate8	3
ΑN	INEX F: D2450V2 Dipole Calibration Certific	ate9)2
ΑN	INEX G: DAE4 Calibration Certificate	10)1
ΔΝΙ	INEX H. The ELIT Annearances and Test Co	nfiguration 10	۱6

Report No.: RZA2010- 1540SAR01R2 Page 5 of 111

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No.: RZA2010- 1540SAR01R2 Page 6 of 111

1.3. Applicant Information

Company: ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Address:

Guangdong,518057, P.R.China

City: Shenzhen

Postal Code: 518057

Country: P.R. China

Contact: Zhang Min

Telephone: 021-68897541

Fax: 021-50801070

1.4. Manufacturer Information

Company: ZTE CORPORATION

Address: ZTE Plaza, Keji Road South, Hi-Tech Industrial Park,Nanshan District,Shenzhen,

Guangdong, 518057, P.R.China

City: Shenzhen

Postal Code: 518057

Country: P.R.China

Telephone: 021-68897541

Fax: 021-50801070

Report No.: RZA2010- 1540SAR01R2 Page 7 of 111

1.5. Information of EUT

General Information

Device Type :	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		า
Product Name:	WCDMA GSM(GPRS)	MOBILE PHONE	
IMEI:	864927000000975		
Hardware Version:	P729B01		
Software Version:	P729JV0.0.0B03		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Supporting Mode(s):	GSM 900/GSM 1800; GSM 1900; (tested) WCDMA Band I/WCDMA Band VIII; WiFi; (tested) Bluetooth;		
Test Modulation:	(GSM)GMSK;		
Device Class:	В		
	Max Number of Timesl	4	
GPRS Multislot Class(12):	Max Number of Timesl	4	
	Max Total Timeslot	5	
	Max Number of Timeslots in Uplink		4
EGPRS Multislot Class(12):	Max Number of Timesl	4	
	Max Total Timeslot		5
Operating Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)
Operating Frequency Nange(s).	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8
Test Channel(Low - Middle - High):): 512 - 661 - 810 (GSM 1900) (tested)		
Power Class:	GSM 1900: 1, tested with power level 0		

Report No.: RZA2010- 1540SAR01R2 Page 8 of 111

Auxiliary Equipment Details

AE1:Battery

Model: Li3712T42P3h444865

Manufacturer: ZTE CORPORATION

SN: 90021005300003676

Equipment Under Test (EUT) is a model of WCDMA GSM(GPRS) MOBILE PHONE. The detail about Mobile phone and Lithium Battery is in chapter 1.5 in this report. SAR is tested for GSM 1900 and WiFi. The EUT has a GSM/WCDMA antenna that is used for Tx/Rx, and the other is BT/WiFi antenna that can be used for Tx/Rx.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

Report No.: RZA2010- 1540SAR01R2 Page 9 of 111

1.6. The Maximum SAR_{1g} Values and Conducted Power of each tested band

Head Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
GSM 1900	810	Left, Cheek	1.120
WiFi	6	Right, Cheek	0.066

Body Worn Configuration

Mode	Channel	Separation distance	SAR _{1g} (W/kg)
2-slots GSM 1900	810	15mm	0.556
WiFi	11	15mm	0.034

Maximum Power

Band		Max Conducted Power	Max Average Power
		(dBm)	(dBm)
	GSM	29.58	20.55
GSM 1900	GPRS,2 time-slots	27.43	21.41
	EGPRS,2 time-slots	27.41	21.39

Note: The detail Power refer to Table 6 (Power Measurement Results).

1.7. Test Date

The test is performed from October 17, 2010 to October 18, 2010.

Report No.: RZA2010- 1540SAR01R2 Page 10 of 111

2. Operational Conditions during Test

2.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. GSM Test Configuration

SAR tests for GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "0" in SAR of GSM 1900. The test in the band of GSM 1900 are performed in the mode of speech transfer function and GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. Since the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 1: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink	Permissible nominal reduction of maximum
assignment	output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

Report No.: RZA2010- 1540SAR01R2 Page 11 of 111

2.3. WIFI Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11;however,if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the "default test channels", the maximum channel should be tested instead of an adjacent "default test channels", these are referred to as the "required test channels" and are illustrated in table 2.

Table 2: "Default Test Channels"

			Turka	"Default Test Channels"		
Mode	GHz	Channel	Turbo Channel	15.	247	UNII
		Chamilei	802.11b	802.11g	UNII	
	2.412	1#		√	*	
802.11b/g	2.437	6	6	√	*	
	2.462	11#		√	*	

Note: #=when output power is reduced for channel 1 and /or 11to meet restricted band requirements the highest out put channels closet to each of these channels should be tested.

 $[\]sqrt{=}$ "default test channels"

^{* =}possible 802.11g channels with maximum average output 0.25dB>=the "default test channels"

Report No.: RZA2010- 1540SAR01R2 Page 12 of 111

2.4. Test Positions

2.4.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

2.4.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

Report No.: RZA2010- 1540SAR01R2 Page 13 of 111

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An
 arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

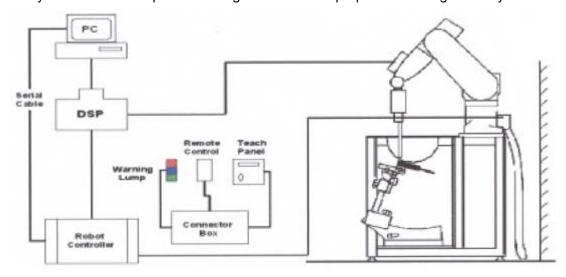


Figure 1 SAR Lab Test Measurement Set-up

Report No.: RZA2010- 1540SAR01R2 Page 14 of 111

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity \pm 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient

fields).

Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RZA2010- 1540SAR01R2 Page 15 of 111

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material

has been reduced in the closest vicinity of the fidevice, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RZA2010- 1540SAR01R2 Page 16 of 111

3.3.2. **Phantom**

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Aailable Special

Figure 5 Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Report No.: RZA2010- 1540SAR01R2 Page 17 of 111

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Report No.: RZA2010- 1540SAR01R2 Page 18 of 111

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

 $\begin{array}{ll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{Dcp}_i \end{array}$

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RZA2010- 1540SAR01R2 Page 19 of 111

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot) / (\cdot 1000)$$

Report No.: RZA2010- 1540SAR01R2 Page 20 of 111

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

Report No.: RZA2010- 1540SAR01R2 Page 21 of 111

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 9 and table 10.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

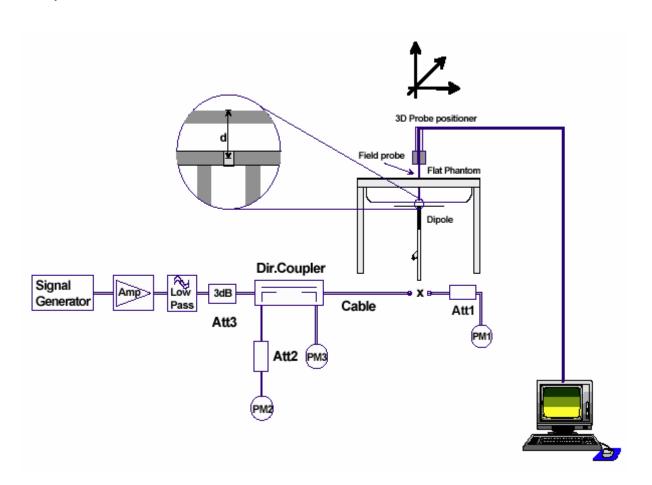


Figure 6 System Check Set-up

Report No.: RZA2010- 1540SAR01R2 Page 22 of 111

3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 3: Composition of the Head Tissue Equivalent Matter

MIXTURE% FREQUENCY(Brain) 1900MHz		
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40	

MIXTURE%	FREQUENCY(Brain) 2450MHz	
Water	62.7	
Glycol	36.8	
Salt	0.5	
Dielectric Parameters	5-2450MH	
Target Value	f=2450MHz ε=39.20 σ=1.80	

Table 4: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY (Body) 1900MHz	
Water	69.91	
Glycol monobutyl	29.96	
Salt	0.13	
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52	

MIXTURE%	FREQUENCY(Body) 2450MHz			
Water	73.2			
Glycol	26.7			
Salt	0.1			
Dielectric Parameters				
Target Value	f=2450MHz ε=52.70 σ=1.95			

Report No.: RZA2010- 1540SAR01R2 Page 23 of 111

4. Laboratory Environment

Table 5: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C				
Relative humidity	Min. = 30%, Max. = 70%				
Ground system resistance	< 0.5 Ω				
Ambient noise is checked and found very low and in compliance with requirement of standards.					
Reflection of surrounding objects is minimized and in compliance with requirement of standards.					

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

Report No.: RZA2010- 1540SAR01R2 Page 24 of 111

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted power.

Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 6: Conducted Power Measurement Results

		Conduc	Conducted Power (dBm)			Aver	age power(je power(dBm)	
GSI	GSM 1900		Channel	Channel		Channel	Channel	Channel	
		512	661	810		512	661	810	
GSM	Test Results	29.58	29.44	29.3	-9.03dB	20.55	20.41	20.27	
	1TXslot	29.54	29.48	29.3	-9.03dB	20.51	20.45	20.27	
GPRS	2TXslots	27.43	27.43	27.25	-6.02dB	21.41	21.41	21.23	
(GMSK)	3TXslots	25.5	25.56	25.39	-4.26dB	21.24	21.30	21.13	
	4TXslots	24.36	24.39	24.22	-3.01dB	21.35	21.38	21.21	
	1TXslot	29.51	29.44	29.27	-9.03dB	20.48	20.41	20.24	
EGPRS	2TXslots	27.41	27.4	27.23	-6.02dB	21.39	21.38	21.21	
(GMSK)	3TXslots	25.5	25.53	25.35	-4.26dB	21.24	21.27	21.09	
	4TXslots	24.34	24.36	24.2	-3.01dB	21.33	21.35	21.19	

Note:

1) Division Factors

To average the power, the division factor is as follows:

1 TX- slot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2 TX- slot = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3TX- slot = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4 TX- slot = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

Report No.: RZA2010- 1540SAR01R2 Page 25 of 111

7. Test Results

7.1. Dielectric Performance

Table 7: Dielectric Performance of Head Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp	
rrequericy	Description	ε _r	σ(s/m)	${\mathfrak C}$
	Target value	40.00	1.40	,
1900MHz	±5% window	38.00 — 42.00	1.33 — 1.47	1
(head)	Measurement value	40.39	1.40	21.5
	2010-10-17	40.39	1.40	21.3
	Target value	39.20	1.80	,
2450MHz	±5% window	37.24 — 41.16	1.71 — 1.89	/
(head)	Measurement value	20.04		21.5
	2010-10-18	38.81	1.79	21.5

Table 8: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp	
ricquericy	Description	ε _r	σ(s/m)	${\mathbb C}$
	Target value	53.30	1.52	,
1900MHz	±5% window	50.64 — 55.97	1.44 — 1.60	,
(body)	Measurement value	51.92	1.53	21.5
	2010-10-17	51.92	1.55	21.3
	Target value	52.70	1.95	,
2450MHz	±5% window	50.07 — 55.34	1.85 — 2.05	,
(body)	Measurement value	51.83	1.92	21.5
	2010-10-18	01.00	1.92	21.5

Report No.: RZA2010- 1540SAR01R2 Page 26 of 111

7.2. System Check Results

Table 9: System Check for Head tissue simulation liquid

Frequency	Description	SAR	Dielectric Parameters		Temp	
		10g	1g	ε _r	σ(s/m)	$^{\circ}\!\mathbb{C}$
	Recommended result	5.22	10	39.5	1.44	,
1900MHz	±10% window	4.70 — 5.74	9.00 — 11.00	39.5	1.44	,
190011112	Measurement value	5.34	10.3	40.39	1.40	21.5
	2010-10-17	3.34				21.5
	Recommended result	6.24	13.3	38.7	1.77	1
2450 MHz	±10% window	5.62 — 6.86	11.97—14.63	30.7		7
	Measurement value 2010-10-18	6.50	14.05	38.81	1.79	21.5

Note: 1. the graph results see ANNEX B.

Table 10: System Check for Body tissue simulation liquid

Frequency	Description	SAR	Dielectric Parameters		Temp	
		10g	1g	ε _r	σ(s/m)	$^{\circ}$
	Recommended result	5.52	10.3	53.5	1.54	,
1900 MHz	±10% window	4.97 — 6.07 9.27 — 11.33		55.5	1.54	,
1900 141112	Measurement value	5.34	4 10.18	51.92	1.53	21.5
	2010-10-17	5.54				21.5
	Recommended result	5.97	13		2.01	,
2450 MHz	±10% window	5.37 — 6.57	11.7—14.3	51.8	2.01	,
2450 WITZ	Measurement value	6.46	14.00	51.83	1.92	21.5
	2010-10-18	0.40	14.00			21.3

Note: 1. The graph results see ANNEX B.

^{2.} Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

^{2.} Target Values used derive from the calibration certificate and 250 mW is used as feeding power to the Calibrated dipole.

Report No.: RZA2010- 1540SAR01R2 Page 27 of 111

7.3. Summary of Measurement Results

7.3.1. GSM 1900 (GPRS/EGPRS)

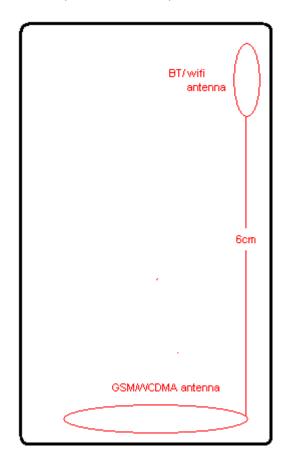
Table 11: SAR Values [GSM 1900 (GPRS/EGPRS)]

Limit of SAR		10 g Average	1 g Average	Power Drift					
Limit c	Limit of SAK			1.6 W/kg	\pm 0.21 dB	Graph			
Test (Case		Measuremen	t Result(W/kg)	Power Drift	Results			
Different Test Pos	sition	Channel	10 g Average	1 g Average	(dB)				
	Test Position of Head								
		High	0.613	1.120	-0.010	Figure 11			
Left Hand, Touch Ch	eek	Middle	0.441	0.792	-0.075	Figure 12			
		Low	0.449	0.814	0.108	Figure 13			
Left Hand, Tilt 15 De	gree	Middle	0.138	0.220	-0.004	Figure 14			
Right Hand, Touch C	heek	Middle	0.286	0.455	-0.061	Figure 15			
Right Hand, Tilt 15 D	egree	Middle	0.138	0.233	0.077	Figure 16			
		Test Position	on of Body with GS	SM (Distance 15mm))				
Towards Phant	om	Middle	0.195	0.336	-0.061	Figure 17			
	-	Test Positio	n of Body with GP	RS (Distance 15mm	1)				
	2UP	Middle	0.237	0.409	0.037	Figure 18			
Towards Phantom	3UP	Middle	0.219	0.380	0.163	Figure 19			
	4UP	Middle	0.216	0.374	-0.061	Figure 20			
		High	0.327	0.556	-0.024	Figure 21			
Towards Ground	2UP	Middle	0.230(max.cube)	0.417(max.cube)	0.019	Figure 22			
		Low	0.204	0.350	0.008	Figure 23			
Worst Case Position of Body with Earphone (GSM, Distance 15mm)									
Towards Ground		High	0.282	0.477	-0.006	Figure 24			
	Worst Ca	ase Position	of Body with EGF	PRS (GMSK, Distanc	ce 15mm)				
Towards Ground	2Up	High	0.324	0.548	0.006	Figure 25			

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
- 4. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 5. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).

Report No.: RZA2010- 1540SAR01R2 Page 28 of 111


Table 12: Extrapolated SAR Values of highest measured SAR [GSM 1900 (GPRS/EGPRS)]

Different Test Position	Channel	Conducted Power(dBm)	1g Average (W/kg)	Tune-up procedures	1g Average Limit 1.6 W/kg		
Different lest Position	Chamer	Measurement Result		MAX Power(dBm)	Extrapolated Result (W/kg)		
GSM							
Left Hand, Touch Cheek	High	29.30	1.120	30	1.316		
		GPRS(2	UP)				
Towards Ground	High	27.25	0.556	28	0.661		
EGPRS(2UP)							
Towards Ground	High	27.23	0.548	28	0.654		

Report No.: RZA2010- 1540SAR01R2 Page 29 of 111

7.3.2. BT/WIFI function

The distance between BT/WIFI antenna and main antenna is >5cm. The location of the antennas inside mobile phone is shown below (refer to Annex H):

The output power of BT antenna is as following:

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz
GFSK Test result (dBm)	-3.85	-3.06	-2.97
EDR2M-4_DQPSK Test result (dBm)	-3.47	-2.76	-2.56
EDR3M-8DPSK Test result (dBm)	-3.66	-2.89	-2.74

The output power of WIFI antenna is as following:

Mode	Data	rate(Mbps)	AV Power (dBm)			
wode	(Channel	1	6	11	
	1	Before	13.88	13.45	12.62	
	'	After	13.87	13.44	12.61	
	2	Before	13.83	13.43	12.54	
11b	2	After	13.82	13.42	12.53	
HU	5.5	Before	13.81	13.44	12.56	
	5.5	After	13.80	13.43	12.55	
	11	Before	13.75	13.41	12.54	
	11	After	13.74	13.40	12.53	

Report No.: RZA2010- 1540SAR01R2 Page 30 of 111

	6	Before	13.25	12.95	11.98
		After	13.24	12.94	11.97
	9	Before	13.18	12.87	11.98
	9	After	13.17	12.86	11.97
	12	Before	13.16	12.82	11.96
	12	After	13.15	12.81	11.95
	18	Before	13.11	12.84	12.01
11g	10	After	13.10	12.83	12.00
119	24	Before	13.23	12.88	11.90
		After	13.22	12.87	11.91
	36	Before	13.10	12.72	11.85
	30	After	13.11	12.71	11.84
	40	Before	13.08	12.70	11.82
	48	After	13.07	12.71	11.81
	ΕΛ	Before	13.02	12.63	11.76
	54	After	13.01	12.62	11.75

Stand-alone SAR

According to the output power measurement result and the distance between BT/WIFI antenna and main antenna we can draw the conclusion that:

stand-alone SAR are not required for BT, because the output power of BT transmitter is \leq 2P_{Ref} and its antenna is >5cm from other antenna.

stand-alone SAR are required for WIFI, because the output power of WIFI transmitter is ≥2P_{Ref} and its antenna is >5cm from other antenna;

Report No.: RZA2010- 1540SAR01R2 Page 31 of 111

Table 13: SAR Values (802.11b/802.11g)

Limit of SAR (W/kg	g)	10 g Average	1g Average	Power Drift (dB)						
	2.0	1.6	± 0.21	Graph						
	Channel	Measurement	Power	Results						
Different Test Position		10 g Average	1g Average	Drift (dB)						
Test position of Head(802.11b)										
Left hand, Touch cheek	Middle	0.025	0.047	-0.122	Figure 26					
Left hand, Tilt 15 Degree	Middle	0.023	0.045	-0.021	Figure 27					
Right hand, Touch cheek	High	0.026	0.055	-0.013	Figure 28					
	Middle	0.032	0.066	-0.058	Figure 29					
	Low	0.025	0.053	0.101	Figure 30					
Right hand, Tilt 15 Degree	Middle	0.022	0.042	-0.039	Figure 31					
T€	est position	of Body (802.11b	Distance 15mm)							
	High	0.019	0.034	-0.028	Figure 32					
Towards Ground	Middle	0.019	0.033	0.005	Figure 33					
	Low	0.018	0.032	-0.002	Figure 34					
Towards phantom	Middle	0.012	0.021	0.047	Figure 35					
Worst case position of Body with Earphone (802.11b Distance 15mm)										
Towards Ground	High	0.013	0.022	-0.075	Figure 36					
Worst case position of 802.11b with 802.11g(Distance 15mm)										
Right hand, Touch cheek	Middle	0.029	0.060	0.197	Figure 37					

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Upper and lower frequencies were measured at the worst position.
- 3. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

Simultaneous SAR

About BT and GSM/WCDMA Antenna, stand-alone SAR are not required for BT, so Simultaneous SAR are not required for BT,

About wifi and GSM/WCDMA Antenna, the output power of WIFI antenna is >5cm from other antenna. (main antenna SAR $_{MAX}$)1.12+ (wifi antenna SAR $_{MAX}$)0.066=1.186<1.6, so Simultaneous SAR are not required for wifi,

About BT and WiFi can't simultaneous transmit.

