

Emissions Test Report

EUT Name: Newcastle, Newport

Model No.: FS1E5, FS1E5W, FS2E5, FS2E5W CFR 47 Part 15.407:2009 and RSS 210: 2010

Prepared for:

Denny Lim WatchGuard Technologies, Inc 505 Fifth Ave S, Suite 500 Seattle, WA 98104 Tel: 206-613-6600

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane

Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date: November 16, 2011 Report Number: 31152150.003

Report Number: 31152150.003 EUT: Newcastle Newport

Model: FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Statement of Compliance

Manufacturer: WatchGuard Technologies. Inc

Requester / Applicant: 505 Fifth Ave S, Suite 500

Name of Equipment: Newcastle, Newport

Model No. FS1E5, FS1E5W, FS2E5, FS2E5W

Type of Equipment: Intentional Radiator

Application of Regulations: CFR 47 Part 15.407:2009 and RSS 210: 2010 30 August 2011 to 29 September 2011

Guidance Documents:

Emissions: ANSI C63.10-2009

Test Methods:

Emissions: ANSI C63.10-2009

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Suresh Kondapalli

Conan Boyle

Test Engineer

Date November 16, 2011

NVLAP Signatory

Date November 16, 2011

INDUSTRY CANADA

Com 7. Byl

2932M-1

Report Number: 31152150.003 EUT: Newcastle Newport

Model: FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Table of Contents

1	Exe	cutive Summary	6
	1.1	Scope	6
	1.2	Purpose	6
	1.3	Summary of Test Results	7
	1.4	Special Accessories	7
	1.5	Equipment Modifications	7
2	Lab	oratory Information	8
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	NIST / NVLAP	8 8
	2.2.1 2.2.2		9 9 9
	2.3.1 2.3.2	T	10
	2.4	Calibration Traceability	11
3	Pro	duct Information	12
	3.1	Product Description	
	3.2	Equipment Configuration	12
	3.3	Operating Mode	12
	3.4	Unique Antenna Connector	13
		Results	
4	Em	issions	14
	4.1 4.1.1	Output Power Requirements Test Method	14 14
	4.1.2		1.5
	4.2 4.2.1 4.2.2		30
	4.3	Peak Excursion	38
	4.3.1 4.3.2	Test Method	38
	4.4	Peak Power Spectral Density	
	4.4.1	Test Method	44
	4.4.2	Results	45

Report Number: 31152150.003 EUT: Newcastle Newport

Model: FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Page 3 of 100

Table of Contents

	4.5	Transmitter Spurious Emissions	49
	4.5.1	Test Methodology	49
	4.5.2	Test Methodology	50
	4.5.3	Test Results	50
	4.5.4	Sample Calculation	73
	4.5.5	Test setup Photos	74
	4.6	Receiver Spurious Emissions	76
	4.6.1	Test Methodology	76
	4.6.2	Receiver Spurious Emission Limit	77
	4.6.3	Test Results	77
	4.7	AC Conducted Emissions	84
	4.7.1		84
	4.7.2	Test Results	84
	4.7.3		89
	4.8	Frequency Stability	90
	4.8.1	Test Methodology	90
	4.8.2	Manufacturer Declaration	90
	4.8.3	Limit	 91
	4.8.4	Test results	91
	4.8.5	Voltage Variation	92
	4.8.5		92
	4.8.6		92
5	Test	Equipment Use List	93
		Equipment List	93
_			
6	EM	C Test Plan	94
	6.1	Introduction	94
	6.2	Customer	94
	6.3	Equipment Under Test (EUT)	95
	6.4	Test Specifications	100

Index of Tables

Table 1: Summary of Test Results	7
Table 2: RF Output Power at the Antenna Port – Test Results	15
Table 3: Occupied Bandwidth – Test Results	31
Table 4: Peak Excursion – Test Results	39
Table 5: Peak Power Spectral Density – Test Results	45
Table 6: Transmit Spurious Emission at Band-Edge Requirements	51
Table 7: AC Conducted Emissions – Test Results.	
Table 8: Frequency Stability – Test Results	91
Table 9: Voltage Variation – Test Results	92
Table 10: Customer Information	
Table 11: Technical Contact Information	94
Table 12: EUT Specifications	95
Table 13: EUT Channel Power Specifications.	97
Table 14: Interface Specifications	97
Table 15: Description of Test Configuration used for Radiated Measurement.	98
Table 16: Final Test Mode for All 3 Bands	98
Table 17: Test Specifications	100

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407:2009 and RSS 210: 2010 based on the results of testing performed on August 30 – September 29, 2011, on the Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W manufactured by WatchGuard Technologies This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

FMO / D - : 40/4/0044

EMC / Rev 12/1/2011

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.4	Test Parameters (from Standard)	Result
Spurious Emission in Received Mode	CFR47 15.109, RSS-GEN Sect.7.2.3	Class A	Complied
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.407 (b) RSS-GEN Sect.7.2.3, RSS 210 Sect. A.9.2	Class B	Complied
Restricted Bands of Operation	CFR47 15.205, RSS 210 Sect.2.6	Class B	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.7.2.2	Class B	Complied
Occupied Bandwidth	CFR47 15.407 (a), RSS GEN Sect.4.4.1	≥ 500 kHz	Complied
Maximum Output Power	CFR47 15.407 (a), RSS 210 Sect. A.9.2	Band 1: 16.97 dBm Band 2&3: 23.97 dBm	Complied
Peak Power Spectral Density	CFR47 15.407 (a), RSS 210 Sect. A.9.2	Band 1: 4 dBm/MHz Band 2&3: 11 dBm/MHz	Complied
Peak Excursion Ratio	CFR47 15.407 (a)(6)	< 13 dB	Complied
Conducted Emission – Antenna Port	CFR47 15.407 (b), RSS 210 Sect.6.2.2	30 MHz -40 GHz < 27 dBm/MHz	Complied
Frequency Stability	CFR47 15.407 (g), RSS GEN Sect. 4.7.	±20 ppm	Complied
Dynamic Frequency Selection	CFR47 15.407 (h) (iii), RSS 210 Sect. A.9.3	CMT – 10 s CCTT – 260 ms	Complied

Note: Since EUT is portable device where the end user will have the direct contact, RF exposure/ SAR testing is required. This test completed separately.

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Laboratory Information

2.1 Accreditations & Endorsements

US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US5254). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005 and ISO 9002 (Lab Code 500011-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services

for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M-1). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment,

and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration Nos. R-3715, G-460, C-4161 and T-1189).

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 test results and test reports within the scope of the

laboratory NIST / NVLAP accreditation will be accepted by each member country.

Report Number: 31152150.003 **EUT:** Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by NVLAP (Lab Code 500011-0). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two $470\text{-k}\Omega$ resistors. The Vertical Coupling Plane consists of an aluminum plate 50~cm x 50~cm x 3.175~mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two $470\text{-k}\Omega$ resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: $RAW = Measured level before correction (dB<math>\mu$ V)

$$AMP = Amplifier Gain (dB)$$

$$CBL = Cable Loss (dB)$$

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m$$

2.3.2 Measurement Uncertainty

	$ m U_{lab}$	$ m U_{cispr}$						
Radiated Disturbance	Radiated Disturbance							
30 MHz – 40,000 MHz	3.2 dB	5.2 dB						
Conducted Disturbance @ I	Conducted Disturbance @ Mains Terminals							
150 kHz – 30 MHz	2.4 dB	3.6 dB						
Disturbance Power								
30 MHz – 300 MHz	3.92 dB	4.5 dB						

Report Number: 31152150.003 EUT: Newcastle, Newport

 $Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W$

EMC / Rev 12/1/2011

Measurement Uncertainty - Radio Testing

The estimated combined standard uncertainty for frequency error measurements is ± 3.88 Hz

The estimated combined standard uncertainty for carrier power measurements is \pm 1.59 dB.

The estimated combined standard uncertainty for adjacent channel power measurements is \pm 1.47 dB.

The estimated combined standard uncertainty for modulation frequency response measurements is ± 0.46 dB.

The estimated combined standard uncertainty for transmitter conducted emission measurements is \pm 4.01 dB

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W EMC / Rev 12/1/2011 Page 11 of 100

3 Product Information

3.1 Product Description

The WatchGuard Newport XTM 2 series is network security device with Firewall Access Point (AP) provides 10/100/1000Mb wired and 802.11n wireless network.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Newcastle, Newport has three external Omni directional antennae. All external antennae use reversed SMA connector.

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

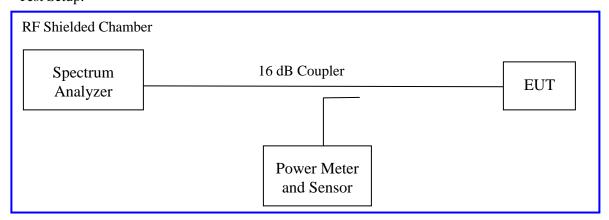
4 Emissions

Testing was performed in accordance with CFR 47 Part 15.407: 2009 and RSS 210 Annex 9: 2010. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.407 (a):2009 and RSS 210 A9.2: 2010.


The maximum transmitted powers are

Band 5150-5250 MHz:50 mW or 4 dBm + 10Log B.

4.1.1 Test Method

The ANSI C63.10-2009 Section 6.10.3.1 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.407(a): 2009 and RSS 210 A.9.2; 5150 MHz to 5250 MHz. The worst mode results indicated below.

Test Setup:

Method #1 of "Measurement of Digital Transmission Systems Operating under Section 15.247" applies since the EUT continuously transmit; where T, Transmission Duration Pulse, is greater than analyzer sweep time. Sample detector was used.

Each chain was measured individually and applied the measure-and-sum approach per KDB66291.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 2: RF Output Power at the Antenna Port – Test Results

Test Conditions: Conducted Measurement, No.	rmal Temperature
--	------------------

Antenna Type: 3 External Power Setting: See test plan

Max. Antenna Gain: + 2.0 dBi Signal State: Modulated at 100%.

Ambient Temp.: 21 °C Relative Humidity:39%

802.11a Mode, 1x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5180	16.97	14.49	15.85	14.00		-1.12
5220	16.97	15.05	15.73	14.56		-1.24
5240	16.97	15.02	15.66	14.86		-1.31

Note: The highest output power was observed at 6 Mbps.

802.11n (HT20) Mode, 1x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5180	16.97	15.47	15.97	13.79		-1.00
5220	16.97	15.87	15.92	14.45		-1.05
5240	16.97	15.63	15.72	14.74		-1.15

Note: The highest output power was observed at HT20 6.5 Mbps, 1 Data Stream.

802.11n (HT20) Mode, 2x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5180	16.97	9.58	12.21		14.09	-2.07
5220	16.97	8.87	11.09		13.12	-3.85
5240	16.97	9.03	10.88		13.09	-3.86

Note: The highest output power was observed at HT20 13 Mbps, 2 Data Streams.

Report Number: 31152150.003 EUT: Newcastle, Newport

 $Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W$

EMC / Rev 12/1/2011

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466

Tel: (925) 249-9123, Fax: (925) 249-9124

802.11n (HT20) Mode, 3x3								
Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]		
5180	16.97	12.55	10.32	7.43	15.38	-1.57		
5220	16.97	11.61	9.66	8.06	14.78	-2.17		
5240	16.97	11.72	9.65	7.57	14.74	-2.23		

Note: The highest output power was observed at HT20 19.5 Mbps, 3 Data Streams.

802.11n (HT40) Mode, 1x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5190	16.97	12.64	12.29	11.29		-4.33
5230	16.97	12.74	12.99	12.33		-3.98

Note: The highest output power was observed at HT40 13.5 Mbps, 1 Data Stream.

802.11n (HT40) Mode, 2x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5190	16.97	12.22	10.87		14.06	-2.91
5230	16.97	12.79	10.59		14.83	-2.14

Note: The highest output power was observed at HT40 27 Mbps, 2 Data Streams.

802.11n (HT40) Mode, 3x3

Operating Channel	Limit [dBm]	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	Total Power [dBm]	Margin [dB]
5190	16.97	9.30	11.10	8.13	14.45	-2.52
5230	16.97	9.44	10.46	8.34	14.26	-2.71

Note: The highest output power was observed at HT40 40.5 Mbps, 3 Data Streams.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

