




**CETECOM™**

**CETECOM ICT Services**  
consulting - testing - certification >>>

## TEST REPORT

Test report no.: 1-7882/14-01-06-C



**DAkkS**  
Deutsche  
Akkreditierungsstelle  
D-PL-12076-01-00

### Testing laboratory

**CETECOM ICT Services GmbH**  
Untertuerkheimer Strasse 6 – 10  
66117 Saarbruecken / Germany  
Phone: + 49 681 5 98 - 0  
Fax: + 49 681 5 98 - 9075  
Internet: <http://www.cetecom.com>  
e-mail: [ict@cetecom.com](mailto:ict@cetecom.com)

#### Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

### Applicant

**KROHNE Messtechnik GmbH**  
Ludwig-Krohne-Str. 5  
47058 Duisburg / GERMANY  
Phone: +49 234 588 80-152  
Fax: +49 234 588 80-101  
Contact: Ouzounis Charalambos  
e-mail: [c.ouzounis@krohne.com](mailto:c.ouzounis@krohne.com)  
Phone: +49 234 588 80-152

### Manufacturer

**KROHNE SAS**  
2 allee des Ors – BP98  
26103 Romans / FRANCE

### Test standard/s

|                |                                                                                           |
|----------------|-------------------------------------------------------------------------------------------|
| 47 CFR Part 15 | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices |
| RSS-211        | Level Probing Radar Equipment                                                             |

For further applied test standards please refer to section 3 of this test report.

### Test Item

|                    |                               |
|--------------------|-------------------------------|
| Kind of test item: | Level Probing Radar           |
| Model name:        | OPTIWAVE 7400 C               |
| FCC ID:            | Q6BFMCW24G74L                 |
| IC:                | 1991D-FMCW24G74L              |
| Frequency:         | 24.05 GHz – 26.05 GHz         |
| Antenna:           | external horn or PEEK antenna |
| Power Supply:      | 14 – 36 V DC                  |
| Temperature Range: | -40 °C to +80 °C              |

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

### Test report authorised:

Meheza Walla  
Radio Communications & EMC

### Test performed:

Karsten Geraldy  
Radio Communications & EMC

## 1 Table of contents

|     |                                                     |    |
|-----|-----------------------------------------------------|----|
| 1   | Table of contents .....                             | 2  |
| 2   | General information .....                           | 3  |
| 2.1 | Notes and disclaimer .....                          | 3  |
| 2.2 | Application details.....                            | 3  |
| 3   | Test standard/s .....                               | 3  |
| 4   | Test laboratories sub-contracted .....              | 3  |
| 5   | Test environment.....                               | 4  |
| 6   | Test item.....                                      | 4  |
| 6.1 | Additional information .....                        | 4  |
| 7   | Summary of measurement results .....                | 5  |
| 8   | Description of the test setup .....                 | 6  |
| 8.1 | Radiated measurements chamber F .....               | 6  |
| 8.2 | Radiated measurements chamber C .....               | 7  |
| 8.3 | Radiated measurements 12.75 GHz to 50 GHz .....     | 8  |
| 8.4 | Conducted measurements .....                        | 8  |
| 8.5 | AC conducted .....                                  | 9  |
| 9   | Test results .....                                  | 10 |
| 9.1 | Frequency stability and fundamental bandwidth.....  | 10 |
| 9.2 | Fundamental emissions.....                          | 13 |
| 9.3 | Unwanted emissions limit .....                      | 16 |
| 9.4 | Antenna beamwidth and antenna side lobe gain .....  | 30 |
| 9.5 | Emissions from digital circuitry.....               | 31 |
| 9.6 | Conducted limits .....                              | 32 |
| 10  | Test equipment and ancillaries used for tests ..... | 34 |
| 11  | Observations .....                                  | 35 |
| 12  | Document history .....                              | 36 |
| 13  | Further information.....                            | 36 |
| 14  | Accreditation Certificate .....                     | 37 |

## 2 General information

### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

### 2.2 Application details

|                                    |            |
|------------------------------------|------------|
| Date of receipt of order:          | 2014-04-14 |
| Date of receipt of test item:      | 2014-05-05 |
| Start of test:                     | 2014-05-06 |
| End of test:                       | 2014-05-14 |
| Person(s) present during the test: | -/-        |

## 3 Test standard/s

| Test standard  | Date       | Test standard description                                                                 |
|----------------|------------|-------------------------------------------------------------------------------------------|
| 47 CFR Part 15 | 01.10.2013 | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 – Radio frequency devices |
| RSS-211        | 01.03.2015 | Level Probing Radar Equipment                                                             |
| 890966 D01     | 10.09.2014 | Measurement Procedure for Level Probing Radars                                            |