Report No.: RZA2010- 1540SAR01R2 Page 32 of 111

8. Measurement Uncertainty

No.	source	Туре	Uncertaint y Value (%)	Probability Distributio n	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom	
1	System repetivity	Α	0.5	N	1	1	0.5	9	
Measurement system									
2	probe calibration	В	5.9	N	1	1	5.9	∞	
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞	
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞	
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞	
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞	
9	readout Electronics	В	1.0	N	1	1	1.0	∞	
10	response time	В	0	R	$\sqrt{3}$	1	0	∞	
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞	
12	noise	В	0	R	$\sqrt{3}$	1	0	∞	
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞	
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞	
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞	
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞	
Test sample Related									
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	5	
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5	
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞	
Physical parameter									

Report No.: RZA2010- 1540SAR01R2 Page 33 of 111

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	80
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	∞
Combined standard uncertainty		$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$				12.0		
Expanded uncertainty (confidence interval of 95 %)		и	$u_c = 2u_c$	N	k=	2	24.0	

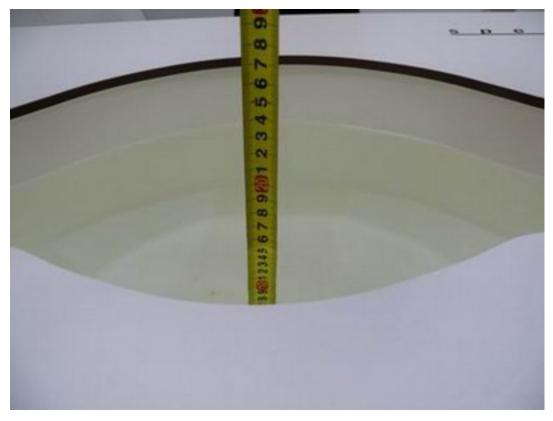
Report No.: RZA2010- 1540SAR01R2 Page 34 of 111

9. Main Test Instruments

Table 14: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2010	One year	
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested		
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	10 One year	
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year	
05	Signal Generator	HP 8341B	2730A00804	September 13, 2010	One year	
06	Amplifier	IXA-020	0401	No Calibration Requested		
07	BTS	E5515C	MY48360988	December 4, 2009	One year	
08	E-field Probe	EX3DV4	3661	December 30, 2009	One year	
09	DAE	DAE4	871	November 11, 2009	One year	
10	Validation Kit 1900MHz	D1900V2	5d018	June 15, 2010	One year	
11	Validation Kit 2450MHz	D2450V2	712	February 19, 2010	One year	

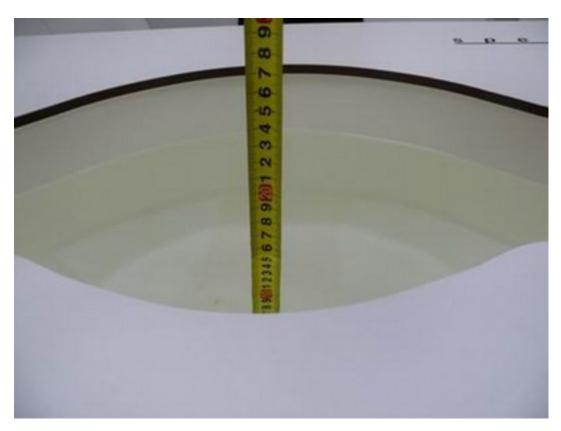
*****END OF REPORT BODY*****


Report No.: RZA2010- 1540SAR01R2 Page 35 of 111

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Report No.: RZA2010- 1540SAR01R2 Page 36 of 111



Picture 2: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 3: liquid depth in the head Phantom (1900 MHz, 15.2cm depth)

Report No.: RZA2010- 1540SAR01R2 Page 37 of 111

Picture 4: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

Picture 5: Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

Report No.: RZA2010- 1540SAR01R2 Page 38 of 111

ANNEX B: System Check Results

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Date/Time: 10/17/2010 6:50:34 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.40 mho/m; ε_r = 40.39; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.0 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 11.5 mW/g

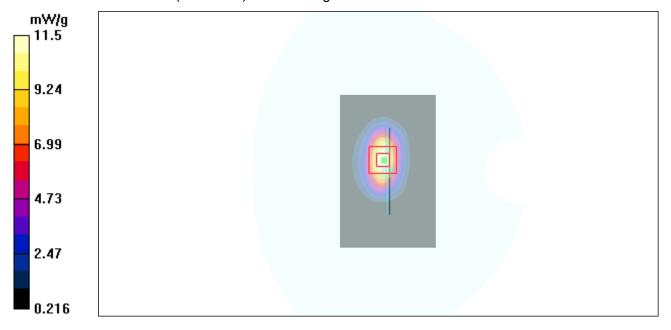


Figure 7 System Performance Check 1900MHz 250mW

Report No.: RZA2010- 1540SAR01R2 Page 39 of 111

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d018

Date/Time: 10/17/2010 2:02:19 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ε_r = 51.92; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 10.18 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 11 mW/g

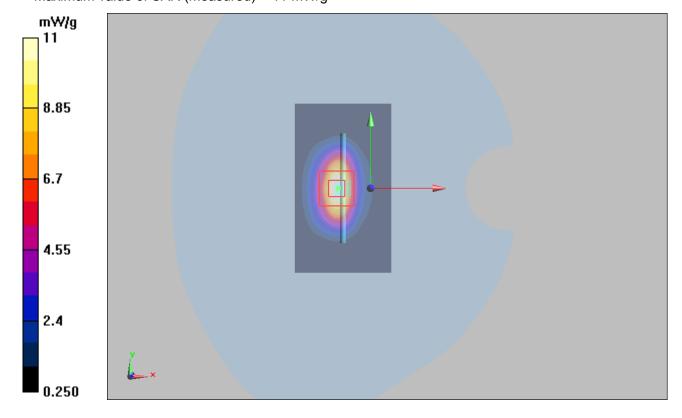


Figure 8 System Performance Check 1900MHz 250mW

Report No.: RZA2010- 1540SAR01R2 Page 40 of 111

System Performance Check at 2450 MHz Head TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Date/Time: 10/18/2010 9:13:36 AM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.79 \text{ mho/m}$; $\varepsilon_r = 38.81$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 21.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 67.0 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 14.05 mW/g; SAR(10 g) = 6.5 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

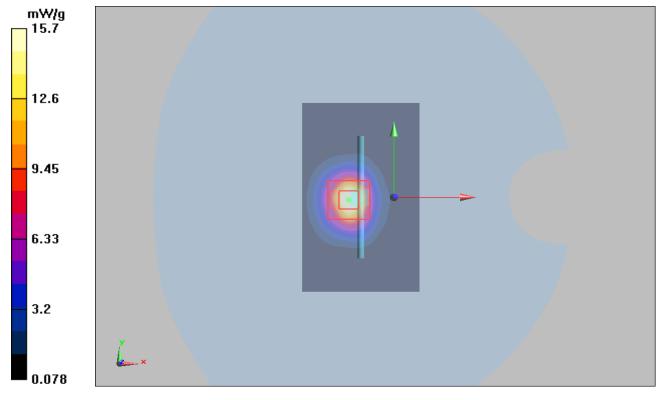


Figure 9 System Performance Check 2450MHz 250mW

Report No.: RZA2010- 1540SAR01R2 Page 41 of 111

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Date/Time: 10/18/2010 10:43:36 AM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_r = 51.83$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

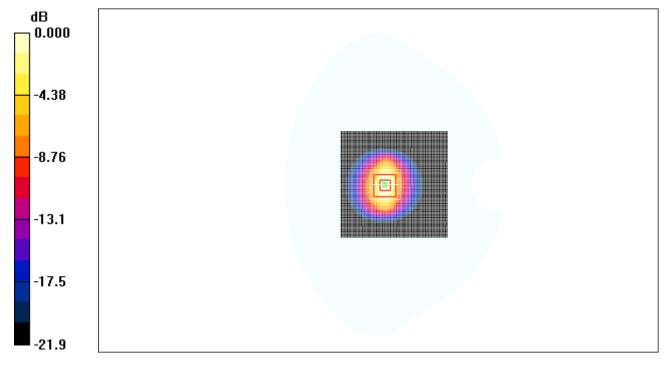
Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 21.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.0 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.46 mW/g Maximum value of SAR (measured) = 19.8 mW/g

0 dB = 19.8 mW/g

Figure 10 System Performance Check 2450MHz 250mW

Report No.: RZA2010- 1540SAR01R2 Page 42 of 111

ANNEX C: Graph Results

GSM 1900 Left Cheek High

Date/Time: 10/17/2010 9:34:54 PM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