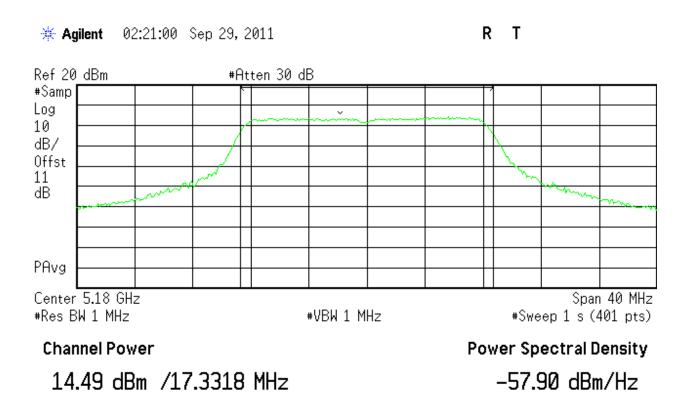


Figure 1: Maximum Transmitted Power, 5180 MHz at 802.11a, Chain 0

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

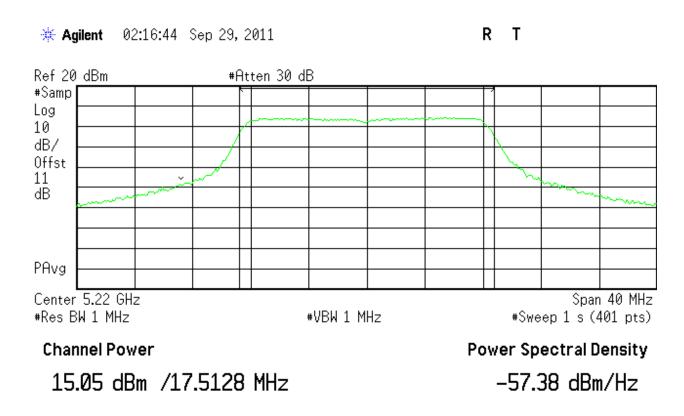


Figure 2: Maximum Transmitted Power, 5220 MHz at 802.11a, Chain 0

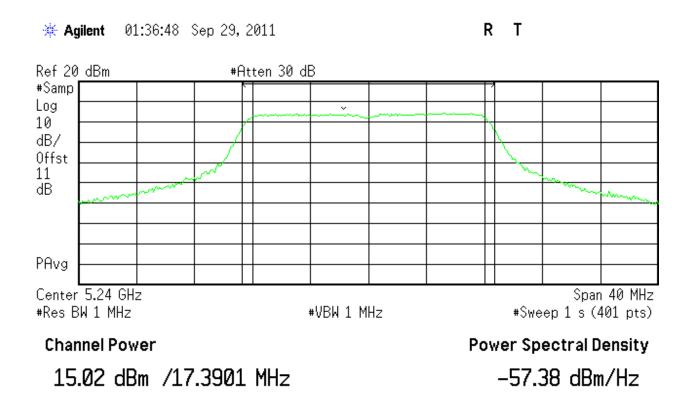


Figure 1: Maximum Transmitted Power, 5240 MHz at 802.11a, Chain 0

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS155 FS155W FS255 FS

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

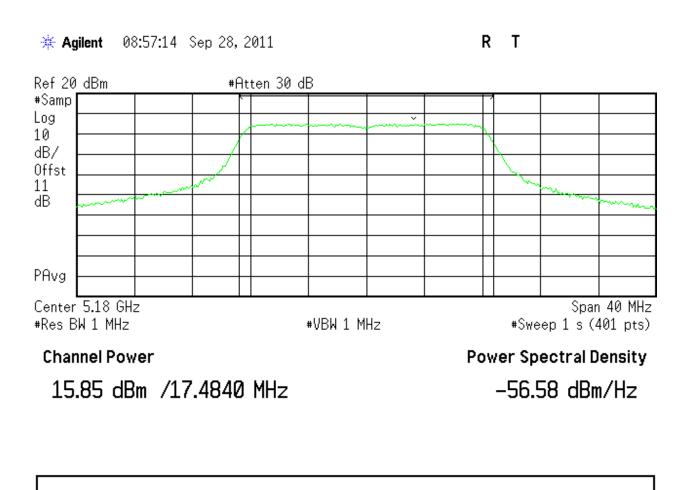


Figure 2: Maximum Transmitted Power, 5180 MHz at 802.11a, Chain 1

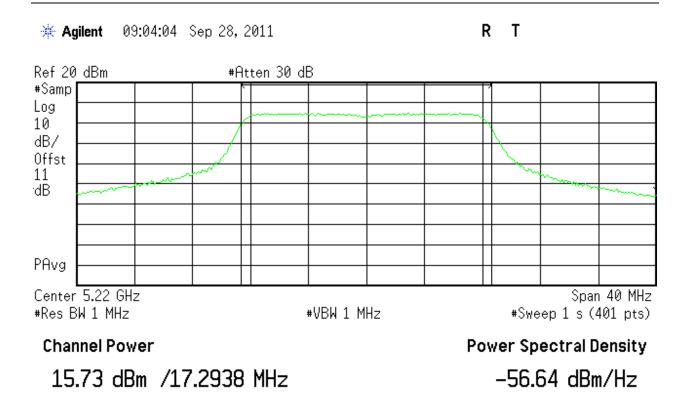


Figure 3: Maximum Transmitted Power, 5220 MHz at 802.11a, Chain 1



Figure 4: Maximum Transmitted Power, 5240 MHz at 802.11a, Chain 1

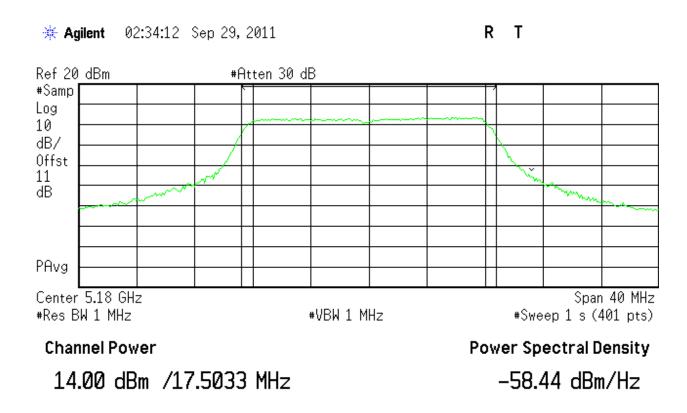


Figure 5: Maximum Transmitted Power, 5180 MHz at 802.11a, Chain 2

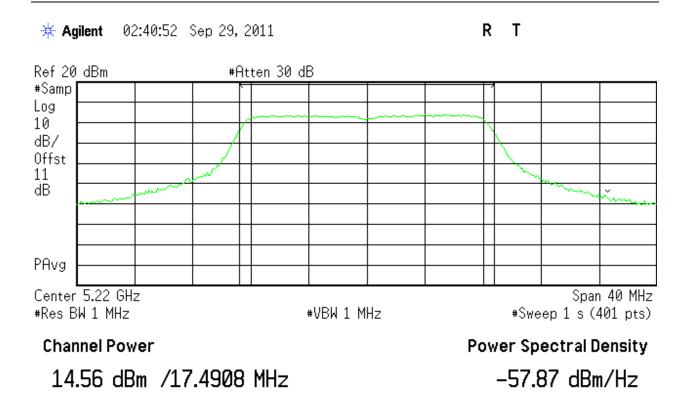


Figure 6: Maximum Transmitted Power, 5220 MHz at 802.11a, Chain 2

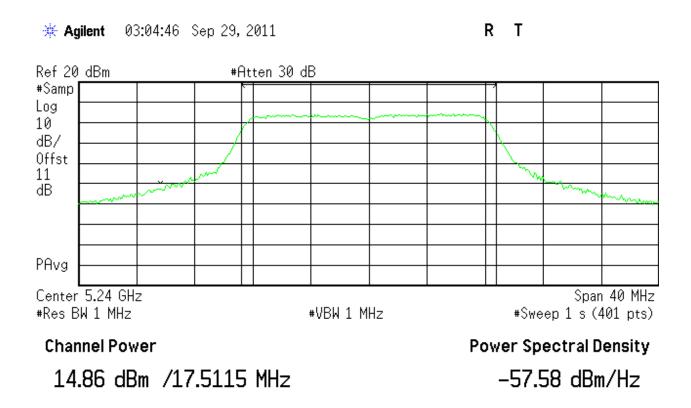


Figure 7: Maximum Transmitted Power, 5240 MHz at 802.11a, Chain 2

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Page 26 of 100

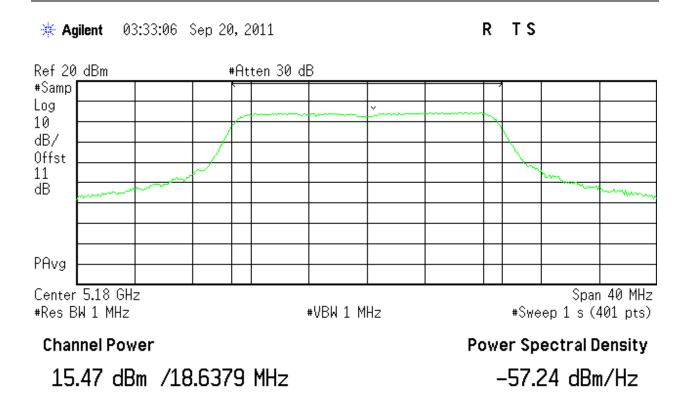
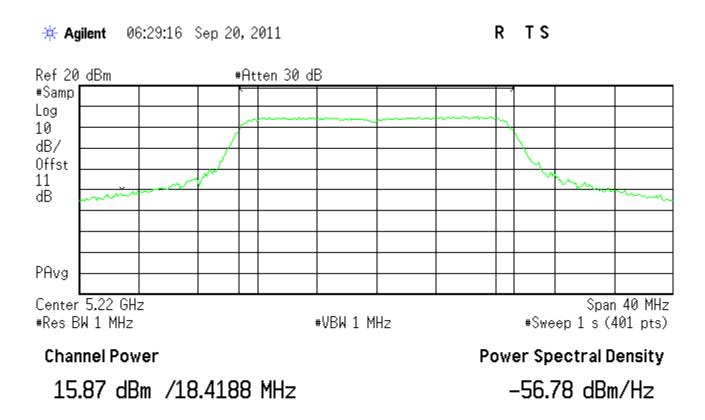



Figure 8: Maximum Transmitted Power, 5180 MHz at 802.11n HT20, Chain 0 – 6.5Mbps

Page 27 of 100

Figure 9: Maximum Transmitted Power, 5220 MHz at 802.11n HT20, Chain 0 – 6.5Mbps

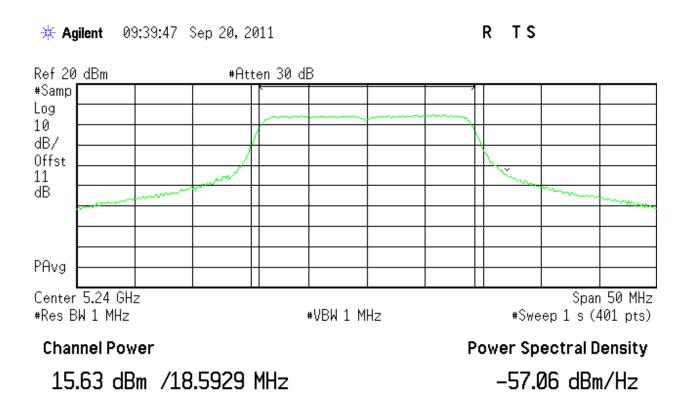


Figure 10: Maximum Transmitted Power, 5240 MHz at 802.11n HT20, Chain 0 – 6.5Mbps

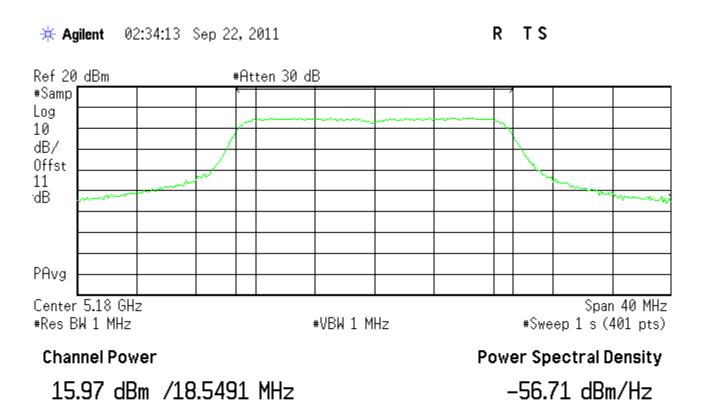


Figure 11: Maximum Transmitted Power, 5180 MHz at 802.11n HT20, 1x3 Chain 1–6.5 Mbps

Note: All modes stated in the table 2 were investigated worst case plots are placed remaining plots are available in TUV job folder

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

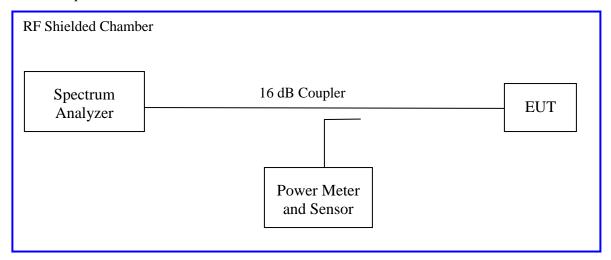
EMC / Rev 12/1/2011

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.

The 26 dB bandwidth is defined the bandwidth of 26 dBr from highest transmitted level of the fundamental frequency.


There is no restriction limits for the bandwidth. The 26 dB bandwidth was used to determine the limit for maximum conducted output power per CFR47 Part 15.407(a).

To obtain the tighter limit,

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.407(a) 2009 and RSS Gen Sect. 4.4.1:2010. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range; 5150 MHz to 5250 MHz. The worst results indicated below.

Test Setup:

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

4.2.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 3: Occupied Bandwidth – Test Results

Test Conditions: Conducted Measurement, Normal Temperature and Vo	voitage only
--	--------------

Antenna Type: 3 External **Power Setting:** See Test Plan

Max. Antenna Gain: + 2.0 dBi Signal State: Modulated

Ambient Temp.: 21 °C **Relative Humidity:** 33%

Dalluwium (MIIIZ) iui 002.11a	Bandwidth (MHz) 1	for 802.11a
-------------------------------	-------------	--------	-------------

			•	·			
Freq. (MHz)	Stream	Ch 0 99% BW	Ch 1 99% BW	Ch 2 99% BW	Ch 0 26 dB BW	Ch 1 26 dB BW	Ch 2 26 dB BW
5180	1	16.58	16.61	16.57	21.76	22.02	22.04
5220	1	16.62	16.62	16.59	22.17	22.63	21.58
5240	1	16.59	16.61	16.60	22.28	22.21	21.85

Note: The bandwidth was measured at 6Mbps for 802.11a mode.

Bandwidth (MHz) for 802.11n HT20

Freq. (MHz)	Stream	Ch 0 99% BW	Ch 1 99% BW	Ch 2 99% BW	Ch 0 26 dB BW	Ch 1 26 dB BW	Ch 2 26 dB BW
5180	1	18.59	18.55	18.50	26.29	27.51	26.38
5220	1	18.62	18.63	18.52	26.39	27.19	26.49
5240	1	18.67	18.07	18.47	27.16	20.00	25.44

Note: The bandwidth was measured at 6.5Mbps at 1 data stream.

Randwidth (MHz) for 202 11:	- TTT40

Freq. (MHz)	Stream	Ch 0 99% BW	Ch 1 99% BW	Ch 2 99% BW	Ch 0 26 dB BW	Ch 1 26 dB BW	Ch 2 26 dB BW	
5190	1	36.74	36.73	38.81	49.11	49.93	49.14	
5230	1	36.77	36.80	36.79	49.40	49.95	48.98	

Note: The bandwidth was measured at 13.5Mbps at 1 data stream

Note: Other modes HT20 2 & 3 streams and HT40 2 & 3 streams investigated. Only worst case results are reported here.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

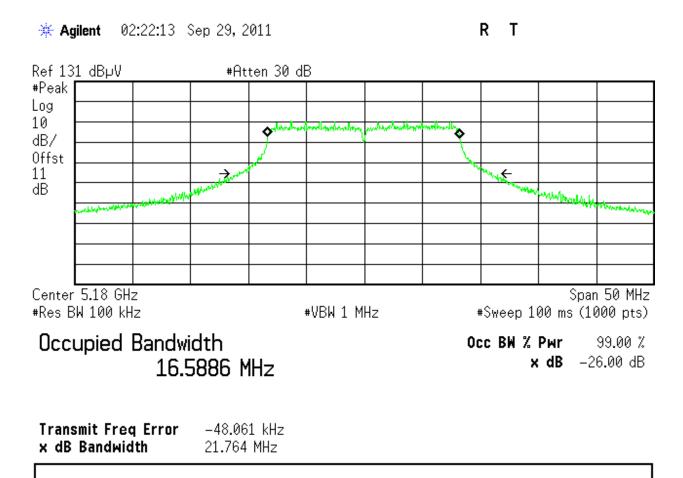
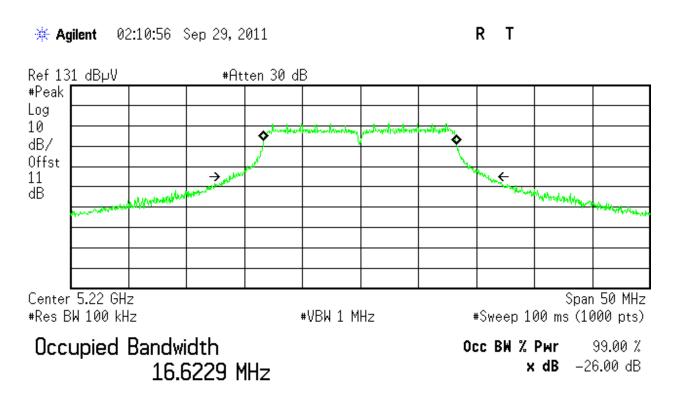
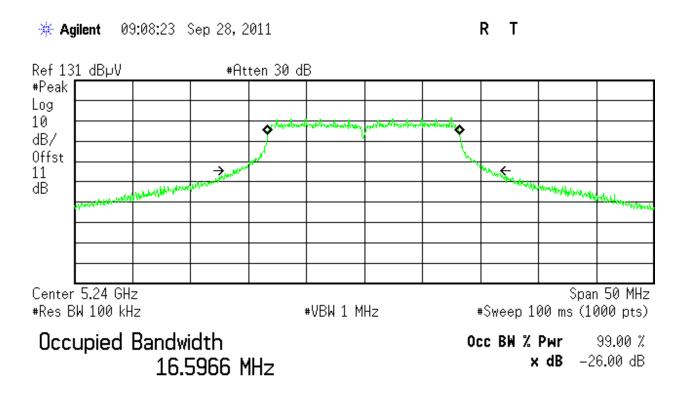