## 4 Test laboratories sub-contracted

None

## 5 Test environment

|                            |                  |                                       |
|----------------------------|------------------|---------------------------------------|
| Temperature:               | $T_{\text{nom}}$ | +22 °C during room temperature tests  |
|                            | $T_{\text{max}}$ | +50 °C                                |
|                            | $T_{\text{min}}$ | -20 °C                                |
| Relative humidity content: |                  | 45 %                                  |
| Barometric pressure:       |                  | not relevant for this kind of testing |
| Power supply:              | $V_{\text{nom}}$ | 20.0 V DC                             |
|                            | $V_{\text{max}}$ | 36.0 V DC                             |
|                            | $V_{\text{min}}$ | 14.0 V DC                             |

## 6 Test item

|                     |   |                               |
|---------------------|---|-------------------------------|
| Kind of test item   | : | Level Probing Radar           |
| Type identification | : | OPTIWAVE 7400 C               |
| S/N serial number   | : | pre-series model              |
| HW hardware status  | : | pre-series model              |
| SW software status  | : | 1.02.02                       |
| Frequency band      | : | 24.05 GHz – 26.05 GHz         |
| Type of modulation  | : | FMCW                          |
| Number of channels  | : | 1                             |
| Antenna             | : | external horn or PEEK antenna |
| Power supply        | : | 14 – 36 V DC, < 30 mA         |
| Temperature range   | : | -40 °C to +80 °C              |

### 6.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

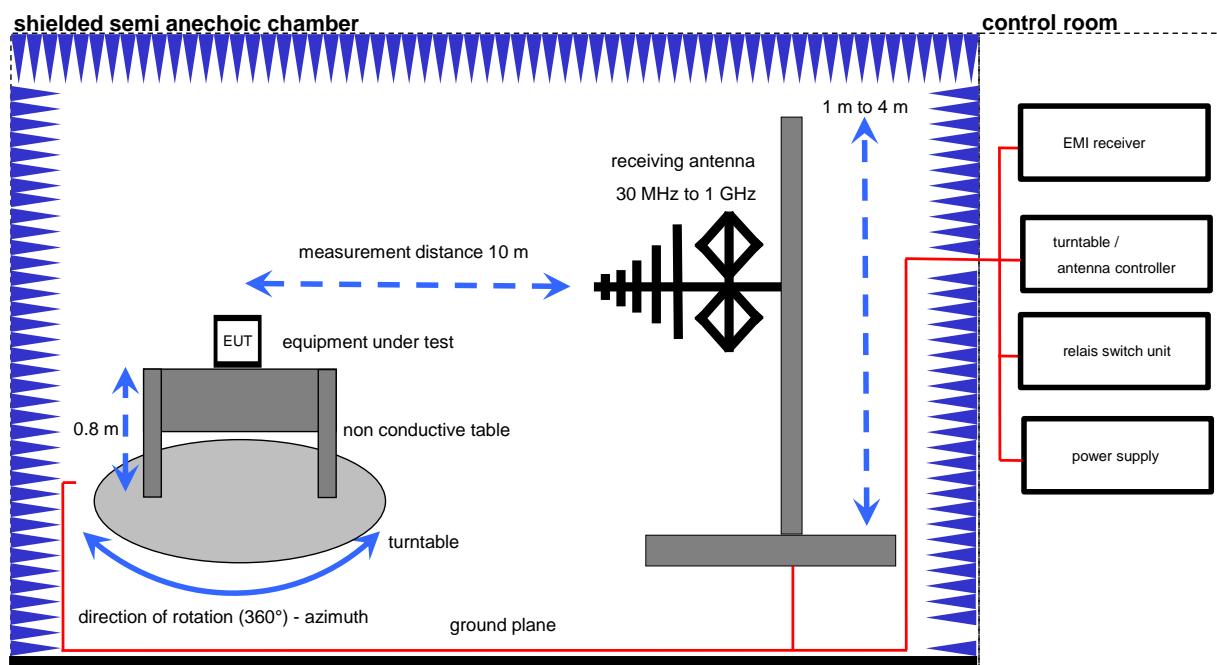
Test setup- and EUT-photos are included in test report: 1-7882/14-01-06\_AnnexA  
 1-7882/14-01-06\_AnnexB  
 1-7882/14-01-06\_AnnexC

## 7 Summary of measurement results

|                                     |                                                                     |
|-------------------------------------|---------------------------------------------------------------------|
| <input checked="" type="checkbox"/> | No deviations from the technical specifications were ascertained    |
| <input type="checkbox"/>            | There were deviations from the technical specifications ascertained |

| TC identifier | Description              | verdict | date       | Remark |
|---------------|--------------------------|---------|------------|--------|
| RF-Testing    | 47 CFR Part 15 / RSS-211 | PASS    | 2016-01-12 | -/-    |