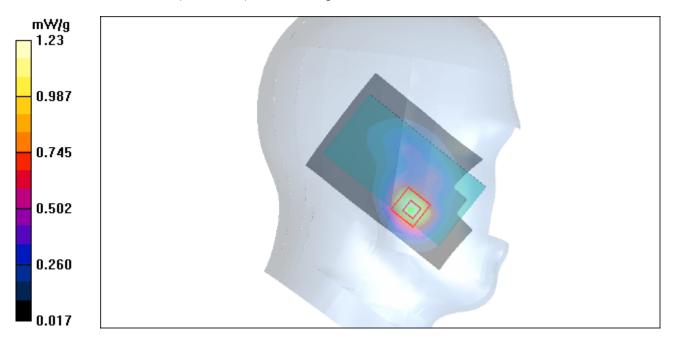
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.21 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.90 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.613 mW/g

Maximum value of SAR (measured) = 1.23 mW/g



Figure 11 Left Hand Touch Cheek GSM 1900 Channel 810

Report No.: RZA2010- 1540SAR01R2 Page 44 of 111

GSM 1900 Left Cheek Middle

Date/Time: 10/17/2010 8:06:24 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.867 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.10 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.792 mW/g; SAR(10 g) = 0.441 mW/g

Maximum value of SAR (measured) = 0.852 mW/g

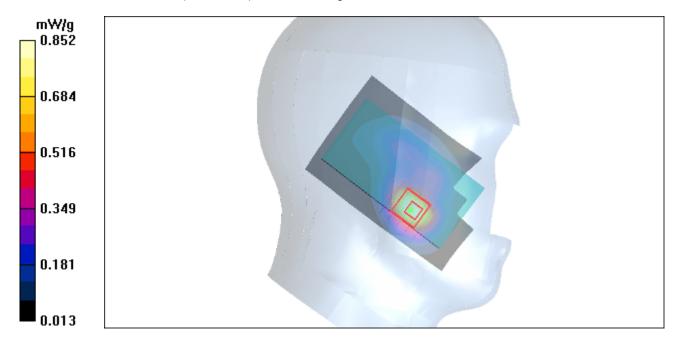


Figure 12 Left Hand Touch Cheek GSM 1900 Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 45 of 111

GSM 1900 Left Cheek Low

Date/Time: 10/17/2010 9:20:50 PM

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36 \text{ mho/m}$; $\epsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.874 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = 0.108 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.814 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.895 mW/g

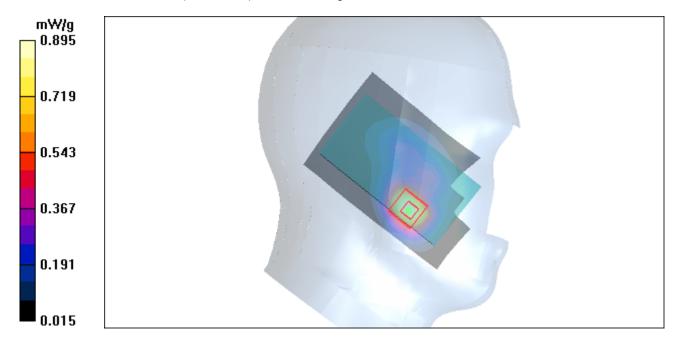


Figure 13 Left Hand Touch Cheek GSM 1900 Channel 512

Report No.: RZA2010- 1540SAR01R2 Page 46 of 111

GSM 1900 Left Tilt Middle

Date/Time: 10/17/2010 8:21:28 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.267 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.237 mW/g

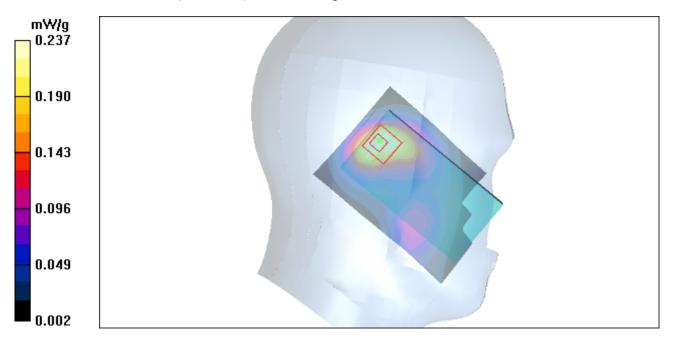


Figure 14 Left Hand Tilt 15° GSM 1900 Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 47 of 111

GSM 1900 Right Cheek Middle

Date/Time: 10/17/2010 8:47:44 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.504 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.87 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.455 mW/g; SAR(10 g) = 0.286 mW/g

Maximum value of SAR (measured) = 0.487 mW/g

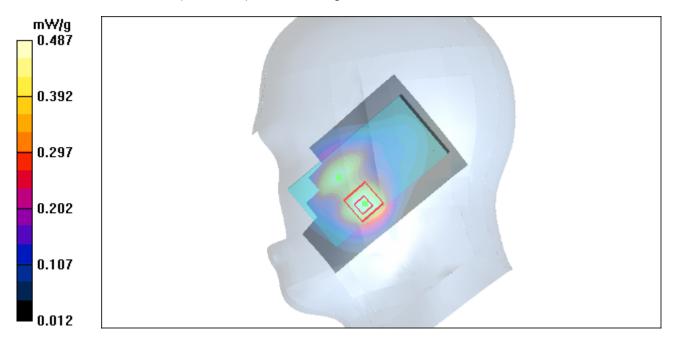


Figure 15 Right Hand Touch Cheek GSM 1900 Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 48 of 111

GSM 1900 Right Tilt Middle

Date/Time: 10/17/2010 9:03:12 PM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.77, 7.77, 7.77); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.269 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.363 W/kg

SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.255 mW/g

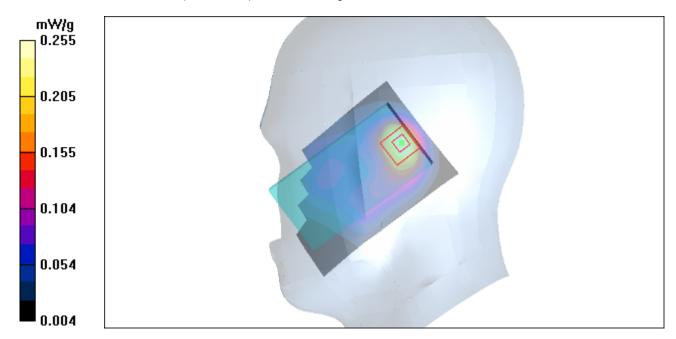


Figure 16 Right Hand Tilt 15° GSM 1900 Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 49 of 111

GSM 1900 Towards Phantom Middle

Date/Time: 10/17/2010 3:22:51 AM

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.372 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.17 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.195 mW/g

Maximum value of SAR (measured) = 0.365 mW/g

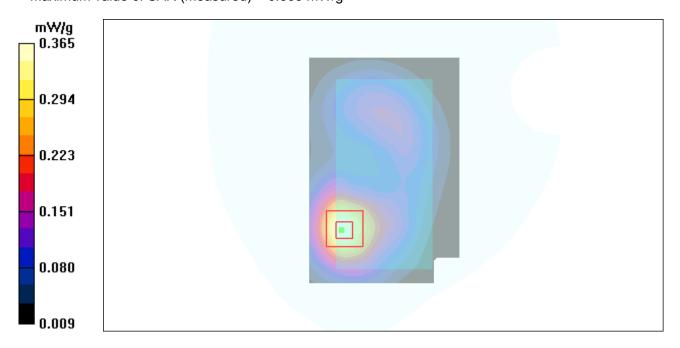


Figure 17 Body, Towards Phantom, GSM 1900 Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 50 of 111

GSM 1900 GPRS (2Up) Towards Phantom Middle

Date/Time: 10/17/2010 3:56:19 AM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.451 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.64 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.445 mW/g

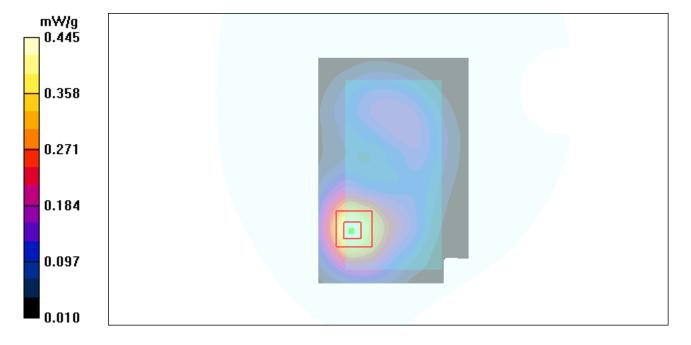


Figure 18 Body, Towards Phantom, GSM 1900 GPRS (2Up) Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 51 of 111

GSM 1900 GPRS (3Up) Towards Phantom Middle

Date/Time: 10/17/2010 4:12:22 AM

Communication System: PCS 1900+GPRS(3Up); Frequency: 1880 MHz;Duty Cycle: 1:2.767

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.432 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.26 V/m; Power Drift = 0.163 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.219 mW/g

Maximum value of SAR (measured) = 0.418 mW/g

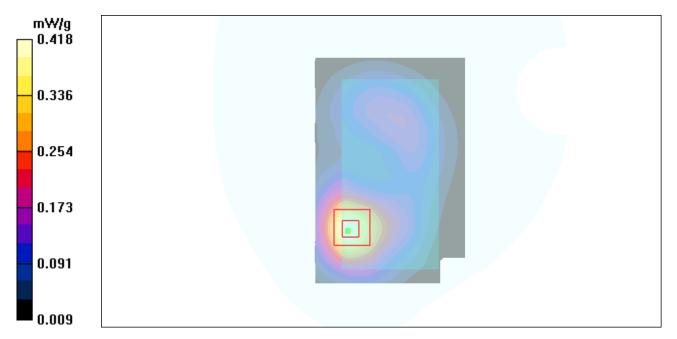


Figure 19 Body, Towards Phantom, GSM 1900 GPRS (3Up) Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 52 of 111

GSM 1900 GPRS (4Up) Towards Phantom Middle

Date/Time: 10/17/2010 4:27:15 AM

Communication System: PCS 1900+GPRS(4Up); Frequency: 1880 MHz; Duty Cycle: 1:2.075