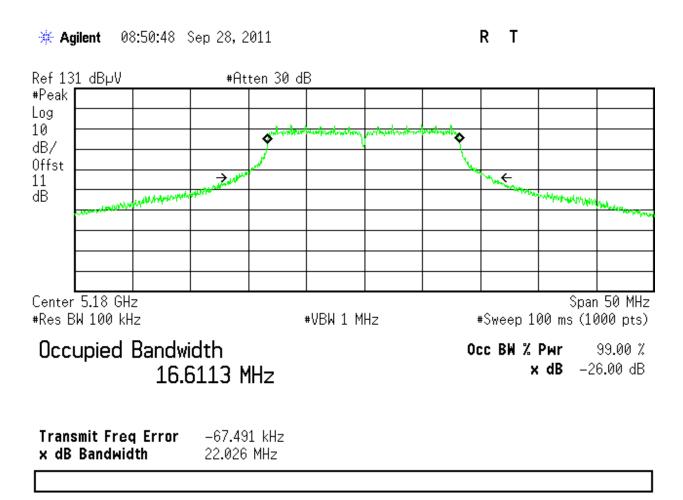
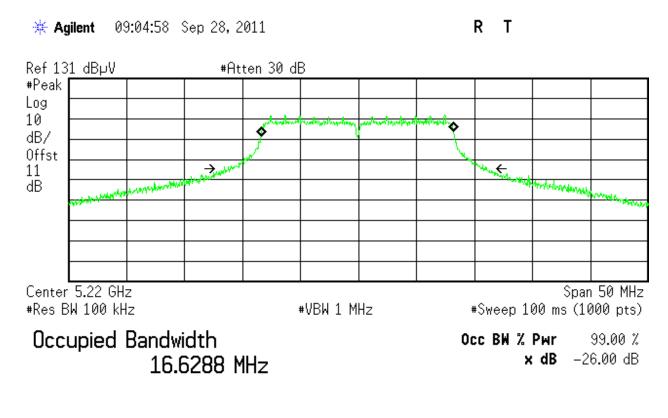
Figure 12: 26 dB and 99% Bandwidth at 5180 MHz, Chain 0

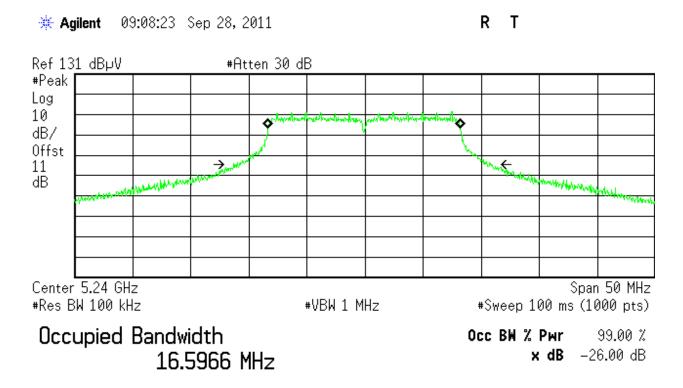
Transmit Freq Error -37.467 kHz x dB Bandwidth 22.175 MHz

Figure 13: 26 dB and 99% Bandwidth at 5220 MHz, Chain 0

-58.545 kHz Transmit Freq Error x dB Bandwidth 22.171 MHz

Figure 14: 26 dB and 99% Bandwidth – 5240 MHz, Chain 0


Figure 15: 26 dB and 99% Bandwidth – 5180 MHz, Chain 1

Transmit Freq Error -72.310 kHz x dB Bandwidth 22.639 MHz

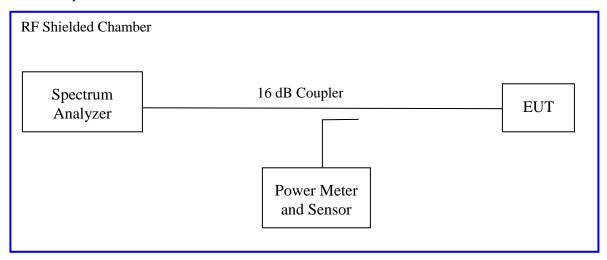
Figure 16: 26 dB and 99% Bandwidth – 5220 MHz, Chain 1

Page 37 of 100

Transmit Freq Error -58.545 kHz x dB Bandwidth 22.171 MHz

Figure 17: 26 dB and 99% Bandwidth – 5240 MHz, Chain 1

4.3 Peak Excursion


According to the CFR47 Part 15.407 (a)(6), the ratio of the peak excursion of the modulation envelope(measured suing a peak hold function) to the maximum conducted output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

4.3.1 Test Method

The ANSI C63.10-2009 Section 6.10.4 conducted method was used to measure the peak excursion.

The measurement was performed with modulation per CFR47 Part 15.407 (a) (6) This test was conducted on 3 channels in each operating frequency range of 5150 MHz to 5250 MHz. The worst sample result indicated below.

Test Setup:

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

4.3.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 4: Peak Excursion – Test Results

Test Conditions: Conducted Measurement, Normal Temperature				
Antenna Type: 3 External	Power Setting: see test plan			
Max. Antenna Gain: +2.0 dBi	Signal State: Modulated (100%)			
Ambient Temp.: 21 °C	Relative Humidity:31%			

Relative Humidity:31%

802.11a Mode, 1x3

Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5180	13.0	9.08	8.71	8.669	-3.92
5220	13.0	8.9	9.43	11.11	-1.89
5240	13.0	7.8	8.55	9.076	-3.92

Note: The peak excursion was observed at 6 Mbps.

802.11n (HT20) Mode, 1x3

		•	•		
Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5180	13.0	8.45	8.95	7.89	-4.05
5220	13.0	10.02	8.06	8.59	-2.98
5240	13.0	8.58	7.989	8.99	-4.01

Note: The peak excursion was observed at HT20 6.5 Mbps, 1 Data Stream.

802.11n (HT20) Mode, 2x3

Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5180	13.0	8.23	9.01		-3.99
5220	13.0	9.73	8.82		-3.72
5240	13.0	8.81	8.24		-4.19

Note: The peak excursion was observed at HT20 13 Mbps, 2 Data Streams.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Tel: (925) 249-9123, Fax: (925) 249-9124

802.11n (HT20) Mode, 3x3									
Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]				
5180	13.0	8.23	8.69	8.68	-4.31				
5220	13.0	8.99	10.02	9.85	-2.98				
5240	13.0	8.57	8.59	9.63	-3.37				

Note: The peak excursion was observed at HT20 19.5 Mbps, 3 Data Streams.

802.11n (HT40) Mode, 1x3

Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5190	13.0	8.945	10.19	8.51	-2.81
5230	13.0	8.99	9.39	8.71	-3.61

Note: The peak excursion was observed at HT40 13.5 Mbps, 1 Data Stream

802.11n (HT40) Mode, 2x3

Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5190	13.0	8.93	9.59		-3.41
5230	13.0	8.61	9.55		-3.45

Note: The peak excursion was observed at HT40 27 Mbps, 2 Data Streams.

802.11n (HT40) Mode, 3x3

Operating Channel	Limit [dB]	Chain 0 [dB]	Chain 1 [dB]	Chain 2 [dB]	Margin [dB]
5190	13.0	9.43	9.41	9.20	-3.57
5230	13.0	9.30	9.662	9.91	-3.09

Note: The peak excursion was observed at HT40 40.5 Mbps, 3 Data Streams.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

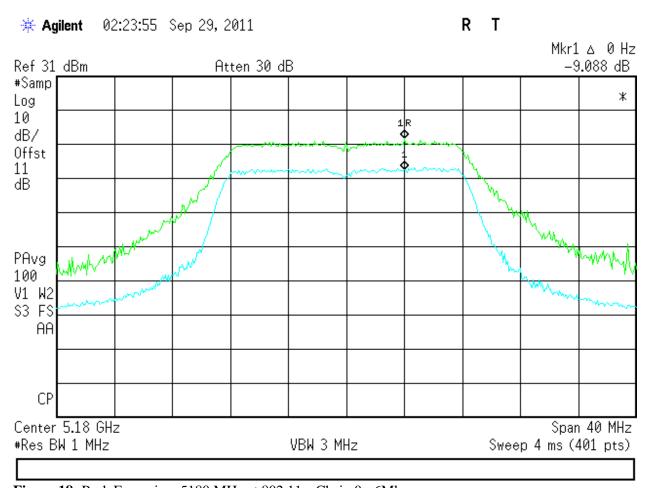


Figure 18: Peak Excursion, 5180 MHz at 802.11a, Chain 0 - 6Mbps

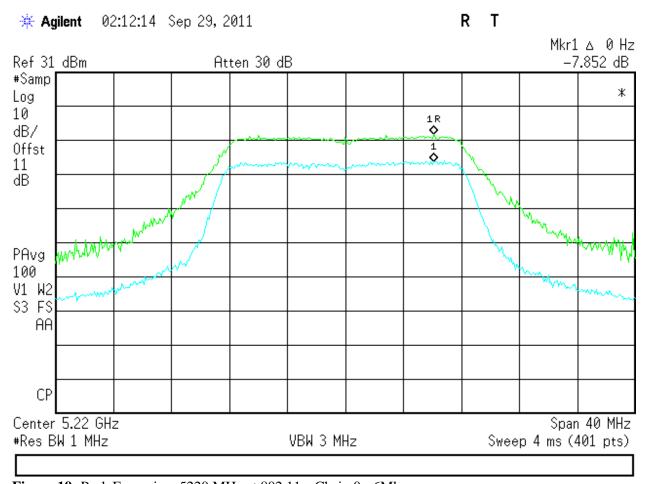


Figure 19: Peak Excursion, 5220 MHz at 802.11a, Chain 0 - 6Mbps

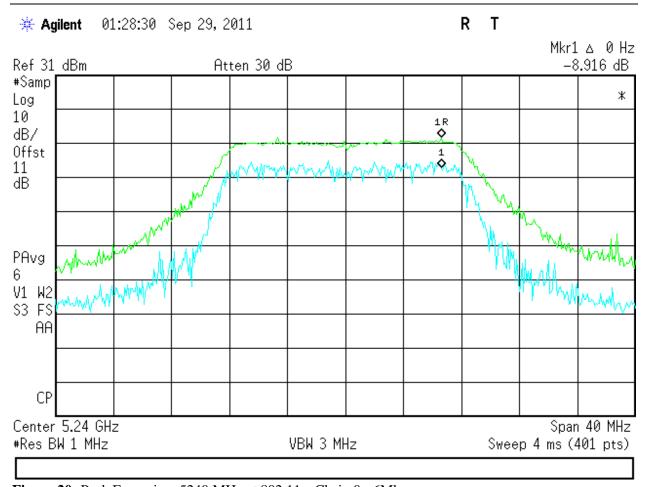
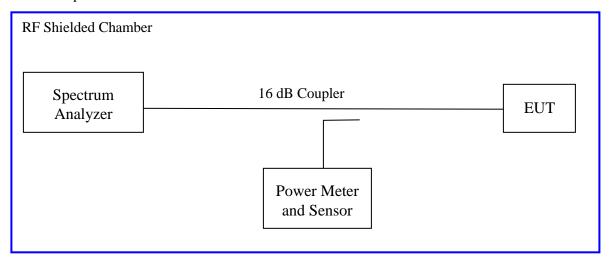


Figure 20: Peak Excursion, 5240 MHz at 802.11a, Chain 0 - 6Mbps

Note: All the modes stated ion the table 4 were evaluated only sample plots are placed here. All the plots are available in the project folder.


4.4 Peak Power Spectral Density

According to the CFR47 Part 15.407 (a)(5) and RSS 210 (A9.2), the spectral power density output of the antenna port shall be less than 4dBm at 5150 MHz to 5250 MHz, in any 1 MHz band during any time interval of continuous transmission.

4.4.1 Test Method

The conducted method was used to measure the channel power output per ANSI C63.10-2009 Section 6.11.2. The measurement was performed with modulation per CFR47 Part 15.407 (a) and RSS 210 (A9.2). The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range of 5150 MHz to 5250 MHz, The power spectral density is extracted from channel power measurements by adding 60 dB to spectral density measured during power measurements.

Test Setup:

Report Number: 31152150.003 EUT: Newcastle, Newport

 $Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W$

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 5: Peak Power Spectral Density – Test Results

Test Conditions: Conducted Measurement, Normal Temperature and Voltage only					
Antenna Type: 3 External	Power Setting: See Test plan				
Max. Antenna Gain: + 2.0 dBi	Signal State: Modulated (100%)				
Ambient Temp.: 21 °C	Relative Humidity:31%				
Deal Demon Constant Demote					

Peak Power Spectral Density

802.11a Mode

Frequency (MHz)	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	CF [dB]	Max. PPSD [dBm]	Limit [dBm]	Margin [dB]
5180	2.10	3.42	1.56		3.42	4.00	-0.58
5220	2.62	3.36	2.13		3.36	4.00	-0.64
5240	2.62	3.28	2.42		3.28	4.00	-0.72

Note: The highest peak power spectral density was observed at 6 Mbps.

802.11n (HT20) Mode, 1x3									
Frequency (MHz)	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	CF [dB]	Max. PPSD [dBm]	Limit [dBm]	Margin [dB]		
5180	2.76	2.29	1.09		2.76	4.0	-2.24		
5220	3.22	2.23	1.76		3.22	4.0	-0.78		
5240	2.94	3.01	2.07		3.01	4.0	-0.99		

Note: The highest peak power spectral density was observed at HT20 6.5Mbps, 1 Data Stream.

	802.11n (HT20) Mode, 2x3									
Frequency (MHz)	Chain 0 [dBm]	Chain 1 [dBm]	Chain 2 [dBm]	CF [dB]	Max. PPSD [dBm]	Limit [dBm]	Margin [dB]			
5180	-4.04	-0.43		3.01	2.58	4.0	-1.42			
5220	-3.77	-1.53		3.01	1.48	4.0	-2.52			
5240	-3.58	-1.79		3.01	1.22	4.0	-2.78			

Note: 1. The highest peak output power was observed at HT20 13 Mbps, 2 Data Stream.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

^{2.} CF was accounted for the number of data streams being used, 10*Log(N) per KDB 662911; where N is number of outputs.