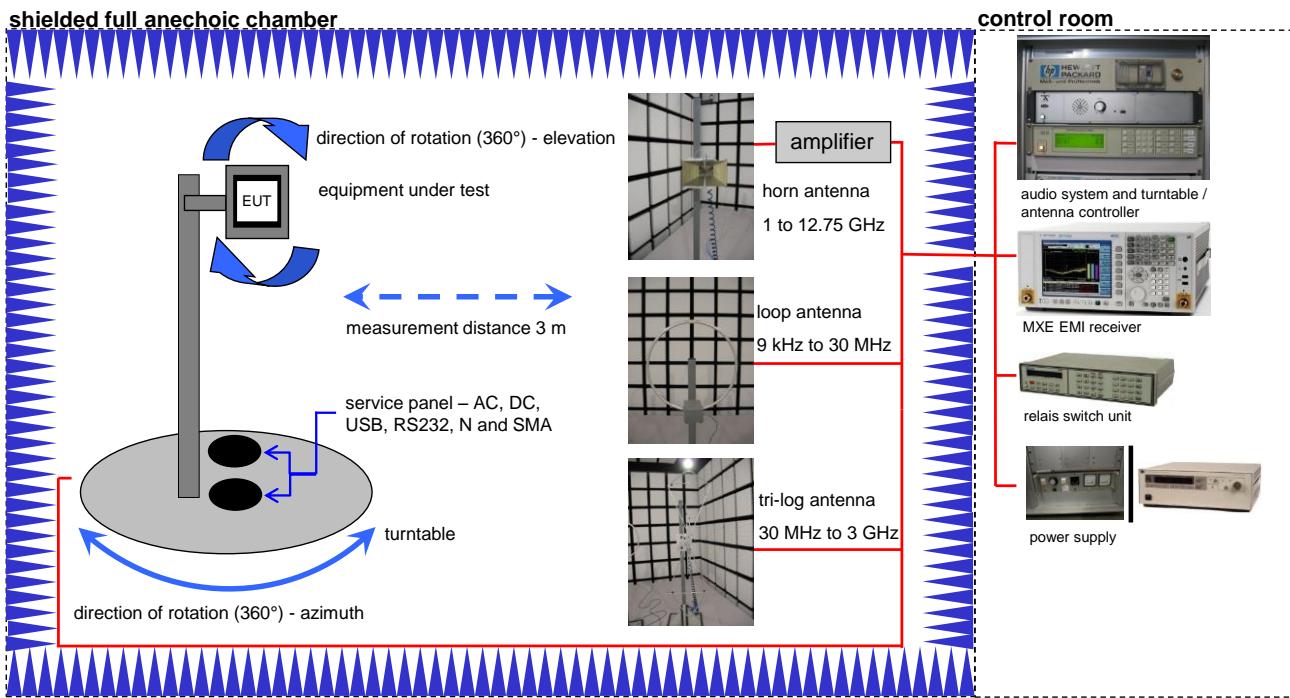
| Test Specification Clause  | Test Case                        | Temperature Conditions | Power Source Voltages | Pass                                | Fail                     | NA                       | NP                       | Results  |
|----------------------------|----------------------------------|------------------------|-----------------------|-------------------------------------|--------------------------|--------------------------|--------------------------|----------|
| §15.215(c)                 | Frequency stability              | Nominal Extreme        | Nominal Extreme       | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(f)<br>RSS-211, 2.4 | Fundamental bandwidth            | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(g)<br>RSS-211,5.2b | Fundamental emissions limits     | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(h)<br>RSS-211,5.1d | Unwanted emissions limit         | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(i)<br>RSS-211,5.2a | Antenna beamwidth                | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(j)<br>RSS-211,5.2c | Antenna side lobe gain           | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.256(k)<br>RSS-Gen      | Emissions from digital circuitry | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |
| §15.107/207<br>RSS-Gen     | Conducted limits                 | Nominal                | Nominal               | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/> | complies |