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.437 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.52 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.520 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.216 mW/g

Maximum value of SAR (measured) = 0.424 mW/g

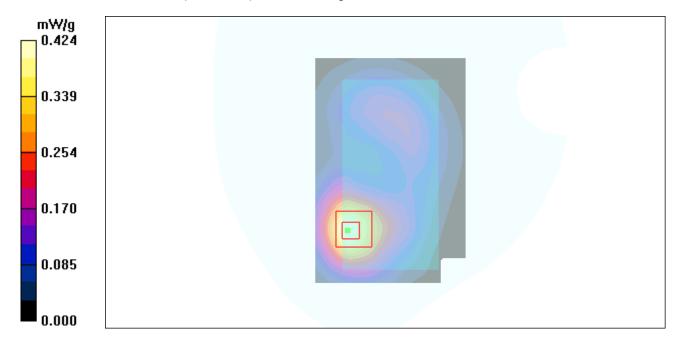


Figure 20 Body, Towards Phantom, GSM 1900 GPRS (4Up) Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 53 of 111

GSM 1900 GPRS (2Up) Towards Ground High

Date/Time: 10/17/2010 5:19:23 AM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1910 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

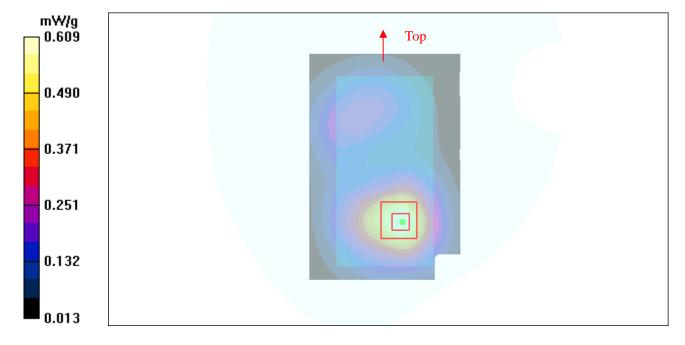
Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.621 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.923 W/kg

SAR(1 g) = 0.556 mW/g; SAR(10 g) = 0.327 mW/g

Maximum value of SAR (measured) = 0.609 mW/g

Report No.: RZA2010- 1540SAR01R2 Page 54 of 111

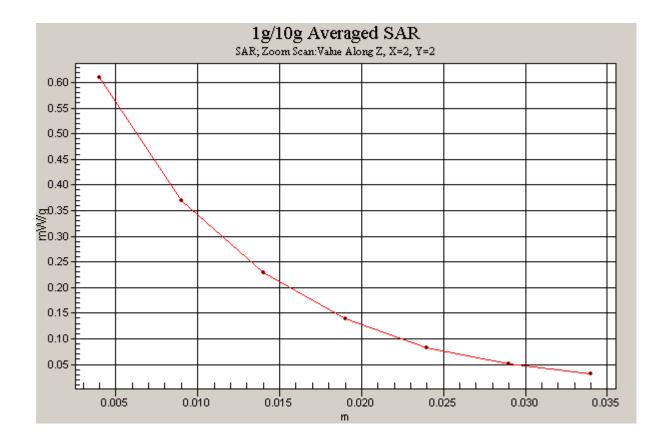


Figure 21 Body, Towards Ground, GSM 1900 GPRS (2Up) Channel 810

Report No.: RZA2010- 1540SAR01R2 Page 55 of 111

GSM 1900 GPRS (2Up) Towards Ground Middle

Date/Time: 10/17/2010 4:45:36 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.15

Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Towards Ground Middle/Area Scan (61x91x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.412 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.82 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.416 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.458 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.82 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.700 W/kg

SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.454 mW/g

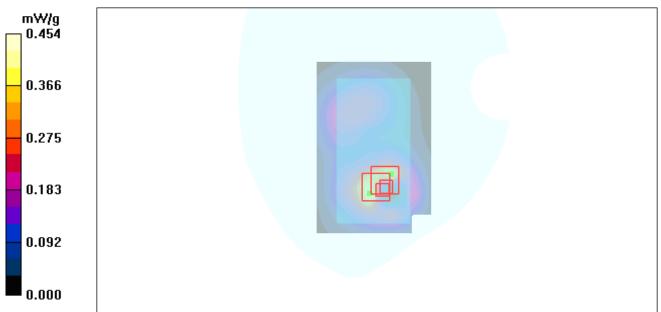


Figure 22 Body, Towards Ground, GSM 1900 GPRS (2Up) Channel 661

Report No.: RZA2010- 1540SAR01R2 Page 56 of 111

GSM 1900 GPRS (2Up) Towards Ground Low

Date/Time: 10/17/2010 5:05:29 AM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.15

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.394 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.16 V/m; Power Drift = 0.008 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.350 mW/g; SAR(10 g) = 0.204 mW/g

Maximum value of SAR (measured) = 0.383 mW/g

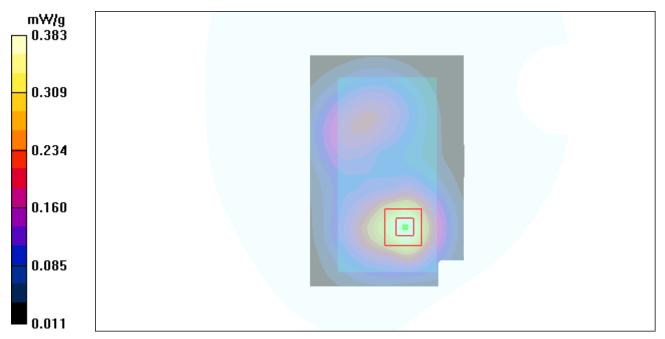


Figure 23 Body, Towards Ground, GSM 1900 GPRS (2Up) Channel 512

Report No.: RZA2010- 1540SAR01R2 Page 57 of 111

GSM 1900 with Earphone Towards Ground High

Date/Time: 10/17/2010 6:12:13 AM

Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.540 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.97 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.779 W/kg

SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.521 mW/g

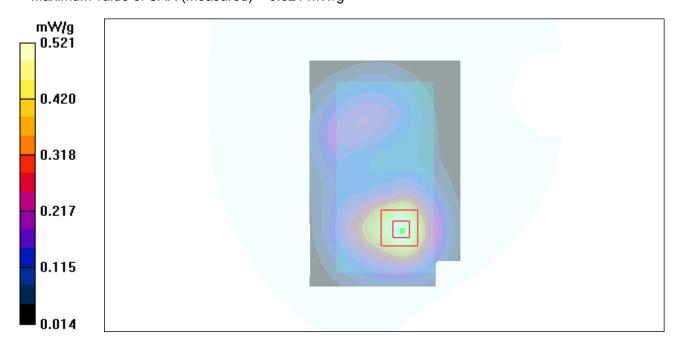


Figure 24 Body with Earphone, Towards Ground, GSM 1900 Channel 810

Report No.: RZA2010- 1540SAR01R2 Page 58 of 111

GSM 1900 EGPRS (2Up) Towards Ground High

Date/Time: 10/17/2010 5:38:18 AM

Communication System: PCS 1900+EGPRS(2Up); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15

Medium parameters used: f = 1910 MHz; σ = 1.54 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.60, 7.60, 7.60); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.617 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.6 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 0.902 W/kg

SAR(1 g) = 0.548 mW/g; SAR(10 g) = 0.324 mW/g

Maximum value of SAR (measured) = 0.598 mW/g

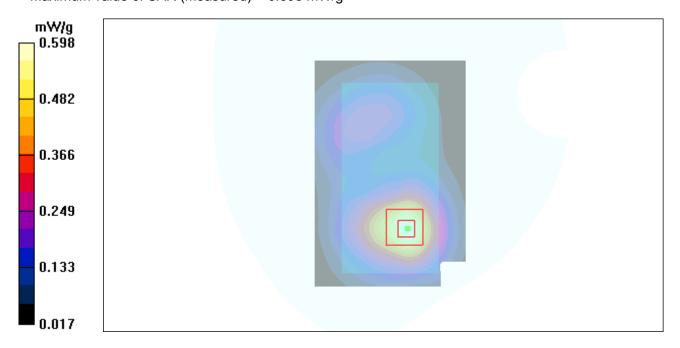


Figure 25 Body, Towards Ground, GSM 1900 EGPRS (2Up) Channel 810

Report No.: RZA2010- 1540SAR01R2 Page 59 of 111

802.11b Left Cheek Middle

Date/Time: 10/18/2010 2:42:12 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.055 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.54 V/m; Power Drift = -0.122 dB

Peak SAR (extrapolated) = 0.085 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.025 mW/g

Maximum value of SAR (measured) = 0.049 mW/g

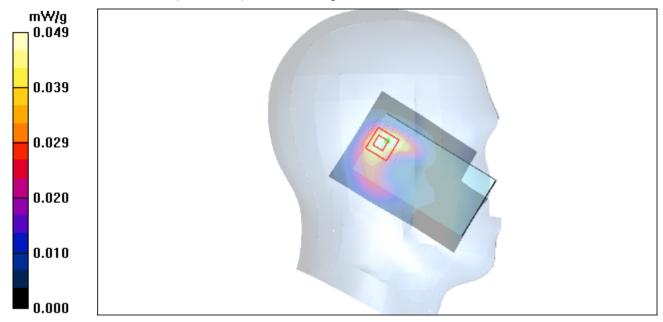


Figure 26 Left Hand Touch Cheek 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 60 of 111

802.11b Left Tilt Middle

Date/Time: 10/18/2010 2:57:04 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.049 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.17 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.023 mW/g