	802.11n (HT20) Mode, 3x3											
Frequency (MHz)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
5180	-2.89	-2.40	-5.29	4.77	2.37	4.0	-1.63					
5220	-2.62	-3.09	-4.55	4.77	2.15	4.0	-1.85					
5240	-2.93	305	-5.11	4.77	1.84	4.0	-2.16					

Note: 1. The highest peak output power was observed at HT20 19.5 Mbps, 3 Data Streams.

2. CF was accounted for the number of data streams being used, 10*Log(N) per KDB 662911; where N is number of outputs.

	802.11n (HT40) Mode, 1x3											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
5190	-3.02	-3.37	-4.37		-3.02	4.0	-7.02					
5230	5230 0.48 -2.67 -3.34 0.48 4.0 -3.52											

Note: The highest peak output power was observed at HT40 13.5 Mbps, 1 Data Stream.

	802.11n (HT40) Mode, 2x3										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
5190	-3.44	-4.80		3.01	-0.40	4.0	-4.40				
5230	5230 -2.87 -5.11 3.01 0.14 4.0 -3.86										

Note: 1. The highest peak output power was observed at HT40 27 Mbps, 2 Data Streams.

2. CF was accounted for the number of data streams being used, 10*Log(N) per KDB 662911; where N is number of outputs.

802.11n (HT40) Mode, 3x3										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
5190	-6.63	-4.55	-7.51	4.77	0.22	4.0	-3.78			
5230	-6.22	-5.19	-7.31	4.77	-0.42	4.0	-4.42			

Note: 1. The highest peak output power was observed at HT40 40.5 Mbps, 3 Data Streams.

2. CF was accounted for the number of data streams being used, 10*Log(N) per KDB 662911; where N is number of outputs.

Note:

The power spectral density is extracted from channel power measurements by adding 60 dB to spectral density measured during power measurements. Please see table 1 and plot # 1 to 11

4.5 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.407(b), RSS 210 Sect. A.9.2

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pres-scans were performed to determine the worst axis, data rate/chains.

4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m nonconductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the worst axis, Y-Axis, for three operating channels;

6 Mbit/s for 802.11a mode: 5180 MHz, 5220 MHz, 5240 MHz, 5260 MHz, 5300 MHz, 5320 MHz, 5500 MHz, 5600 MHz, and 5700 MHz.

6.5 Mbit/s for 802.11n HT20 Mode: 5180 MHz, 5220 MHz, 5240 MHz, 5260 MHz, 5300 MHz, 5320 MHz, 5500 MHz, 5600 MHz, and 5700 MHz.

Report Number: 31152150.003 **EUT:** Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

40.5 Mbit/s for 802.11n HT40 Mode: 5180 MHz, 5220 MHz, 5240 MHz, 5260 MHz, 5300 MHz, 5320 MHz, 5500 MHz, 5600 MHz, and 5700 MHz.

4.5.1.3 Deviations

None.

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2009 and RSS 210 A1.1.2 2007.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

According to CFR47 15.407 (b), all harmonics and spurious emissions which are outside the $5150 \, \text{MHz} - 5250 \, \text{MHz} - 5350 \, \text{MHz} - 5350 \, \text{MHz}$, or $5470 \, \text{MHz} - 5725 \, \text{MHz}$ shall not exceed -27 dBm/MHz. This is equivalent to $68.2 \, \text{dBuV/m}$ at 3 meter distance.

4.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

Table 6: Transmit Spurious Emission at Band-Edge Requirements

Test Conditions: Radiated Measurement, Normal Temperature and Voltage only

Antenna Type: 3 External Power Setting: See test plan

Max. Antenna Gain: +2.0 dBi Signal State: Modulated at 100%

Ambient Temp.: 22 °C **Relative Humidity:** 34%

Band-Edge Results

Operating Channel	Mode	Polarity	Pk Emission level dBuv	Peak Limit	Margin dB	Avg Emission level dBuv	Ave. Limit	Margin dB
5180 MHz	802.11a	Horz.	67.50	68.2	-0.70	50.78	54.00	-3.22
5240 MHz	802.11a	Horz.	62.00	68.2	-6.2	48.92	54.00	-5.08
5180 MHz	802.11n (HT20)	Horz.	66.75	68.2	-1.25	53.90	54.00	-0.10
5240 MHz	802.11n (HT20)	Horz.	64.01	68.2	-4.09	50.20	54.00	-3.80
5190 MHz	802.11n (HT40)	Horz.	67.58	68.2	-0.62	50.90	54.00	-3.90
5230 MHz	802.11n (HT40)	Horz.	63.47	68.2	-4.73	50.09	54.00	-3.91

Note: 1. All the band-edge measurements met the restricted band requirements of CFR47 15.205.

- 2. It is also complied with the -27 dBm/MHz (68.2dBuV/m at 3m) requirements as stated in CFR47 15.407 (b) (1) to 15.407 (b) (3).
- 3. Preliminary tests on the device indicated Horizontal Polarization of antenna is worst the case for all a, HT 20 and HT 40 modes.
- 4. Upper band edge is measured at 5350 MHz

Report Number: 31152150.003 EUT: Newcastle, Newport

 $Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W$

EMC / Rev 12/1/2011

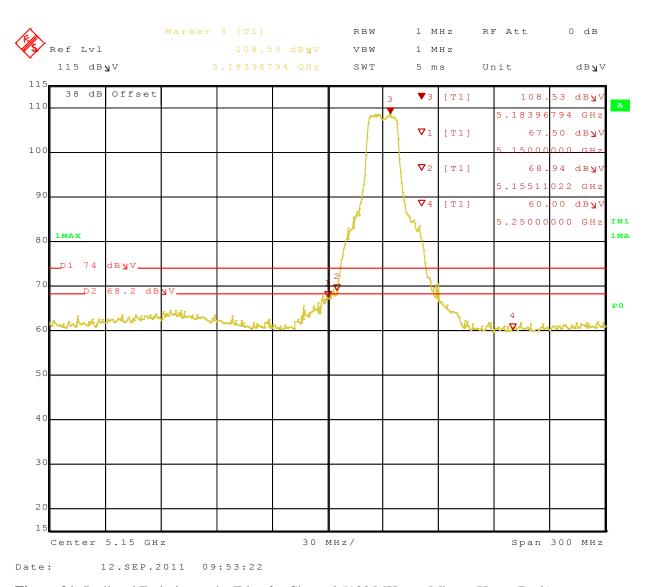


Figure 21: Radiated Emission at the Edge for Channel 5180 MHz at 6Mbps – Horz. (Peak)

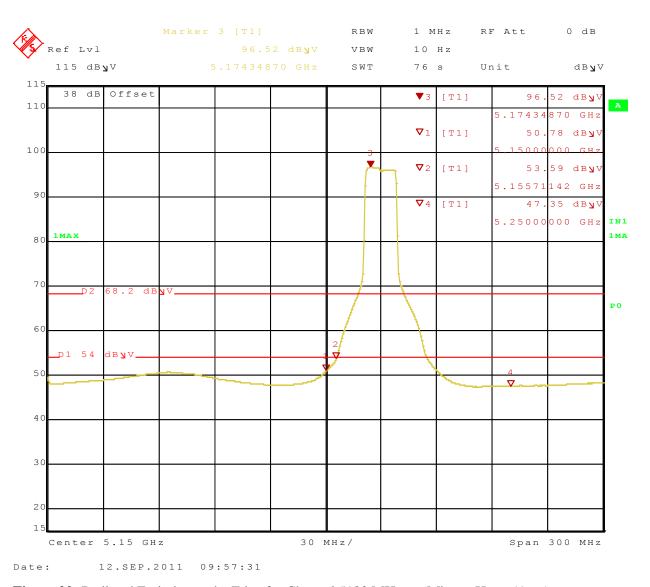


Figure 22: Radiated Emission at the Edge for Channel 5180 MHz at 6Mbps – Horz. (Ave.)

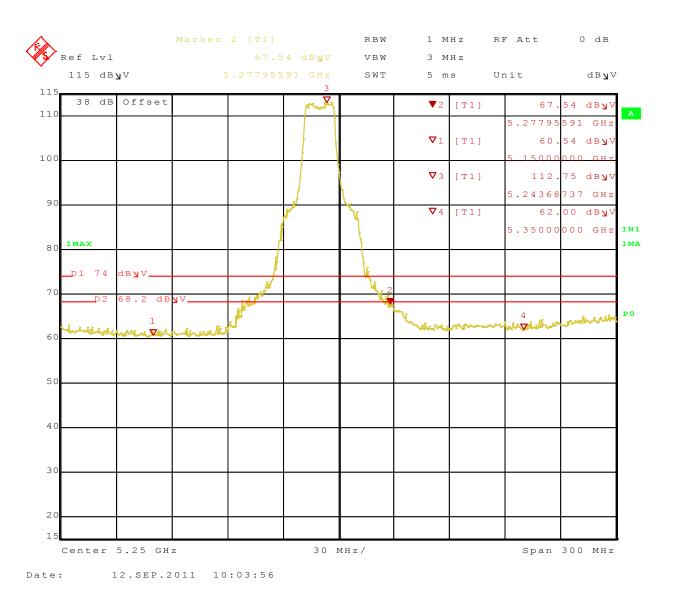


Figure 23: Radiated Emission at the Edge for Channel 5240 MHz at 6Mbps – Horz. (Peak)

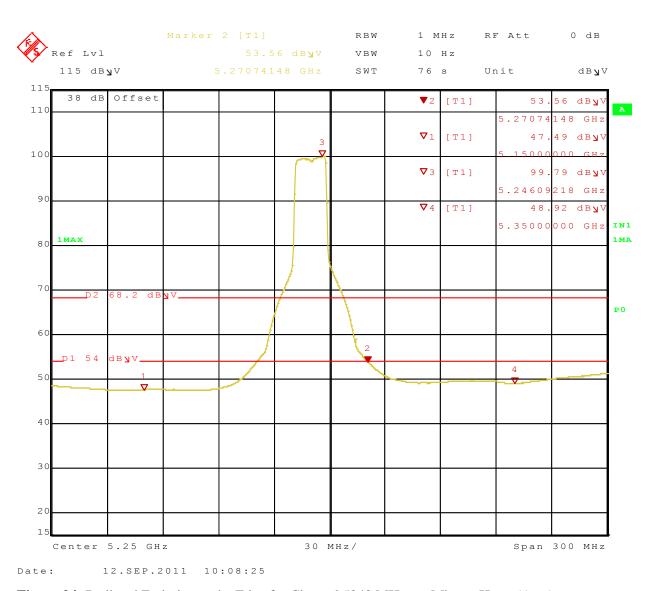


Figure 24: Radiated Emission at the Edge for Channel 5240 MHz at 6Mbps – Horz. (Ave.)

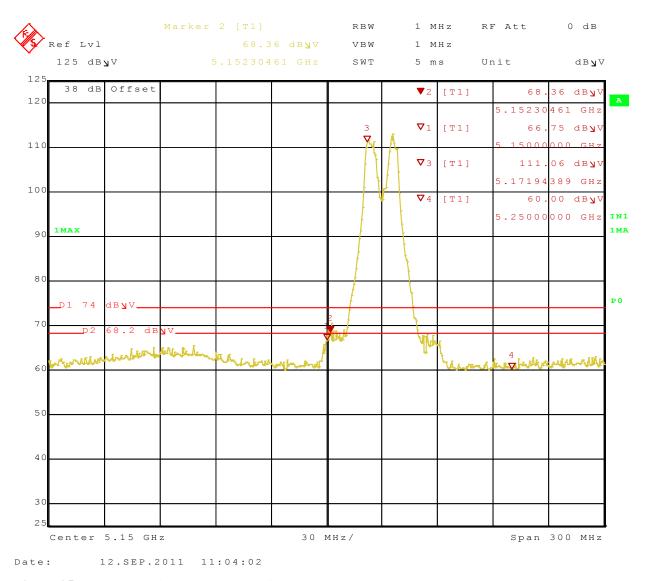


Figure 25: Radiated Emission at the Edge for Channel 5180 MHz at HT 20 19.5Mbps – Horz (Peak)

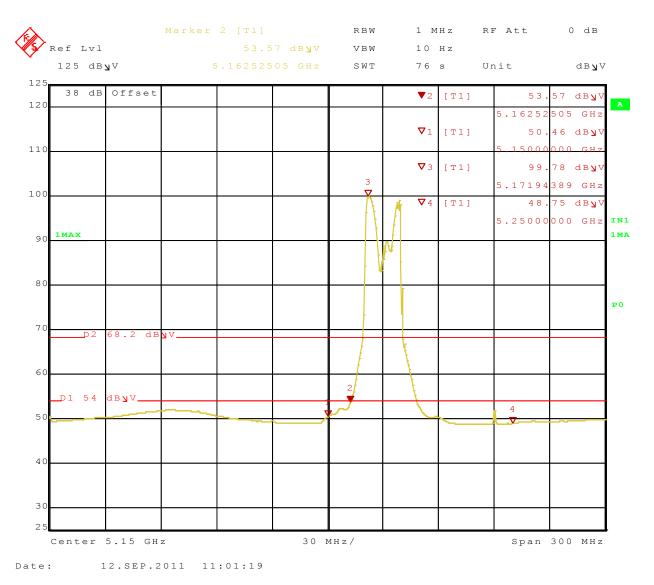


Figure 26: Radiated Emission at the Edge for Channel 5180 MHz at at HT 20 19.5Mbps – Horz. (Ave.)

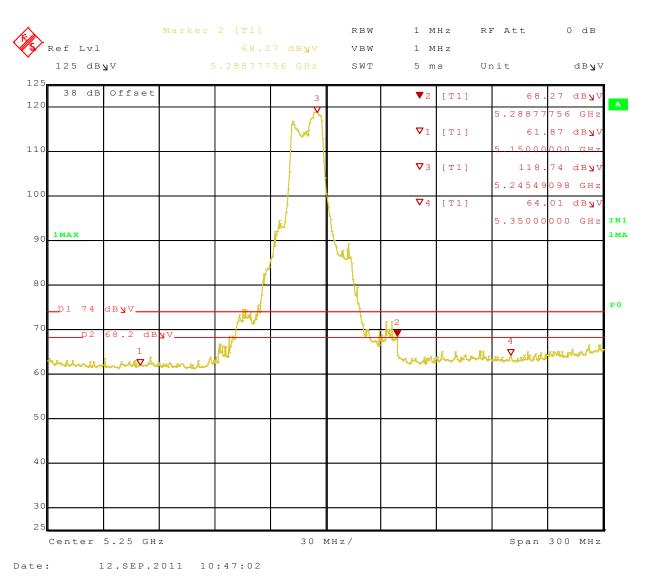


Figure 27: Radiated Emission at the Edge for Channel 5240 MHz at at HT 20 19.5Mbps – Horz. (Peak)

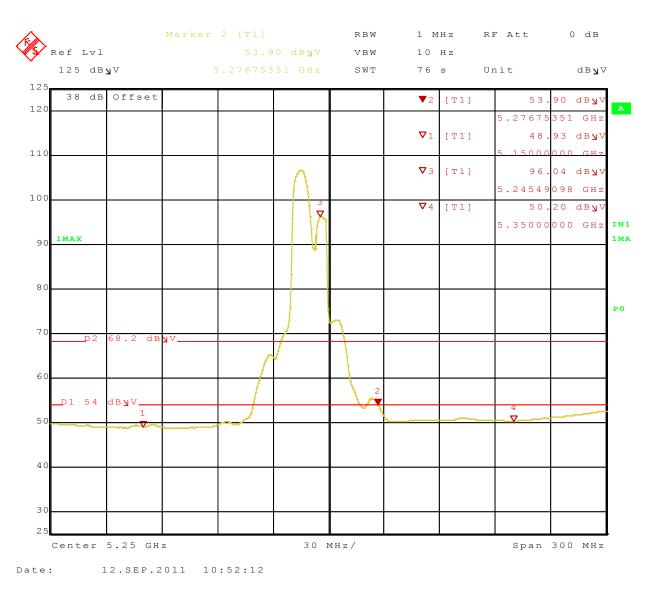


Figure 28: Radiated Emission at the Edge for Channel 5240 MHz at at HT 20 19.5Mbps – Horz. (Ave.)

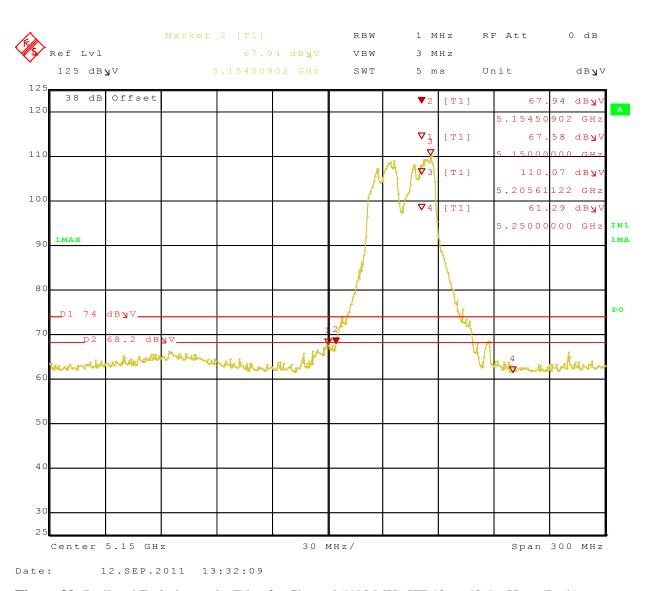


Figure 29: Radiated Emission at the Edge for Channel 5190 MHz HT 40 at 40.5 – Horz (Peak)

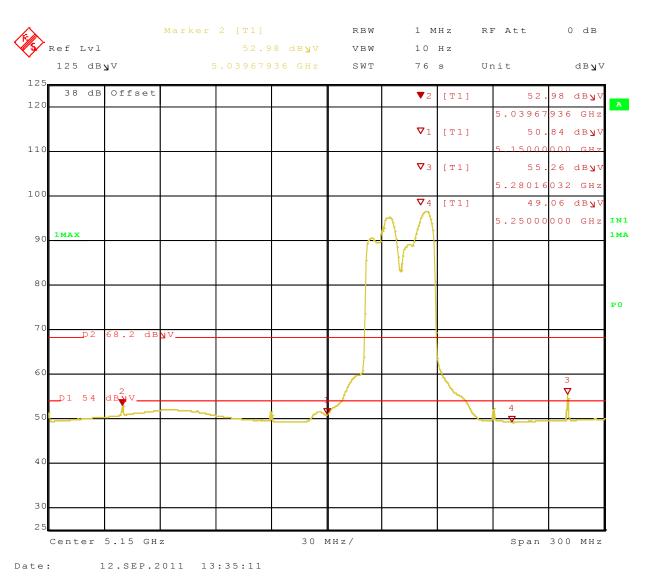
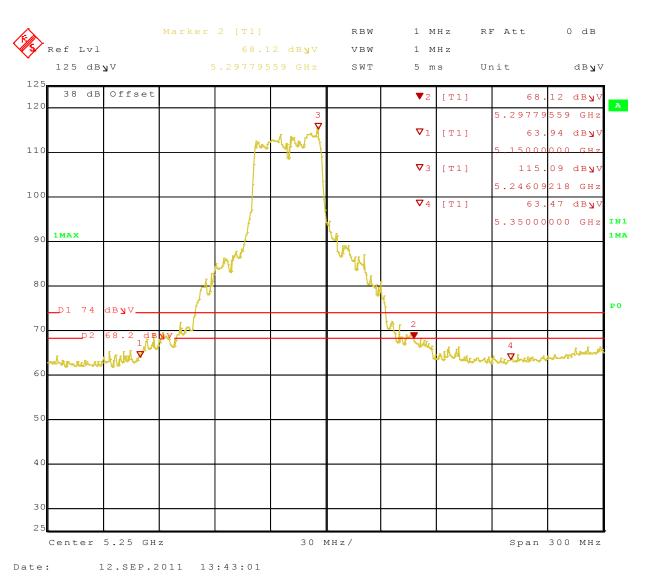



Figure 30: Radiated Emission at the Edge for Channel 5190 MHz HT 40 at 40.5Mbps – Horz. (Ave.)

Figure 31: Radiated Emission at the Edge for Channel 5230 MHz HT 40 at 40.5 – Horz (Peak)

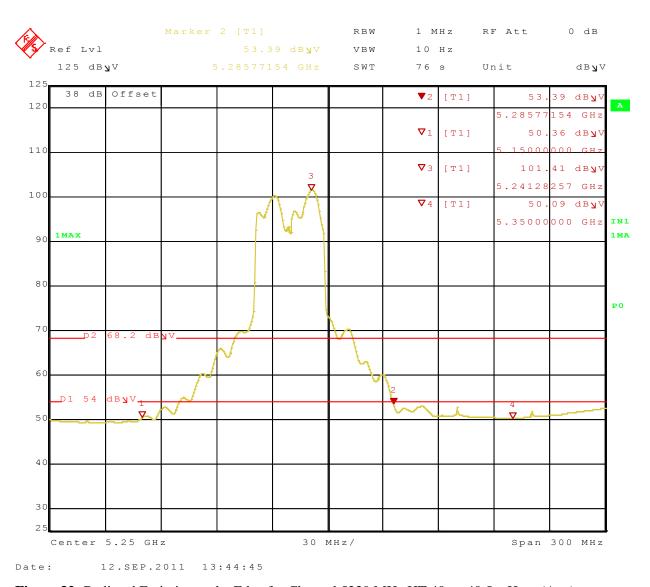


Figure 32: Radiated Emission at the Edge for Channel 5230 MHz HT 40 at 40.5 – Horz (Avg)

SOP 1 Rad	diated	Emiss	ions			Т	racking #	311521	50.003 Page	1 of 10
EUT Name	New	castle,	Newport				Date		September 2	20, 2011
EUT Model	EUT Model FS1E5, FS1E5W, FS2E5, FS2E5W							Temp / Hum in 21°C / 38%rh		
							Temp / H	um out	N/A	
EUT Config. Y-Axis, 802.11a at 6Mbps							Line AC / Freq 120Vac/60Hz			7
Standard	CFR	47 Par	t 15 Subp	art C			RBW / VE	3W	120 kHz/ 300	kHz
Dist/Ant Use	ed 3m /	JB3					Performe	ed by	Jeremy Luon	g
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	c Spec	Type
Freq	Polar	Pos	Pos	Pk	Ave	CF	Ave	Lim	it Margin	
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)		dBuV		<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	
		. ;	30 MHz to	1GHzTrar	smitted at	802.1	1a, 5180 N	/Hz 6Mb	ps	
200.00	Н	160	113	51.67	48.51	-10.22	38.29	43.52	-5.23	Spurious
241.18	Н	105	52	54.97	52.58	-10.21	42.37	46.02	-3.65	Spurious
374.98	Н	282	102	45.31	43.51	-7.16	36.35	46.02	-9.67	Spurious
749.96	Н	95	321	46.78	45.33	-0.63	44.70	46.02	-1.32	Spurious
874.98	Н	95	101	37.79	37.20	0.74	37.94	46.02	-8.08	Spurious
62.05	V	95	159	56.19	49.23	-16.45	32.78	40.00	-7.22	Spurious
240.05	V	94	21	54.28	50.17	-10.33	39.84	46.02	-6.18	Spurious
374.98	V	156	163	48.79	47.62		40.16	46.02	-5.86	Spurious
Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor										
Combined Stan	dard Unce	ertainty <i>U</i>	$I_c(y) = \pm 3.2$	dB Expand	led Uncertaint	y U = k	$u_c(y)$ $k =$: 2 for 95%	confidence	
Notes: Wor	Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence Notes: Worst case was observed on Y-axis at 802.11a, 5220 MHz 6Mbps. Emissions at 2333MHz are broadband emission. It emitted from Newport power source, and it is not									
		ie radio	module.	i ne ivewpo	ort is marke	tea as (Ciass A De	evice. Al	I other emissi	ons passed
Class B limit										

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

SOP 1 Rac	liated E	missi	ons			Т	racking #	3115215	0.003 Page	2 of 10
EUT Name	New	castle, l	Newport				Date		September 2	0, 2011
EUT Model	FS1	E5, FS	1E5W, F	S2E5, FS2E	5W		Temp / H		23°C / 33%rl	า
EUT Serial							Temp / H		N/A	
EUT Config.			11a at 6N				Line AC /		120Vac/60Hz	
Standard			15 Subpa				RBW / VB	-	1 MHz/ 3 MH	
Dist/Ant Use				n - RA42-K-			Performe		Suresh Kond	<u>'</u>
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe		Type
Freq (MHz)	Polar (H/V)	Pos (cm)	Pos (deg)	Pk (dBuV/m)	Ave (dBuV/m)	CF dBuV	Ave (dBuV/m)	Limi dBuV)		
(1011 12)	(11/7)	(CIII)			ta at 5180 l			(ubuv)	п) (ав)	
1200.07	V	164	389	52.71	43.2	-5.35	37.85	53.98	-16.13	Spurious
										1
1329.82	V	198	458	48.37	38.97	-4.96	34.02	53.98	-19.96	Spurious
2333.08	Н	241	36	59.53	57.71	-0.57	57.14	53.98	3.16	Spurious
3666.34	Н	121	58	54.11	49.5	3.46	52.96	53.98	-1.02	Spurious
5000.14	Н	167	283	47.24	41.6	5.61	47.21	53.98	-6.77	Spurious
10345.01	Н	111	6	38.31	26.02	13.17	39.19	53.98	-14.79	Harmonic
15541.2	V	111	54		25.79	14.81	40.6	53.98	-13.38	Harmonic
		1	Tra	nsmitted Da	ta at 5220 I	MHz @	16.5 dBm	ı	T	1
1596.01	V	215	80	53.58	36.86	-3.91	32.95	53.98	-21.03	Spurious
2333.08	Н	196	-16	56.84	54.5	-0.57	53.93	53.98	-0.05	Spurious
2500.07	Н	201	209	47.04	48.38	0.02	48.4	53.98	-5.58	Spurious
3666.31	Н	201	56	53.1	49.18	3.46	52.64	53.98	-1.34	Spurious
4666.41	Н	245	65	42.15	34.6	4.61	39.21	53.98	-14.77	Spurious
10425.01	Н	245	388	39.09	26.32		39.58	53.98	-14.4	Harmonic
	ı	1	Tra	nsmitted Da	ta at 5240 l	MHz @	16.5 dBm	ı		
1200.07	V	106	130	50.98	35.29	-5.35	29.94	53.98	-24.04	Spurious
2333.2	Н	146	417	57.48	56.17	-0.57	55.6	53.98	1.62	Spurious
3666.28	Н	147	412	53.78	49.68	3.45	53.13	53.98	-0.85	Spurious
5000.01	Н	181	95	47.31	41.36	5.61	46.97	53.98	-7.01	Spurious
7358.23	V	137	376	38.45	26.73		37.15	53.98	-16.83	Spurious
Spec Margin = Total CF= Amp					P+ Total CF	± Unce	ertainty			
Combined Stand	lard Uncer	tainty <i>U</i> _c	$(y) = \pm 3.2 c$	dB Expande				for 95% co		
Notes: Worst of limits										vith Class A

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

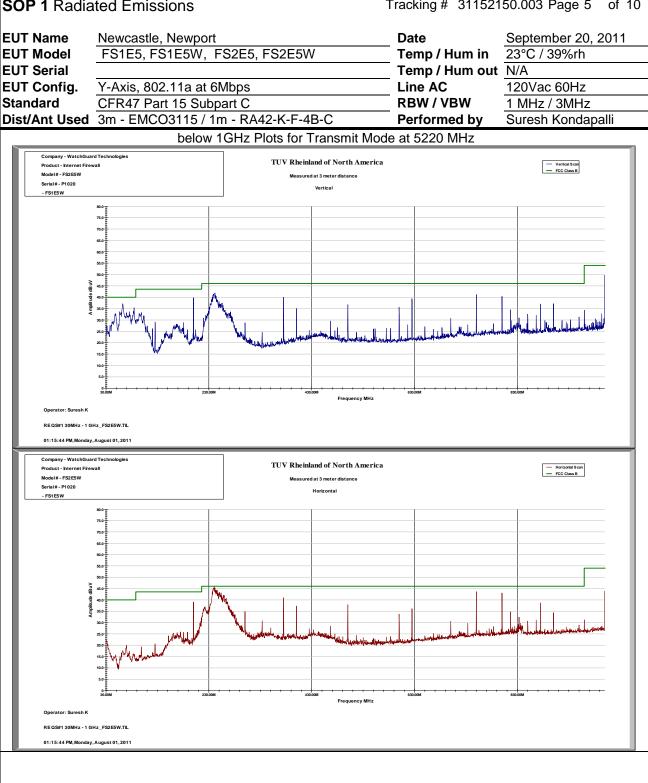
1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Rad	liated	Emissi	ions	racking #	311521	50.003 Page	3 of 10			
EUT Name EUT Model EUT Serial EUT Config. Standard Dist/Ant Use	Newcastle, Newport FS1E5, FS1E5W, FS2E5, FS2E5W Prototype Y-Axis, 802.11a at 6Mbps CFR47 Part 15 Subpart C 3m / EMCO3115 / 1m - RA42-K-F-4B-C				Date September 20, 20 Temp / Hum in 23°C / 33%rh Temp / Hum out N/A Line AC / Freq 120Vac/60Hz RBW / VBW 1 MHz/ 3 MHz Performed by Suresh Kondapalli			h z Hz		
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spec	Spec	Type
Freq	Polar	Pos	Pos	Pk	Ave	CF	Ave	Limit	Margin	
Trans	smitted	Data at	@ dBm	HT 20 Mod	e worst ca	se resu	Its from lo	w, mid a	and high chan	nels
1100.01	V	180	23	48.95	36.67	-5.68	30.99	53.98	3 -22.99	Spurious
2114.81	V	180	424	43.64	32.6	-1.39	31.2	53.98	3 -22.78	Spurious
2333.08	V	171	414	54.96	53.48	-0.57	52.91	53.98	3 -1.07	Spurious
3666.37	V	147	364	49.3	42.58	3.46	46.03	53.98	3 -7.95	Spurious
4999.62	Н	147	-10	44.97	38.51	5.61	44.12	53.98	-9.86	Spurious
7250.82	Н	147	474	41.24	26.64	10.32	36.96	53.98	3 -17.02	Spurious
1595.86	V	200	125	61.86	39.51	-3.91	35.6	53.98	-18.38	Harmonic
10435.3	Н	168	79	40.64	26.33	13.26	39.59	53.98	3 -14.39	Harmonic
10446.8	V	170	422	39.23	26.4	13.26	39.66	53.98	3 -14.32	Harmonic
10446.8	Н	170	322	44.36	26.3	13.26		53.98	3 -14.42	Harmonic
Spec Margin = Total CF= Amp Combined Stand Notes: Wors	o Gain + dard Unce	Cable Lertainty <i>U</i>	$\frac{\text{oss} + \text{ANT}}{c(y)} = \pm 3.2$	Γ Factor : dB Expand	ded Uncertain			2 for 95%	confidence	