Maximum value of SAR (measured) = 0.051 mW/g

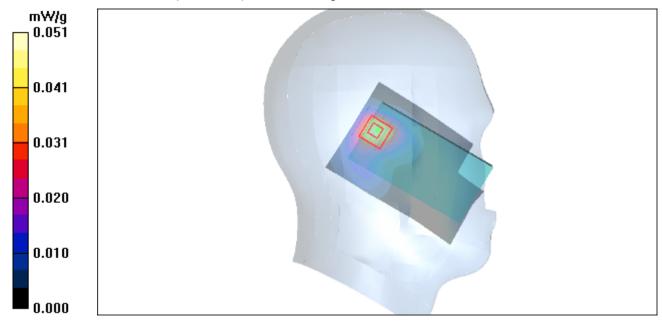


Figure 27 Left Hand Tilt 15° 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 61 of 111

802.11b Right Cheek High

Date/Time: 10/18/2010 3:25:04 PM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; σ = 1.8 mho/m; ε_r = 38.8; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.061 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.54 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.026 mW/g

Maximum value of SAR (measured) = 0.062 mW/g

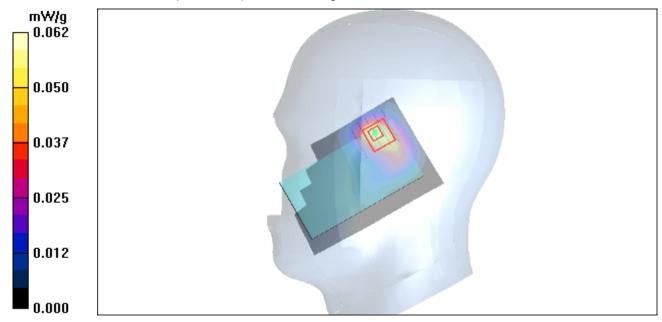


Figure 28 Right Hand Touch Cheek 802.11b Channel 11

Report No.: RZA2010- 1540SAR01R2 Page 62 of 111

802.11b Right Cheek Middle

Date/Time: 10/18/2010 2:04:31 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

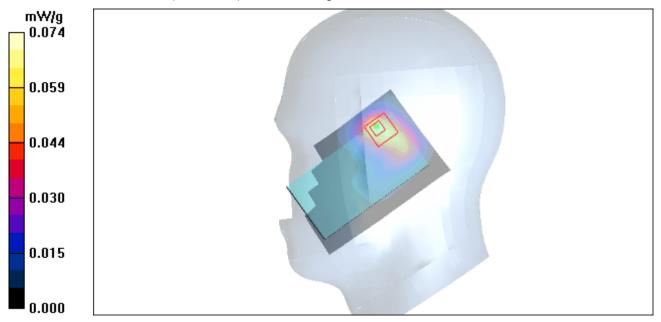
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.070 mW/g


Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.45 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 0.143 W/kg

SAR(1 g) = 0.066 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.074 mW/g

Report No.: RZA2010- 1540SAR01R2 Page 63 of 111

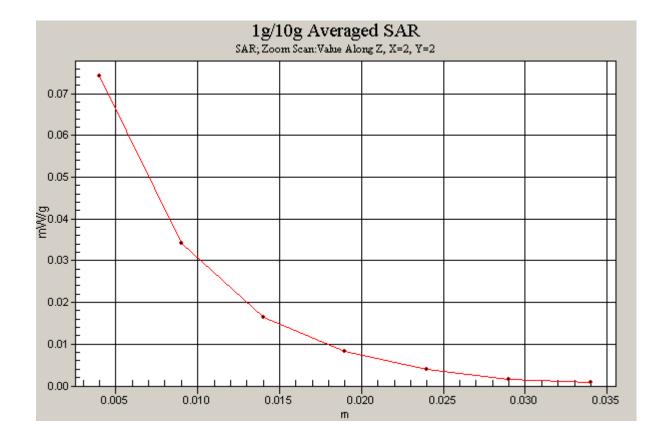


Figure 29 Right Hand Touch Cheek 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 64 of 111

802.11b Right Cheek Low

Date/Time: 10/18/2010 3:39:18 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.74$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.058 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.51 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.025 mW/g

Maximum value of SAR (measured) = 0.060 mW/g

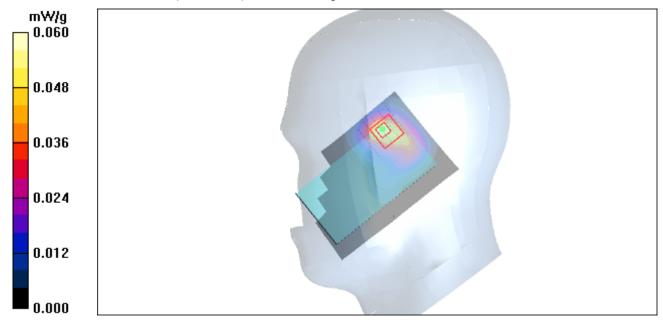


Figure 30 Right Hand Touch Cheek 802.11b Channel 1

Report No.: RZA2010- 1540SAR01R2 Page 65 of 111

802.11b Right Tilt Middle

Date/Time: 10/18/2010 2:18:58 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.22, 7.22, 7.22); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.047 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.19 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.077 W/kg

SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.045 mW/g

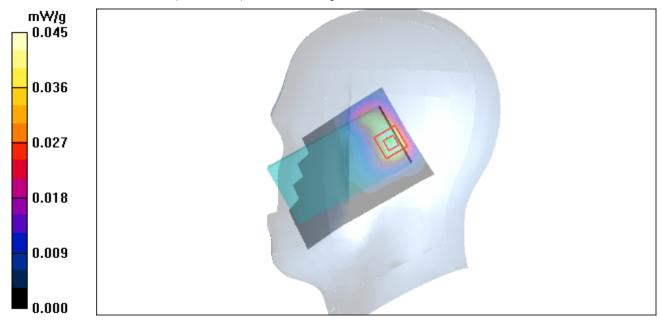


Figure 31 Right Hand Tilt 15° 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 66 of 111

802.11b Towards Ground High

Date/Time: 10/18/2010 12:34:49 PM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.035 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.33 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.058 W/kg

SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.019 mW/g

Maximum value of SAR (measured) = 0.037 mW/g

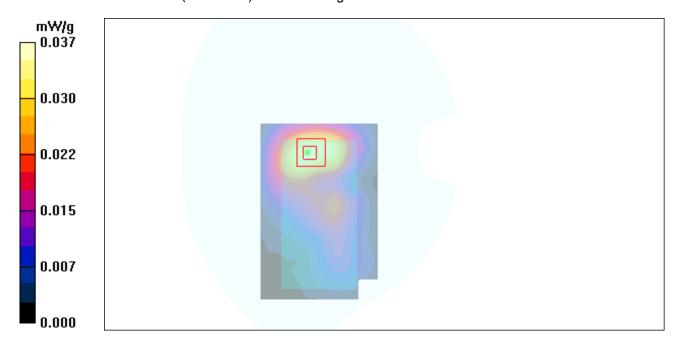


Figure 32 Body, Towards Ground, 802.11b Channel 11

Report No.: RZA2010- 1540SAR01R2 Page 67 of 111

802.11b Towards Ground Middle

Date/Time: 10/18/2010 12:20:39 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.91$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.036 mW/g

Towards Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.40 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.036 mW/g



Figure 33 Body, Towards Ground, 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 68 of 111

802.11b Towards Ground Low

Date/Time: 10/18/2010 12:48:43 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.035 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 4.28 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.055 W/kg

SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.018 mW/g

Maximum value of SAR (measured) = 0.034 mW/g

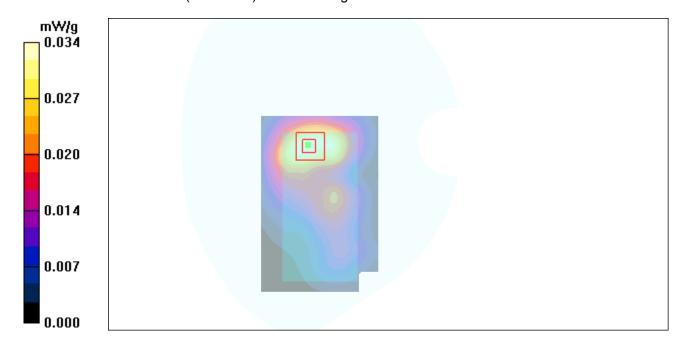


Figure 34 Body, Towards Ground, 802.11b Channel 1

Report No.: RZA2010- 1540SAR01R2 Page 69 of 111

802.11b Towards Phantom Middle

Date/Time: 10/18/2010 11:58:36 AM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.91$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.022 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 3.17 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 0.037 W/kg

SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.022 mW/g

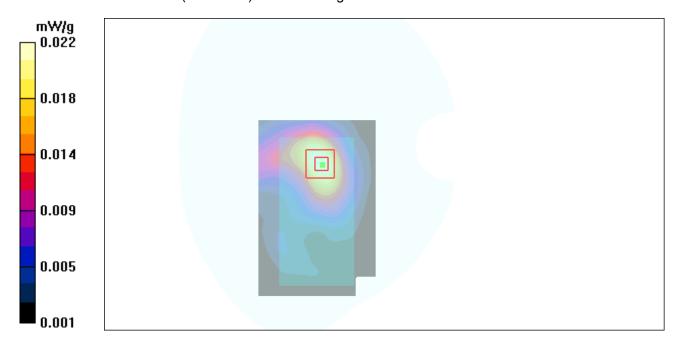


Figure 35 Body, Towards Phantom, 802.11b Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 70 of 111

802.11b with Earphone Towards Ground High

Date/Time: 10/18/2010 1:15:52 PM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.023 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 3.64 V/m; Power Drift = -0.075 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.013 mW/g