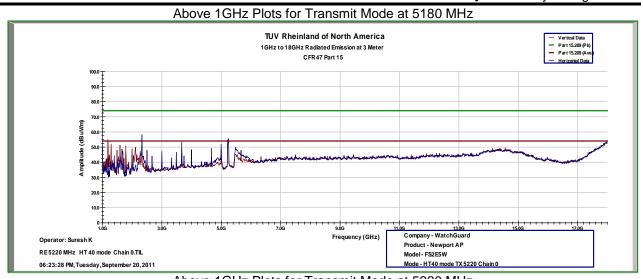
Report Number: 31152150.003 EUT: Newcastle, Newport

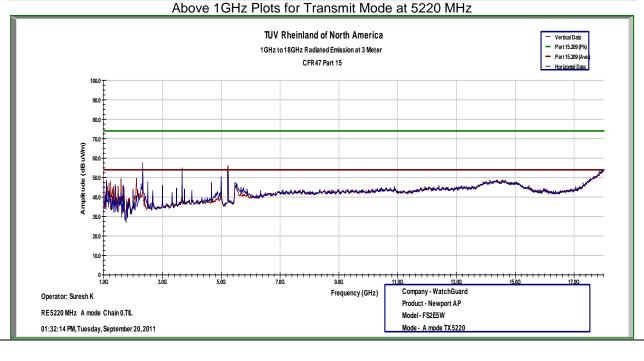
Model FS1E5, FS1E5W, FS2E5, FS2E5W

SOP 1 Rad	diated I	Emissi	ions			Т	racking #	3115215	0.003 Page	4 of 10
EUT Name	New	castle,	Newport				Date	5	September 2	20, 2011
EUT Model	FS1	E5, FS	1E5W, F	S2E5, FS2	E5W		Temp / H	_	23°C / 33%rl	า
EUT Serial		otype					Temp / H			
EUT Config.			.11a at 6l				Line AC /		120Vac/60H	
Standard			t 15 Subp				RBW / VE	3W <u>1</u>	MHz/3 MH	łz
Dist/Ant Use	ed 3m /	EMCO	3115 / 1n	n - RA42-K	-F-4B-C		Performe	d by	leremy Luor	ıg
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spec	•	Type
Freq	Polar	Pos	Pos	Pk	Ave	CF	Ave	Limit		
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)		dBuV			m) (dB)	
			ransmitte	ed Data at	MHZ H140	@ 14 (abm all cha	anneis		I
1199.99	V	156	58	50.03	41.5	-5.35	36.15	53.98	-17.83	Spurious
1300.17	V	142	52	41.82	32.54	-5.04	27.5	53.98	-26.48	Spurious
2333.14	V	139	55	53.54	52.02	-0.57	51.45	53.98	-2.53	Spurious
3666.28	V	149	-1	44.53	41.25	3.45	44.7	53.98	-9.28	Spurious
4999.62	V	170	64	46.04	40.52	5.61	46.13	53.98	-7.85	Spurious
10473.4	V	170	20	34.06	26.56	13.25	39.81	53.98	-14.17	Harmonic
1600.13	Н	224	441	49.98	35.5	-3.89	31.61	53.98	-22.37	Spurious
2333.26	Н	212	384	58.01	55.81	-0.57	55.24	53.98	1.26	Spurious
2447.04	Н	212	365	43.64	25.94	-0.2	25.74	53.98	-28.24	Spurious
3666.34	Н	233	392	48.43	43.54	3.46	47	53.98	-6.98	Spurious
4839.95	Н	224	412	48.65	43.66	5.14	48.8	53.98	-5.18	Spurious
5520.01	Н	257	104	47.32	37.02	6.88	43.9	53.98	-10.08	Spurious
7295.00	Н	124	322	39.21	26.72	10.36	37.08	53.98	-16.9	Spurious
9627.86	V	124	59	29.86	29.68	12.75	42.43	53.98	-11.55	Spurious
10425.00	Н	124	128	37.25	26.07	13.26	39.33	53.98	-14.65	Harmonic
1600.13	Н	224	441	49.98	35.5	-3.89	31.61	53.98	-22.37	Harmonic
3999.86	Н	126	292	45.4	34.68	-3.91	30.77	53.98	-23.21	Spurious
5000.01	Н	124	108	53.12	51.62	-0.57	51.05	53.98	-2.93	Spurious
5480.03	H	126	-73	42.67	38.83	3.46	42.28	53.98	-11.7	Spurious
Spec Margin = Total CF= Am					QP+ Fotal C	+ ± Unc	certainty			
Combined Stand						U = k	$u_c(y) k =$	2 for 95% c	onfidence	
Notes: Wors	st case v	was obs	served on	Y-axis, 6M	lbps.					


Report Number: 31152150.003

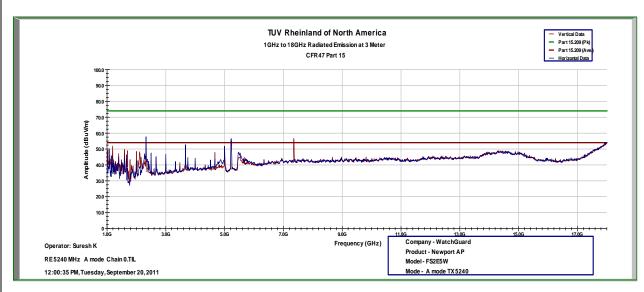
EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W


1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

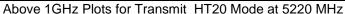

SOP 1 Radiated Emissions

Tracking # 31152150.003 Page 5 of 10

SOP 1 Radiated Emissions Tracking # 31152150.003 Page 6 Date **EUT Name** Newcastle, Newport September 20, 2011 FS1E5, FS1E5W, FS2E5, FS2E5W Temp / Hum in 23°C / 39%rh **EUT Model EUT Serial** Prototype Temp / Hum out N/A Y-Axis, 802.11a at 6Mbps Line AC 120Vac 60Hz **EUT Config.** Standard CFR47 Part 15 Subpart C **RBW / VBW** 1 MHz / 3MHz Dist/Ant Used 1m - RA42-K-F-4B-C Performed by Jeremy Luong

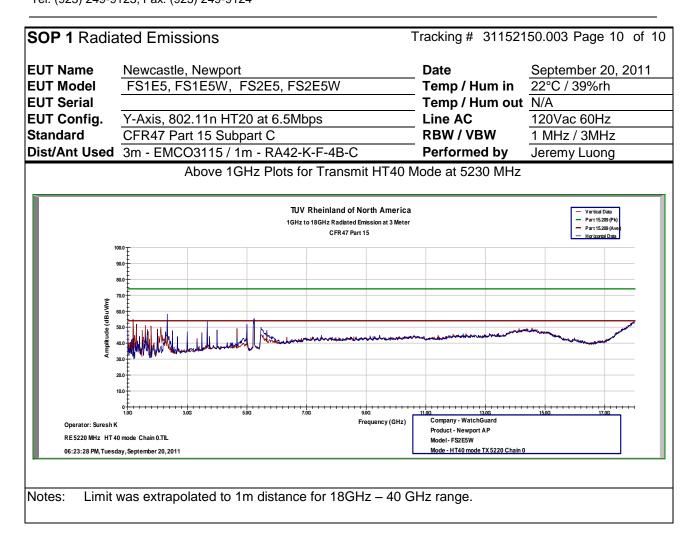


SOP 1 Radiated Emissions Tracking # 31152150.003 Page 7 **Date EUT Name** September 20, 2011 Newcastle, Newport FS1E5, FS1E5W, FS2E5, FS2E5W Temp / Hum in 23°C / 39%rh **EUT Model EUT Serial** Temp / Hum out N/A Line AC **EUT Config.** Y-Axis, 802.11a at 6Mbps 120Vac 60Hz Standard CFR47 Part 15 Subpart C **RBW / VBW** 1 MHz / 3MHz Dist/Ant Used 3m - EMCO3115 / 1m - RA42-K-F-4B-C Performed by Suresh Kondapalli Above 1GHz Plots for Transmit Mode at 5220 MHz TUV Rheinland of North America o emission within 20dB to the limit Hor izontal
 FCC Class Radiated Emissions 18 to 26 GHz at 1 meter Distance FCC Class B 80.0 20.0 24.00 Company - WatchGura Frequency (GHz) Product - Newport Model - FS2E5W Operator: Suresh K 12:25:31 PM, Sunday, September 25, 2011 TUV Rheinland of North America o emission was observed Radiated Emissions 26 to 40 GHz at 1 meter Distance FCC Class B 100.0 T 90.0 mplitude (dBuV) 28.5G Company - WatchGuard Model - Newport FS2ESW TX Channel - 5220MHz Mode - 802.11a.5220MHz @ 18dBm Data Rate - 6 Mbps Frequency (GHz) Operator: Suresh K RE5220MHz 26 to 40 GHz Scan a mode Chain 0.TIL 01:07:08 PM, Sunday, September 25, 2011 Notes: Limit was extrapolated to 1m distance for 18GHz – 40 GHz range.


SOP 1 Radia	ted Emissions	Tracking # 31152150.003 Page 8 of 10				
EUT Name	Newcastle, Newport	Date	September 20, 2011			
EUT Model	FS1E5, FS1E5W, FS2E5, FS2E5W	Temp / Hum in	23°C / 39%rh			
EUT Serial	Prototype	Temp / Hum out	N/A			
EUT Config.	Y-Axis, 802.11a at 6Mbps	Line AC	120Vac 60Hz			
Standard	CFR47 Part 15 Subpart C	RBW / VBW	1 MHz / 3MHz			
Dist/Ant Used	3m - EMCO3115 / 1m - RA42-K-F-4B-C	Performed by	Jeremy Luong			

Notes: Limit was extrapolated to 1m distance for 18GHz – 40 GHz range.

SOP 1 Radia	ted Emissions	Tracking # 31152150.003 Page 9 of 10				
EUT Name	Newcastle, Newport	Date	September 20, 2011			
EUT Model	FS1E5, FS1E5W, FS2E5, FS2E5W	Temp / Hum in	23°C / 39%rh			
EUT Serial		Temp / Hum out	N/A			
EUT Config.	Y-Axis, 802.11n HT20 at 6.5Mbps	Line AC	120Vac 60Hz			
Standard	CFR47 Part 15 Subpart C	RBW / VBW	1 MHz / 3MHz			
Dist/Ant Used	3m - EMCO3115 / 1m - RA42-K-F-4B-C	Performed by	Jeremy Luong			



All Emissions were at least 10 dB below noise floor level for 18 to 40Ghz range

FCCID: Q6G-FS2E5W; IC: 4657A-FS2E5W

Page 72 of 100

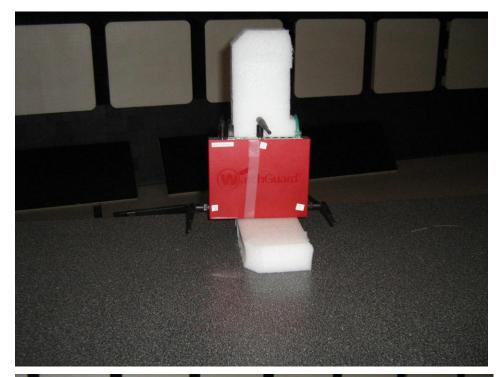
4.5.4 Sample Calculation

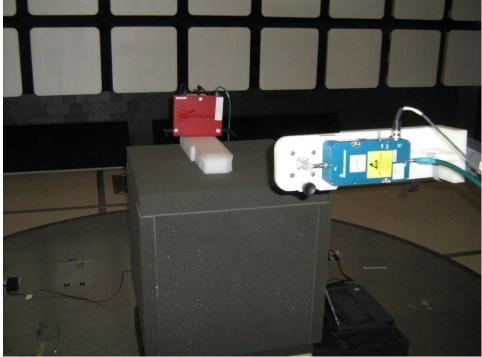
The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB)


CBL = Cable Loss (dB)


ACF = Antenna Correction Factor (dB/m)

 $/m - 10^{\frac{dB\mu V/m}{20}}$

 $\mu V/m = 10^{-20}$

4.5.5 Test setup Photos

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

4.6 Receiver Spurious Emissions

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.109 and RSS 210 Sect 2.7.

4.6.1 Test Methodology

4.6.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pre-scans were performed to determine the worst orientation.

4.6.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans were performed at the middle channel for each frequency band on Y-Axis.

20 MHz Receiving Bandwidth:

Operating Frequency 5220 MHz for 5150 MHz – 5250 MHz band

40 MHz Receiving Bandwidth:

Operating Frequency 5230 MHz for 5150 MHz – 5250 MHz band

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W EMC / Rev 12/1/2011 Page 76 of 100

4.6.1.3 Deviations

None.

Receiver Spurious Emission Limit 4.6.2

The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.109: 2009 and RSS GEN Sect 6.2 2010.

_____ Measurement. Frequency (MHz) Field strength distance (microvolts/meter) (meters) ______ 300 30 30 3 3 Above 960.....

4.6.3 Test Results

The final measurement data indicates the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.6.3.1 Final Data

The data recorded in this section contains the final results under the worst-case conditions and without any modifications or special accessories implemented as the manufacturer intends.

Report Number: 31152150.003 **EUT:** Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

SOP 1 Rad	diated	Emiss	ions		Т	racking #	311521	50.003 Page	1 of 12	
EUT Name	New	castle,	Newport				Date		September 2	26, 2011
EUT Model	FS1	E5, FS	31E5W, F	S2E5, FS2	E5W		Temp / H	um in	21°C / 36%rh)
EUT Serial	70A	B00010)-BC75				Temp / H	um out	N/A	
EUT Config.	Y-Ax	is, RX	at 20 MH	z Bandwidt	h		Line AC	/ Freq	120Vac 60Hz	<u>z</u>
Standard	CFR	47 Par	t 15 Subp	art b			RBW / VE	3W .	See Note	
Dist/Ant Use	ed 3m -	- JB3					Performe	ed by	Suresh Kond	apalli
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	ec Spec	Type
Freq	Polar	Pos	Pos	Pk	QP	CF	QP	Lim		71
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m) (dBu\		
	, ,	30 1	MHz to 10	GHz Radiat	ed Emissio	n - Rec	eive Mode	@ 5220) MHz	
246.26	Н	108	250	47.61	44.16	-10.22	33.94	56.90	-22.96	Spurious
624.97	Н	124	342	46.97	46.16	-3.09	43.07	56.90	-13.83	Spurious
749.91	Н	107	61	41.78	40.83	-0.63	40.20	56.90	-16.70	Spurious
800.01	Н	102	50	45.95	45.23	0.04	45.27	56.90	-11.63	Spurious
999.90	Н	116	280	44.00	40.33	2.91	43.24	60.00	-16.76	Spurious
499.95	V	106	13	48.23	47.00	-5.66	41.34	56.90	-15.56	Spurious
626.08	V	191	12	24.00	22.71	-3.29	19.42	56.90	-37.48	Spurious
749.91	V	139	7	43.43	42.96	-1.23	41.73	56.90	-15.17	Spurious
799.99	V	127	26	43.20	43.01	-0.46	42.55	56.90	-14.35	Spurious
999.89	V	105	6	48.25	47.88	2.51	50.39	60.00	-9.61	Spurious
Spec Margin = Total CF= Am					QP+ Total C	F ± Und	certainty			
Combined Stan					ed Uncertainty	$U = k \iota$	$I_c(y)$ $k =$	2 for 95%	confidence	
Notes: Teste	ed with a	Band	width of 2				-			

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

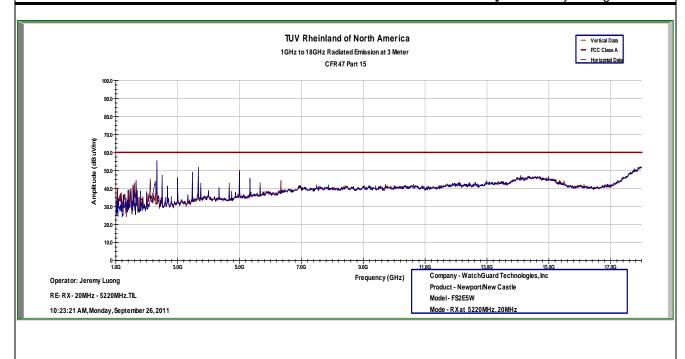
SOP 1 Rad	SOP 1 Radiated Emissions						racking #	31152150	0.003 Page	2 of 12
EUT Name	New	castle,	Newport				Date	;	September 2	26, 2011
EUT Model	FS1	E5, FS	1E5W, F	S2E5, FS2	E5W		Temp / H	um in $\overline{2}$	1°C / 36%rh]
EUT Serial	70AI	300010	-BC75				Temp / H	um out $\overline{\mathbb{N}}$	I/A	
EUT Config.	Y-Ax	is, RX	at 20 MH	z Bandwidt	h		Line AC /	Freq 1	20Vac 60Hz	, -
Standard	CFR	47 Par	t 15 Subp	art b			RBW / VE	3W S	See Note	
Dist/Ant Use	ed 3m -	- JB3	-			•	Performe	ed by J	eremy Luon	g
Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM (Pk) Pk	FIM QP	Total CF dBuV	E-Field QP (dBuV/m)	Spec Limit dBuV/r	Margin	Туре
(MHz)	(H/V)	(cm)	(deg) 1 to 18 G	(dBuV/m) Hz Radiate	(dBuV/m) d Emission		()	, ,	/ (- /	
2333.18	V	167	35	56.18	52.56		51.99	60.00	-8.01	Spurious
2333.22	Н	110	364	66.89	56.41	-0.57	55.84	60.00	-4.16	Spurious
3480.05	Н	110	265	48.39	45.22	2.79	48.01	60.00	-11.99	Spurious
3666.38	Н	145	78	51.93	44.23	3.46	47.69	60.00	-12.31	Spurious
4999.58	Н	108	380	48.56	43.09	5.61	48.70	60.00	-11.30	Spurious
4999.62	V	156	-12	47.94	36.27	5.61	41.88	60.00	-18.12	Spurious
Spec Margin = Total CF= Am					QP+ Total C	F ± Und	certainty			
Combined Stand					ed Uncertainty	$U = k \iota$	$I_c(y)$ $k=1$	2 for 95% cc	onfidence	
Notes: Teste	ed with a	Bandy	vidth of 2				/			

Report Number: 31152150.003 EUT: Newcastle, Newport

 ${\sf Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W}$

SOP 1 Rad	SOP 1 Radiated Emissions						racking #	311521	50.003 Page	6 of 12
EUT Name			Newport				Date		September 26	6, 2011
EUT Model	FS1	E5, FS	1E5W, F	S2E5, FS2	E5W		Temp / H	um in	22°C / 39%rh	
EUT Serial	70AI	300010	-BC75				Temp / H	um out	N/A	
EUT Config.	Y-Ax	is, RX	at 40 MH	z Bandwidt	h		Line AC /	Freq	120Vac 60Hz	
Standard	CFR	47 Part	: 15 Subp	art b			RBW / VE	SW	See Note	
Dist/Ant Use	ed 3m -	- JB3					Performe	d by	Jeremy Luong	9
Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM (Pk) Pk	FIM QP	Total CF	E-Field QP	Spe Lim	it Margin	Туре
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)						
	ı	1G	Hz to 18	GHz Radia	ated Emissi	on - Re	ceive Mod	e @ 523	30 MHz	
2333.17	V	168	393	53.40	52.04	-0.57	51.47	60.00	-8.53	Spurious
2333.18	Н	110	9	57.27	56.32	-0.57	55.75	60.00	-4.25	Spurious
2500.11	Н	144	425	47.44	43.58	0.02	43.60	60.00	-16.40	Spurious
3486.66	Н	210	118	48.36	45.45	2.81	48.26	60.00	-11.74	Spurious
3666.38	Н	172	419	55.26	47.30	3.46	50.76	60.00	-9.24	Spurious
4999.56	Н	167	-24	47.66	42.29	5.61	47.90	60.00	-12.10	Spurious
4999.62	V	98	378	47.31	41.87	5.61	47.48	60.00	-12.52	Spurious
Spec Margin = Total CF= Am					QP+ Total C	F ± Uno	certainty			
Combined Stand					ed Uncertainty	$U = k\iota$	$I_{c}(y)$ $k=2$	2 for 95%	confidence	
Notes: Teste	ed with a	Bandv	vidth of 4				· · · · · · · · · · · · · · · · · · ·			

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124


Tel: (925) 249-9123, Fax: (925) 249-9124

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

SOP 1 Radia	ted Emissions	Tracking # 31152150.003 Page 8 of 12		
EUT Name	Newcastle, Newport	Date	September 26, 2011	
EUT Model	FS1E5, FS1E5W, FS2E5, FS2E5W	Temp / Hum in	21°C / 36%rh	
EUT Serial	70AB00010-BC75	Temp / Hum out	N/A	
EUT Config.	Y-Axis, RX at 5300 MHz, 20 MHz Bandwidth	Line AC	120Vac 60Hz	
Standard	CFR47 Part 15 Subpart b	RBW / VBW	120 kHz / 300 kHz	
Dist/Ant Used	3m – JB3	Performed by	Jeremy Luong	

FCCID: Q6G-FS2E5W; IC: 4657A-FS2E5W

Notes: Tested with a Bandwidth of 20 MHz

Page 82 of 100

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radia	P 1 Radiated Emissions					racking # 311521	150.003 Page 11	of 12
EUT Name EUT Model EUT Serial EUT Config. Standard Dist/Ant Used	Newcastle, Newport FS1E5, FS1E5W, FS2E5, FS2E5W 70AB00010-BC75 Y-Axis, RX at 5230 MHz, 40 MHz Bandwidth CFR47 Part 15 Subpart b 3m – JB3			vidth	Date Temp / Hum in Temp / Hum out Line AC RBW / VBW Performed by	September 26, 20 21°C / 37%rh N/A 120Vac 60Hz 120 kHz / 300 kH Jeremy Luong		
9 (w/\ngp) 5 5 9 1 0 Operator: Jeremy Li RE-RX-40MHz - 52	uong	09 5.0	1GHz	V Rheinland of I	Emission at 3 Meter	1106 Tompany - WatchGuard Techno Product - Newport/New Castle Model - FS2E5W Mode - RXat 5230MHz,40MHz	- Vertical Data - FCC Class A - Hor izontal Data	

Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{\textit{dB}\mu V/\textit{m}}{20}}$

4.7 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.4: 2003. These test methods are listed under the laboratory's NVLAP Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207: 2009 and RSS 210: 2010.

4.7.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of $50\mu H / 50\Omega$ LISNs.

Testing is either performed in Lab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

4.7.1.1 Deviations

There were no deviations from this test methodology.

4.7.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

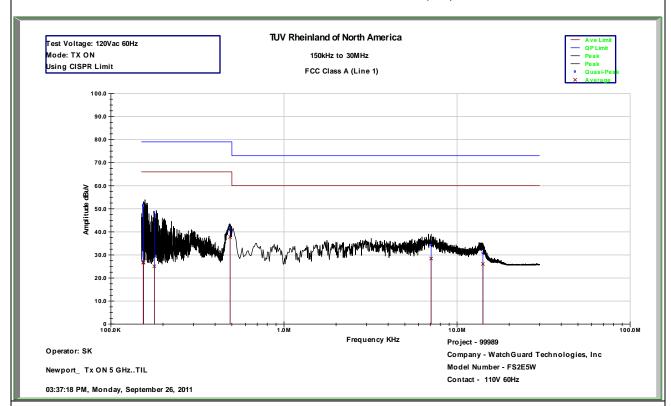
Table 7: AC Conducted Emissions – Test Results

Test Conditions: Conducted Measurement at Normal Conditions only						
Antenna Type: 3 X external		Power Level: See Test Plan				
AC Power: 120 Vac/60 Hz		Configuration: Tabletop				
Ambient Temperature: 22° C		Relative Humidity: 37% RH				
Configuration	Frequ	iency Range	Test Result			
Line 1 (Hot)	0.15 to 30 MHz		Pass			
Line 2 (Neutral)	0.15	to 30 MHz	Pass			

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011


SOP 2 Cond	ucte	ed Emissions		٦	racking # 3115	2150.003 Pag	je 1 of 4	
EUT Name	Ne	wcastle, Newpor	t		Date	September	· 26, 2011	
EUT Model	FS	S1E5, FS1E5W,	FS2E5, FS2E5	sW .	Temp / Hum in 23° C / 34% rh			
EUT Serial	70/	AB00010-8C75			Temp / Hum o	ut N/A		
EUT Config.	3 E	xternal Antenna	as		Line AC / Freq	120Vac/60	Hz	
Standard	CF	R47 Part 15.207	,		RBW / VBW	9kHz / 30 k	кHz	
Lab/LISN	La	b #5 / Solar 934	8-50-R-24-BNC	, Line 1	Performed by	Suresh Ko	ndapalli	
Frequency		Quasi-Peak	QP Limit	QP Margin	Average	Ave Limit	Ave Margin	
MHz		dBuV	dBuV	dB	dBuV	dBuV	dB	
0.153		51.55	26.63	79	66	-27.45	-39.37	
0.154		51.09	26.91	79	66	-27.91	-39.09	
0.178		48.38	25.1	79	66	-30.62	-40.9	
0.488		41.61	37.77	79	66	-37.39	-28.23	
7.08		34.33	28.41	73	60	-38.67	-31.59	
14.1		30.8	26.08	73	60	-42.2	-33.92	
Spec Margin = Q	P./A	ve Limit, ± Unc	ertainty					
			•		$Ku_c(y)$ $k = 2 \text{ for } 9$			
Notes: EUT wa	as s	etup as table top	equipment and	d transmitted at	5220 MHz in H	Γ20 at 6.5Mbps	S	

Report Number: 31152150.003 EUT: Newcastle, Newport

 ${\sf Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W}$

Tracking # 31152150.003 Page 2 SOP 2 Conducted Emissions September 26, 2011 **EUT Name Date** Newcastle, Newport Temp / Hum in 23° C / 34% rh **EUT Model** FS1E5, FS1E5W, FS2E5, FS2E5W **EUT Serial** Temp / Hum out N/A 70AB0001E-6BB4 **EUT Config.** Line AC 120Vac/60Hz 3 External Antennas Standard CFR47 Part 15.207 **RBW / VBW** 9kHz / 30 kHz Jeremy Luong Lab/LISN Lab #5 / Solar 9348-50-R-24-BNC, Line 1 Performed by

150 kHz to 30 MHz Plot for Line 1 (Hot)

Notes: Class A limits are used EUT meets FCC Class B limit.

SOP 2 Cond	ucte	ed Emissions		Т	racking # 311	52150.003 Pag	ge 3 of 4		
EUT Name	Ne	wcastle, Newpor	t		Date	Septembei	r 26. 2011		
EUT Model	FS	1E5, FS1E5W,	FS2E5, FS2E5	W	Temp / Hum i				
EUT Serial	704	AB0001E-6BB4			Temp / Hum o	out N/A			
EUT Config.	3 E	External Antenna	as		Line AC / Free	120Vac/60	Hz		
Standard	CF	R47 Part 15.107	•	_	RBW / VBW	9kHz / 30 k	кНz		
Lab/LISN	Lak	#5 / Solar 934	8-50-R-24-BNC	, Line 2	Performed by	Suresh Ko	ndapalli		
Frequency		Quasi-Peak	QP Limit	QP Margin	Average	Ave Limit	Ave Margin		
MHz		dBuV	dBuV	dB	dBuV	dBuV	dB		
0.150		51.64	29.02	79	66	-27.36	-36.98		
0.154		51.61	29.42	79	66	-27.39	-36.58		
0.155		51.09	29.08	79	66	-27.91	-36.92		
0.184		44.68	21.23	79	66	-34.32	-44.77		
0.495		37.02	31.29	79	66	-41.98	-34.71		
13.67		29.75	25.06	73	60	-43.25	-34.94		
		ve Limit, ± Unc	•						
	Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence								
Notes: EUT wa	as s	etup as table top	equipment and	I transmitted at	5220 MHz in H	IT20 at 6.5Mbp	S		

Report Number: 31152150.003 EUT: Newcastle, Newport

 ${\sf Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W}$

SOP 2 Cond	ucted Emission	S	Trackin	g# 311521	150.003 Page 4 of 4
EUT Name EUT Model	Newcastle, Newp		Date	/ Hum in	September 26, 2011 23° C / 34% rh
EUT Serial	70AB0001E-6BB4			/ Hum out	
EUT Config.				AC	120Vac/60Hz
Standard	3 External Anter CFR47 Part 15.1		/ VBW	9kHz / 30 kHz	
Lab/LISN	Lab #5/ Solar 934		rmed by	Suresh Kondapalli	
		150 kHz to 30 MHz P	ot for Line 2 (Neu	<u></u>	
Mode: Using	oltage: 120Vac 60Hz TX ON CISPR Limit	150kHz	of North America to 30MHz ss A (Line 2)		— QP Limit — Ave Limit — Peak — Peak • Quasi-Peak X Average
90.	‡				
80. 70.					
N 60°	.0 =				
Amplitude		d			
30.	The property of the same of th	Mary Mary Mary Mary Mary Mary Mary Mary		The special section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the second section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the se	
10.	‡ 				
1	00.0К	1.0M		10.0M	100.0M
			Frequency KHz	Project - 99989 Company - Wate	chGuard Technologies, Inc
Operator: SK				Model Number -	FS2E5W
Operator: SK Newport_ Tx O	N 5 GHzTIL			Contact - 110V	60Hz

Report Number: 31152150.003 EUT: Newcastle, Newport

 ${\sf Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W}$

EMC / Rev 12/1/2011

Test Setup Photos 4.7.3

FCCID: Q6G-FS2E5W; IC: 4657A-FS2E5W

Report Number: 31152150.003

EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W EMC / Rev 12/1/2011

4.8 Frequency Stability

In accordance with 47 CFR Part 15.407(g) the frequency stability of U-NII devices must be such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual. The Manufacturer calls out operating temperature ranges of $+0^{\circ}$ to $+50^{\circ}$ C

4.8.1 Test Methodology

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions. This test performs according to ANSI C63.10-2009 Section 6.8

4.8.2 Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signal should have ± 20 ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

Worst case: 5.220 GHz - ±20ppm/104.4 kHz

 ± 20 ppm at 5 GHz translates to a maximum frequency shift of ± 104 kHz. As the edge of the channels are at least one MHz from either of the band edges, ± 104 kHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the radio.