Maximum value of SAR (measured) = 0.024 mW/g

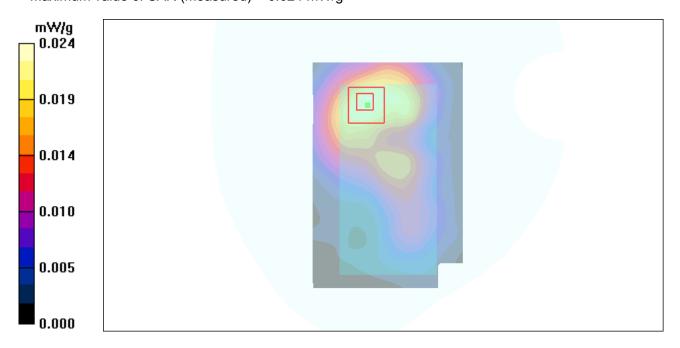


Figure 36 Body with earphone, Towards Ground, 802.11b Channel 11

Report No.: RZA2010- 1540SAR01R2 Page 71 of 111

802.11g Right Cheek Middle

Date/Time: 10/18/2010 5:28:29 PM

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.34, 7.34, 7.34); Calibrated: 12/30/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.063 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.97 V/m; Power Drift = 0.197 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.060 mW/g; SAR(10 g) = 0.029 mW/g

Maximum value of SAR (measured) = 0.068 mW/g

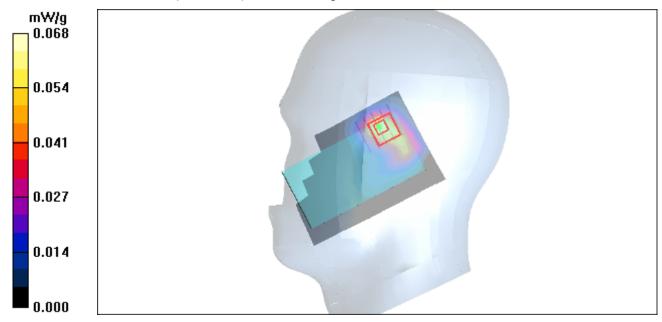


Figure 37 Right Hand Touch Cheek 802.11g Channel 6

Report No.: RZA2010- 1540SAR01R2 Page 72 of 111

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: EX3-3661_Dec09

Accreditation No.: SCS 108

Auden CALIBRATION CERTIFICATE EX3DV4 - SN:3661 Object QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes December 30, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the fallowing pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration ID# GB41293874 1-Apr-09 (No. 217-01030) Apr-10 Power meter E4419B 1-Apr-09 (No. 217-01030) Apr-10 MY41495277 Power sensor E4412A Apr-10 MY41498087 1-Apr-09 (No. 217-01030) Power sensor E4412A 31-Mar-09 (No. 217-01026) Mar-10 Reference 3 dB Attenuator SN: S5054 (3c) Mar-10 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Reference 30 dB Attenuator 5N: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 SN: 680 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 DAE4 Scheduled Check Check Date (in house) Secondary Standards In house check: Oct-11 US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) U\$37390585 In house check: Oct10 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-09) Technical Manager Calibrated by Katja Pokovic Quality Manager Approved by: Niels Kuster Issued: December 30, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Report No.: RZA2010- 1540SAR01R2 Page 73 of 111

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Report No.: RZA2010- 1540SAR01R2 Page 74 of 111

EX3DV4 SN:3661

December 30, 2009

Probe EX3DV4

SN:3661

Manufactured: Calibrated: October 20, 2008 December 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Report No.: RZA2010- 1540SAR01R2 Page 75 of 111

EX3DV4 SN:3661

December 30, 2009

DASY - Parameters of Probe: EX3DV4 SN:3661

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.46	0.52	0.48	± 10.1%
DCP (mV) ⁹	89.4	91.4	90.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^t (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300	± 1.5%
	17574		Y	0.00	0.00	1.00	300	
	wo		z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter, uncertainty not required.

⁶ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Report No.: RZA2010- 1540SAR01R2 Page 76 of 111

EX3DV4 SN:3661 December 30, 2009

DASY - Parameters of Probe: EX3DV4 SN:3661

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	0.90 ± 5%	9.34	9.34	9.34	0.69	0.64 ±11.0%
900	±50/±100	41.5 ± 5%	$0.97 \pm 5\%$	9.06	9.06	9.06	0.72	0.64 ± 11.0%
1750	±50/±100	40.1 ± 5%	1.37 ± 5%	8.19	8.19	8.19	0.59	0.63 ±11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.77	7,77	7.77	0.83	0.56 ±11.0%
2450	±50/±100	39.2 ± 5%	1.80 ± 5%	7.22	7.22	7.22	0.35	0.83 ±11.0%
5200	± 50 / ± 100	$36.0 \pm 5\%$	$4.66 \pm 5\%$	5.01	5.01	5.01	0.45	1.75 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.38	4.38	4.38	0.48	1.75 ± 13.1%
5800	±50/±100	35.3 ± 5%	5.27 ± 5%	4.26	4.26	4.26	0.45	1.75 ± 13.1%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Report No.: RZA2010- 1540SAR01R2 Page 77 of 111

EX3DV4 SN:3661 December 30, 2009

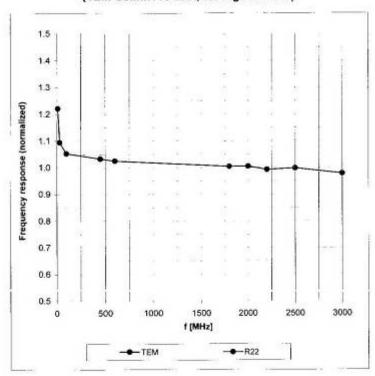
DASY - Parameters of Probe: EX3DV4 SN:3661

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	55.2 ± 5%	0.97 ± 5%	9.24	9.24	9.24	0.54	0.73 ± 11.0%
900	±50/±100	55.0 ± 5%	1.05 ± 5%	8.97	8.97	8.97	0.53	0.72 ± 11.0%
1750	±50/±100	53.4 ± 5%	1.49 ± 5%	7.93	7.93	7.93	0.67	0.65 ± 11.0%
1950	±50/±100	53.3 ± 5%	1.52 ± 5%	7.60	7.60	7.60	0.60	0.69 ±11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	7.34	7.34	7.34	0.26	1.12 ± 11.0%
5200	±50/±100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	4.59	4.59	4.59	0.46	1.75 ± 13.1%
5500	±50/±100	48.6 ± 5%	$5.65 \pm 5\%$	4.11	4.11	4.11	0.46	1.75 ± 13.1%
5800	±50/±100	48.2 ± 5%	6.00 ± 5%	4.12	4.12	4.12	0.48	1.75 ± 13.1%

C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

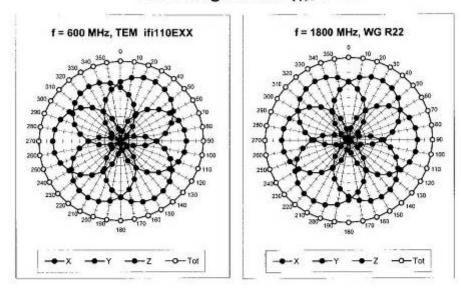
Certificate No: EX3-3661_Dec09

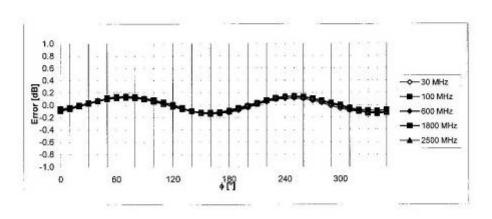

Report No.: RZA2010- 1540SAR01R2

Page 78 of 111

EX3DV4 SN:3661 December 30, 2009

Frequency Response of E-Field

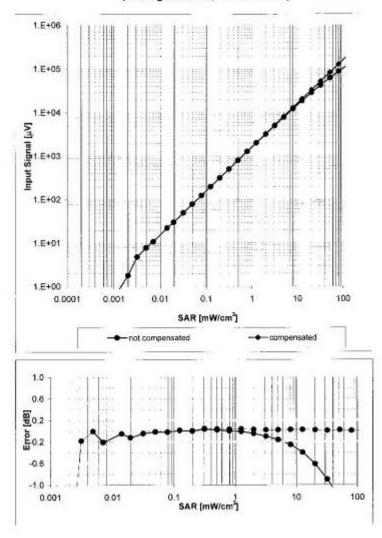

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4 SN:3661 December 30, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

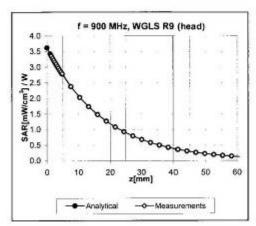

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

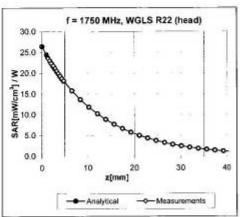
Report No.: RZA2010- 1540SAR01R2 Page 80 of 111

EX3DV4 SN:3661 December 30, 2009

Dynamic Range f(SAR_{head})

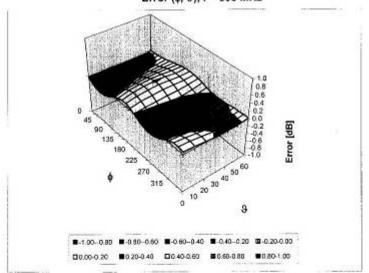
(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Report No.: RZA2010- 1540SAR01R2 Page 81 of 111

EX3DV4 SN:3661 December 30, 2009


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Report No.: RZA2010- 1540SAR01R2 Page 82 of 111

EX3DV4 SN:3661 December 30, 2009

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Report No.: RZA2010- 1540SAR01R2 Page 83 of 111

ANNEX E: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Auder

Certificate No: D1900V2-5d018 Jun10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D1900V2 - SN: 5d018 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A U\$37292783 08-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3206 30-Apr-10 (No. ES3-3205_Apr-10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 U\$37390585 \$4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Calibrated by: Approved by: Issued: June 17, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Report No.: RZA2010- 1540SAR01R2 Page 84 of 111