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

4.8.3 Limit

CFR47 Part 407(g) - Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

4.8.4 Test results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

WatchGuard declared the operation range as 0 to 40°C

Table 8: Frequency Stability – Test Results

Temperature	-6 dB Lower Edge (MHz)	+6 dB Upper Edge (MHz)	Center Frequency (MHz)	PPM
40°C	5211.6300	5228.2800	5219.9960	-6.32
Normal				
Temp	5211.7330	5228.1920	5219.9630	0
0°C	5211.6900	5228.3100	5220.0000	+7.08
Note: All freque	ency drifts were less than	±20 ppm.		

Test was performed in 802.11 a mode. Other temperatures and mode were evaluated. The start time 2min, 5min and 10 min from start of temperature were evaluated, only worst case values are reported here.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

In accordance with 47 CFR Part 15.31 (e) intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.8.5 Test Methodology

The ac supply voltage was varied between 85% and 115% of the nominal rated supply voltage. The fundamental frequency was observed during the variation. The Newport was powered 120V/60Hz by programmable power supply. The voltage was varied from 102Vac to 138Vac mean while the fundamental frequencies were observed and record for the maximum drift in ppm; part per millions.

4.8.6 Test results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s). The fundamental frequencies drifted less than ± 20 ppm.

Table 9: Voltage Variation – Test Results

Frequency	Nominal (120Vac)	Lo Voltage (102Vac)	Hi Voltage (138Vac)	Max Drift
MHz	MHz	MHz	MHz	ppm
5180	5178.329299	5178.322727	5178.338233	2.97
5220	5218.365227	5218.365227	5128.338233	-1.7
5240	5238.386727	5238.365227	5238.338233	-5.2

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

5 Test Equipment Use List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
Bilog Antenna	Sunol Science	JB3	A102606	2/18/2010	2/18/2012
Horn Antenna	Sunol Scienece	DRH-118	A040806	9/29/2010	9/29/2012
Antenna (18-26GHz)	CMT	RA42-K-F-4B-C	020131-004	10/15/2010	10/15/2011
Antenna (26-40 GHz)	CMT	RA28-K-F-4B-C	011469R-003	10/15/2010	10/15/2011
EMI Receiver	Hewlett Packard	8546A	3807A00445	2/5/2011	2/5/2012
Preselector	Hewlett Packard	85460A	3704A00407	2/5/2011	2/5/2012
Amplifier	Hewlett Packard	8447D	2944A07996	1/17/2011	1/17/2012
Spectrum Analyzer	Rhode&Schwarz	ESIB	832427/002	1/18/2011	1/18/2012
Amplifier	Rhode&Schwarz	TS-PR18	3545.7008.03	9/29/2010	9/29/2012
Amplifier	Rhode&Schwarz	TS-PR26	100011	10/15/2010	10/15/2011
Amplifier	Rhode&Schwarz	TS-PR40	100012	10/15/2010	10/15/2011
Signal Generator	Anritsu	MG3694A	42803	1/26/2011	1/26/2012
Notch Filter	Micro-Tronics	BRM50702	37	1/19/2011	1/19/2012
Notch Filter	Micro-Tronics	BRC50703	11	1/19/2011	1/19/2012
High Pass Filter (3.5 GHz)	Hewlett Packard	84300-80038	820004	1/19/2011	1/19/2012
High Pass Filter (8.5 GHz)	Micro-Tronics	HPM50107	4	1/19/2011	1/19/2012
Power Supplier	Kikosui	PCR8000W	CM000912	1/19/2011	1/19/2012
Digital Multimeter	Fluke	177	92780314	1/18/2011	1/18/2012
Power Meter	Agilent	E4418B	MY45103902	1/18/2011	1/18/2012
Power Sensor	Hewlett Packard	8482A	55-5131	10/27/2010	10/27/2011
EMI Receiver	Hewlett Packard	8546A	3942A00514	11/22/2010	11/22/2011
Preselector	Hewlett Packard	85460A	3704A00485	11/22/2010	11/22/2011
LISN	Solar Electronics	Type 9348-50-R-24- BNC	68509	1/17/2011	1/17/2012
Signal Generator	Anritsu	MG3694A	42803	1/26/2011	1/26/2012
Thermo Chamber	Associated Environmental	SK-3102	5999	VBU	VBU
Spectrum Analyzer	Rhode&Schwarz	FSL6	100169	10/13/2010	10/13/2011
Spectrum Analyzer	Agilent	E4404B	MY41440636	8/19/2010	10/19/2011
Spectrum Analyzer	Agilent	E4407B	SG43304468	10/05/2011	10/05/2012

Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 10: Customer Information

Company Name	WatchGuard Technolgies, Inc	
Address	05 Fifth Ave S, Suite 500	
City, State, Zip	eattle, WA 98104	
Country	USA	
Phone	Tel: 206-613-6600	
Fax	None	

Table 11: Technical Contact Information

Name	Denny Lim	
E-mail	enny.Lim@watchguard.com	
Phone	Tel: 206-613-6600	
Fax	None	

6.3 Equipment Under Test (EUT)

Table 12: EUT Specifications

EUT Specification				
Dimensions				
AC Adapter	Input Voltage: 100-240 Vac 50-60 Hz Input Current: 1200ma Output Voltage: 19V DC Output Current: 4.74Amps			
Environment	Indoor			
Operating Temperature Range:	0 to 40 degrees C			
Multiple Feeds:	☐ Yes and how many ☐ No			
Hardware Version	Rev. 9			
Part Number	None			
RF Software Version	ART2.13			
Radio Module 2 802.11-radio mo	dules			
Operating Mode	802.11a, b, g, HT20, and HT40			
Transmitter Frequency Band	2.412 GHz to 2.462 GHz 5.15 GHz to 5.25 GHz (Indoor Use) 5.725 GHz to 5.85 GHz			
Max. Rated Power Output	See Channel Planning Table.			
Power Setting @ Operating Channel	See Channel Planning Table.			
Antenna Type	3 External antennas. (2 dBi Monopole)			
Modulation Type	☐ AM ☐ FM ☐ DSSS ☒ OFDM ☐ Other describe: CCK, CCK_5 and CCK_11			
Data Rate	802.11b: 1, 2, 5.5, 11 Mbps at 1 Spatial Stream 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps at 1 Spatial Stream 802.11a: 6, 9, 12, 18, 24, 36, 48, 54 Mbps at 1 Spatial Stream 802.11n HT20: 1 Spatial Stream: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps 2 Spatial Streams: 13, 26, 39, 58, 78, 104, 117, 130 Mbps 3 Spatial Streams: 19.5, 39, 58.5, 78, 117, 156, 175.5, 195 Mbps 802.11n HT40: 1 Spatial Stream: 13.5, 27, 40.5, 54, 81, 108, 121.5, 135 Mbps 2 Spatial Streams: 27, 54, 81, 108, 162, 216, 243, 270 Mbps 3 Spatial Streams: 40.5, 81, 121.5, 162, 243, 324, 364.5, 405 Mbps			

Report Number: 31152150.003 EUT: Newcastle, Newport

 ${\sf Model\ FS1E5,\ FS1E5W,\ FS2E5,\ FS2E5W}$

EMC / Rev 12/1/2011

EUT Specification				
TX/RX Chain (s)	MIMO (3x3)			
Directional Gain Type	☐ Uncorrelated ☐ No Beam-Forming			
	Other describe:			
Type of Equipment	☐ Table Top ☒ Wall-mount ☐ Floor standing cabinet			
	Other			
Note: None				

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

Table 13: EUT Channel Power Specifications

No.	Frequency		Target Power Value					
	(MHz)	802.11a	802.11 HT20	802.11 HT 20 2X3	802.11 HT20 3X3	802.11 HT40	802.11n HT40 2X3	802.11n HT40 3X3
36	5180	16.0	14.0	12.0	11.0	13.0	12.0	11.0
40	5200	16.0	14.0	12.0	11.0	13.0	12.0	
44	5220	16.0	14.0	12.0	11.0	13.0	12.0	11
48	5240	16.0	14.0	12.0	11.0	13.0	12.0	

Note: 1. The center operating frequency is shifted upward by 10 MHz for HT40.

Table 14: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB x1	Not used for Radio test	□ No	Metric: 1.8m	⊠M
RJ45 (x5)	Connected to Laptop	⊠ Yes	☐ Metric: 10 m	⊠M
Console	Connected to Laptop	□ No	☐ Metric: 3 m	⊠M

Table 23: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.407
	Sr#70AB000	3 External Antenna	TX Emission, RX Emission,
Newport/ Newcastle	10-8C75	Direct via SMA	Transmit Power, Peak Power Spectral Density, Peak Excursion Ratio Occupied Bandwidth Frequency Stability
	Sr#70AB000 1E-6BB4	3 External Antenna	AC Conducted Emission Peak

^{2.} The adjusted power target values are updated at the evaluated frequencies.

Table 15: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Newport/ Newcastle	3 External	* Transmit * Receive	Flat on table Antennas up Vertical	EUT set on wall, laying on longer side. All Antennas Horizontal	Laying on smaller side

Note: Pre-scans were performed in 3 orthogonal axis, and Y-axis was worst case.

Table 16: Final Test Mode for All 3 Bands

Test	802.11a	802.11n HT20	802.11n HT40
Occupied Bandwidth FCC Part 15.407(a)	Band 1: 5180, 5220, 5240 MHz @ 6Mbps	Band 1: 5180, 5220, 5240 MHz 1 Stream – 6.5Mbps	Band 1: 5190, 5230 MHz 1 Stream – 13.5Mbps
Output Power FCC Part 15.407(a)(1-2)	Band 1: 5180, 5220, 5240 MHz @ 6Mbps	Band 1: 5180, 5220, 5240 MHz 1 Stream – 6.5Mbps 2 Streams – 13Mbps 3 Streams – 19.5Mbps	Band 1: 5190, 5230 MHz 1 Stream – 13.5Mbps 2 Streams – 27Mbps 3 Streams – 40.5Mbps
Peak Excursion Ratio FCC Part 15.407(a)(6)	Band 1: 5180, 5220, 5240 MHz @ 6Mbps	Band 1: 5180, 5220, 5240 MHz 1 Stream – 6.5Mbps 2 Streams – 13Mbps 3 Streams – 19.5Mbps	Band 1: 5190, 5230 MHz 1 Stream – 13.5Mbps 2 Streams – 27Mbps 3 Streams – 40.5Mbps
Peak Power Spectral Density FCC Part 15.407(a)	Band 1: 5180, 5220, 5240 MHz @ 6Mbps	Band 1: 5180, 5220, 5240 MHz 1 Stream – 6.5Mbps 2 Streams – 13Mbps 3 Streams – 19.5Mbps	Band 1: 5190, 5230 MHz 1 Stream – 13.5Mbps 2 Streams – 27Mbps 3 Streams – 40.5Mbps
Band-Edge (Radiated) FCC Part 15.205, 15.209, 15.407(b)	Band 1: 5180, 5220, 5240 MHz @ 6Mbps	Band 1: 5180, 5220, 5240 MHz 3 Stream – 19.5Mbps	Band 1: 5190, 5230 MHz 1 Stream – 13.5Mbps

Report Number: 31152150.003 EUT: Newcastle, Newport

Model FS1E5, FS1E5W, FS2E5, FS2E5W

EMC / Rev 12/1/2011

1279 Quarry Lane, Ste. A, Pleasanton, CA 95466

Tel: (925) 249-9123, Fax: (925) 249-9124

Test	802.11a	802.11n HT20	802.11n HT40	
Transmitted				
Spurious Emission				
(30 MHz – 1GHz)				
FCC Part 15.205,				
15.209, 15.407(b)				
Transmitted				
Spurious Emission	Band 1: 5180, 5220, 5240 MHz	Band 1: 5180, 5220, 5240 MHz	Band 1: 5190, 5230 MHz	
(Above 1GHz)	@ 6Mbps (Y-Axis)		3 Stream – 40.5Mbps (Y-Axis)	
FCC Part 15.205,		1 Stream – 6.5Mbps (Y-Axis)	S Stream Total Table	
15.209, 15.407(b)				
Conducted Spurious Emission (antenna port). FCC Part 15.407 (b)		EIPR shall not exceed -27 dBm/MF er distance. The EUT is satisfied the		
Received Spurious				
Emission		Band 1: 5220 MHz (Y-Axis)	Band 1: 5230 MHz (Y-Axis)	
(at 20 MHz & 40		Dalid 1. 3220 Willz (1-Axis)	Dalid 1. 3230 Miliz (1-Axis)	
MHz Bandwidth)				
FCC Part 15.109				
AC Conducted				
Emission				
FCC Part 15.207				
Frequency Stability FCC Part 15.407 (g)	Continuous wave at 5220 MHz			
100133111111111111111111111111111111111	ļ			
Voltage Variation FCC Part 15.31 (e)	Continuous wave at 5180, 5220, 5240 MHz.			

Note: 1. Band 1: 5150 MHz – 5250 MHz,.

- 2. All radiated emission performed on Y-Axis.
- 3. At single data stream, all 3 transmitted chains were verified. Since Chain 1 output was highest, all final testing performed with Chain 1 active.
- 4. All tests were pre-scanned for worst case before final testing.
- 5. 3 x 2 dBi Omni directional antenna External attached for all radiated emission testing; pre-scan was worst with
- 6. AC Conducted Emissions were verified for all modes. Worst mode was selected for final test.

6.4 Test Specifications

Testing requirements

Table 17: Test Specifications

Emissions and Immunity			
Standard	Requirement		
CFR 47 Part 15.407: 2009	All		
RSS 210 Issue 8, 2010	All		

END OR REPORT

Report Number: 31152150.003 EUT: Newcastle, Newport Model FS1E5, FS1E5W, FS2E5, FS2E5W EMC / Rev 12/1/2011