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

Certificate No: D1900V2-5d018_Jun10

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Page 2 of 9

Report No.: RZA2010- 1540SAR01R2 Page 85 of 111

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.2
Advanced Extrapolation	swam
Modular Flat Phantom V5.0	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	11575
	Advanced Extrapolation Modular Flat Phantom V5.0 10 mm dx, dy, dz = 5 mm

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C	1977.1	5550

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	200
SAR measured	250 mW input power	5.22 mW / g
SAR normalized	normalized to 1W	20.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d018_Jun10

Report No.: RZA2010- 1540SAR01R2 Page 86 of 111

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.7 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.52 mW / g
SAR normalized	normalized to 1W	22,1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Report No.: RZA2010- 1540SAR01R2 Page 87 of 111

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 2.6 jΩ	
Return Loss	- 29.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.4 \Omega + 3.2 j\Omega$	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

511074000
1.194 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 04, 2002

Certificate No: D1900V2-5d018_Jun10

Report No.: RZA2010- 1540SAR01R2 Page 88 of 111

DASY5 Validation Report for Head TSL

Date/Time: 15.06.2010 10:40:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

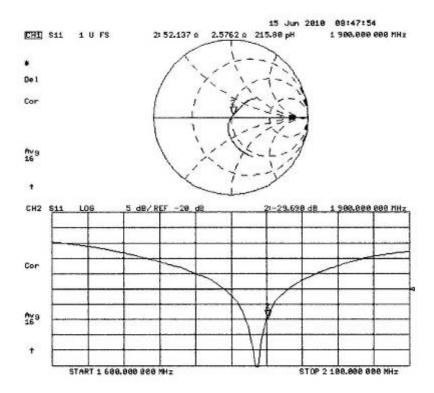
- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.7 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 12.6 mW/g

0 dB = 12.6 mW/g

Impedance Measurement Plot for Head TSL

Report No.: RZA2010- 1540SAR01R2 Page 90 of 111

DASY5 Validation Report for Body

Date/Time: 15.06.2010 14:14:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$; $\epsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

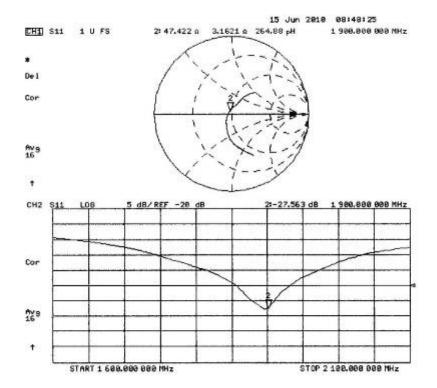
grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.1 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.52 mW/g

Maximum value of SAR (measured) = 12.8 mW/g


0 dB = 12.8 mW/g

Certificate No: D1900V2-5d018_Jun10

Report No.: RZA2010- 1540SAR01R2

Page 91 of 111

Impedance Measurement Plot for Body TSL

Report No.: RZA2010- 1540SAR01R2 Page 92 of 111

ANNEX F: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Client ATL (Auden)

Certificate No: D2450V2-712_Feb10

CALIBRATION C		368	
Object	D2450V2 - SN: 712		
Calibration procedure(s)	QA CAL-05.v7		
	Calibration proce	dure for dipole validation kits	
Calibration date:	February 19, 201	0	
		ional standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)*(C and humidity < 70%.
		ry facility: environment temperature (22 ± 3)*(C and humidity < 70%.
Calibration Equipment used (M&T	TE critical for calibration)		
Calibration Equipment used (M&T		Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&7 Primary Standards Power meter EPM-442A	TE critical for calibration)		
Calibration Equipment used (M&7 Primary Standards Power meter EPM-442A Power sensor HP 8481A	FE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01096)	Scheduled Calibration Oct-10
Calibration Equipment used (M&7 Primary Standards Power meter EPM-442A Power sensor HP 6481A Reference 20 dB Attenuator	ID # G837480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096)	Scheduled Calibration Oct-10 Oct-10
Calibration Equipment used (M&7 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01096) 06-Oct-09 (No. 217-01096) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Calibration Equipment used (M&7 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 08-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # G837480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D2450V2-712_Feb10

Page 1 of 9

Report No.: RZA2010- 1540SAR01R2 Page 93 of 111

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-712 Feb10

Report No.: RZA2010- 1540SAR01R2 Page 94 of 111

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	-1010-101
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.0 mW /g ± 16.5 % (k=2)

Report No.: RZA2010- 1540SAR01R2 Page 95 of 111

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 mW / g
SAR normalized	normalized to 1W	23.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-712_Feb10

Report No.: RZA2010- 1540SAR01R2 Page 96 of 111

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 1.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 5.2 jΩ	
Return Loss	- 25.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

Certificate No: D2450V2-712_Feb10

Report No.: RZA2010- 1540SAR01R2 Page 97 of 111

DASY5 Validation Report for Head TSL

Date/Time: 17.02,2010 13:12:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.77 \text{ mho/m}$; $\epsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

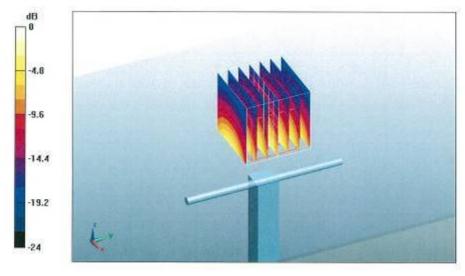
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface; 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

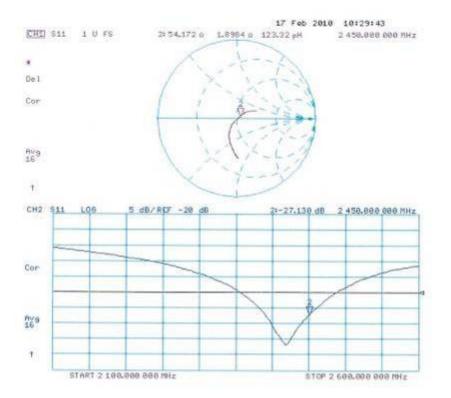

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.24 mW/g

Maximum value of SAR (measured) = 17.1 mW/g


0 dB = 17.1 mW/g

Certificate No: D2450V2-712_Feb10

Report No.: RZA2010- 1540SAR01R2

Page 98 of 111

Impedance Measurement Plot for Head TSL

Report No.: RZA2010- 1540SAR01R2 Page 99 of 111

DASY5 Validation Report for Body

Date/Time: 19.02.2010 13:05:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

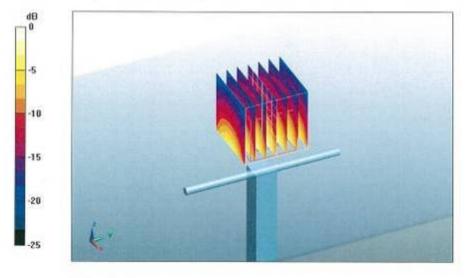
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06,2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

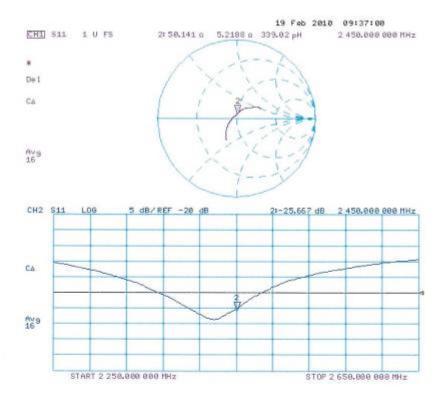

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 5.97 mW/g

Maximum value of SAR (measured) = 17 mW/g



0 dB = 17mW/g

Certificate No: D2450V2-712 Feb10

Report No.: RZA2010- 1540SAR01R2 Page 100 of 111

Impedance Measurement Plot for Body TSL

Report No.: RZA2010- 1540SAR01R2 Page 101 of 111

ANNEX G: DAE4 Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

S

С

Certificate No: DAE4-871_Nov09 TA - SH (Auden) CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 871 Object Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) November 11, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (No: 9055) Oct-10 Secondary Standards ID # Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Name **Function** Andrea Guntli Technician Calibrated by: R&D Director Approved by: Fin Bomholt Issued: November 11, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-871_Nov09

Page 1 of 5

Report No.: RZA2010- 1540SAR01R2 Page 102 of 111

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-871_Nov09

Report No.: RZA2010- 1540SAR01R2 Page 103 of 111

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	z
High Range	404.813 ± 0.1% (k=2)	404.794 ± 0.1% (k=2)	405.237 ± 0.1% (k=2)
Low Range	3.98191 ± 0.7% (k=2)	3.98417 ± 0.7% (k=2)	3.98912 ± 0.7% (k=2)

Connector Angle

С	connector Angle to be used in DASY system	90.0 ° ± 1 °
		00.0 - 1

Report No.: RZA2010- 1540SAR01R2 Page 104 of 111

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199994.0	1.84	0.00
Channel X + Input	19999.85	0.05	0.00
Channel X - Input	-19997.97	1.83	-0.01
Channel Y + Input	200010.3	-3.71	-0.00
Channel Y + Input	19999.12	-0.48	-0.00
Channel Y - Input	-20000.18	-0.78	0.00
Channel Z + Input	200010.2	-2.80	-0.00
Channel Z + Input	19998.54	-0.86	-0.00
Channel Z - Input	-19999.82	0.00	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.3	0.22	0.01
Channel X + Input	200.20	0.30	0.15
Channel X - Input	-199.89	0.21	-0.10
Channel Y + Input	1999.8	-0.13	-0.01
Channel Y + Input	200.06	-0.04	-0.02
Channel Y - Input	-200.43	-0.73	0.36
Channel Z + Input	1999.5	-0.57	-0.03
Channel Z + Input	199.58	-0.72	-0.36
Channel Z - Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.79	12.75
	- 200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	- 200	10.67	10.68
Channel Z	200	-1.08	-1.35
	- 200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	-

Certificate No: DAE4-871_Nov09

Report No.: RZA2010- 1540SAR01R2 Page 105 of 111

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9