**Note:**

NA = Not applicable; NP = Not performed

## 8 Description of the test setup

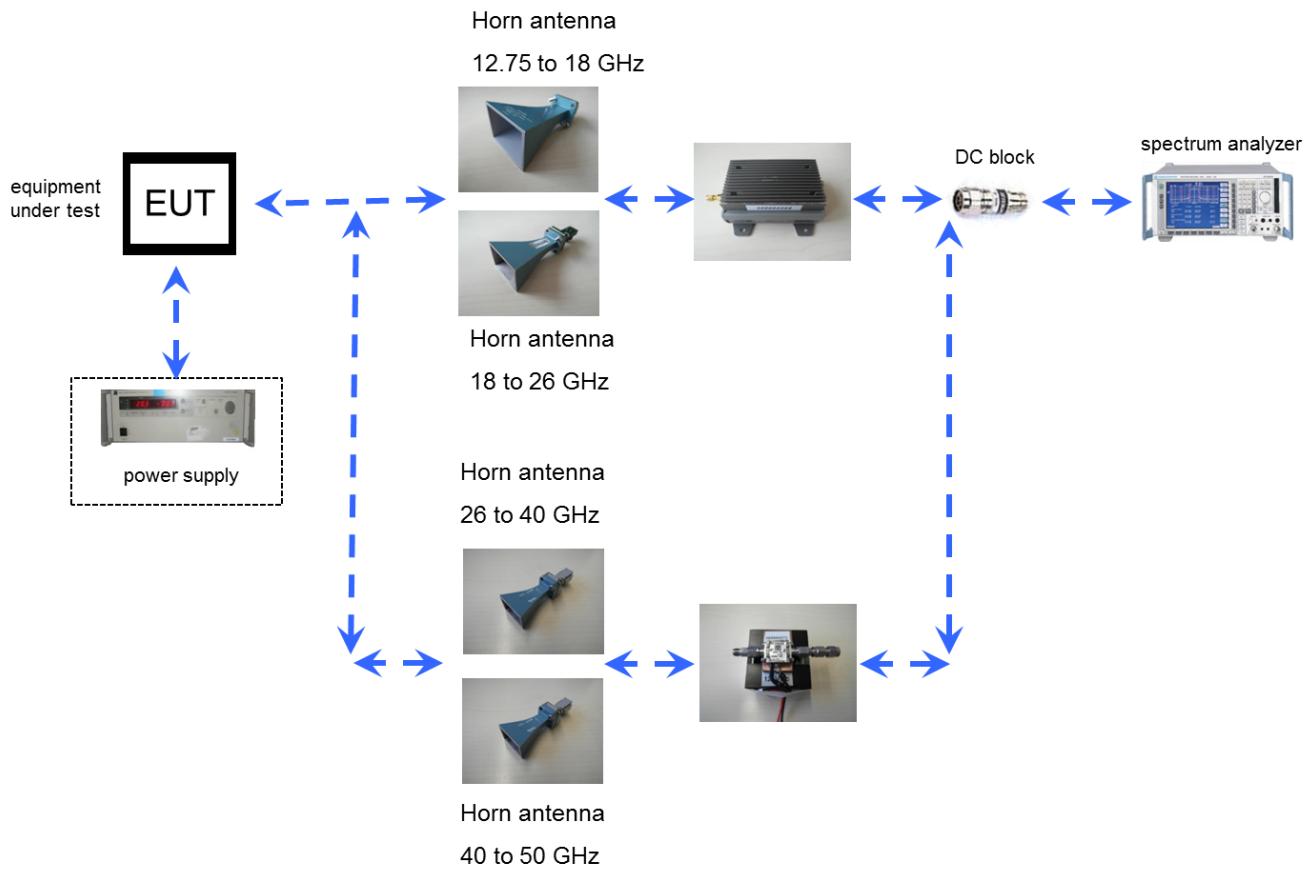
### 8.1 Radiated measurements chamber F


The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

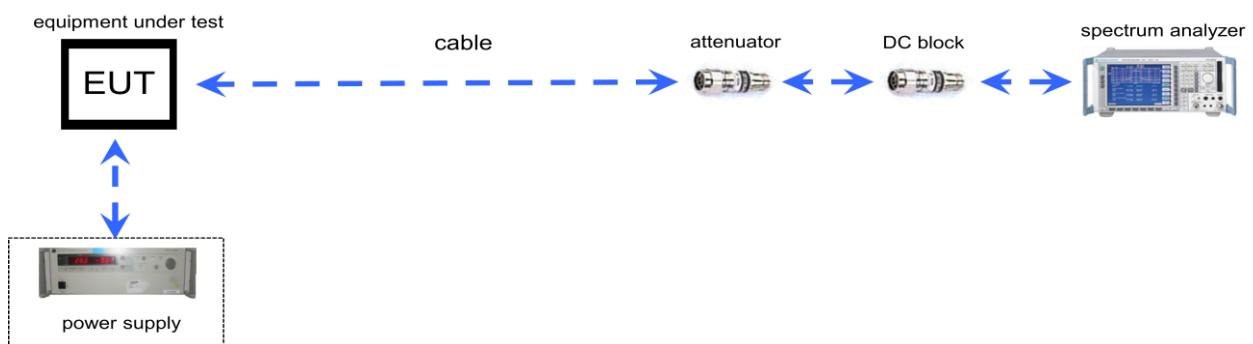


#### Equipment table:

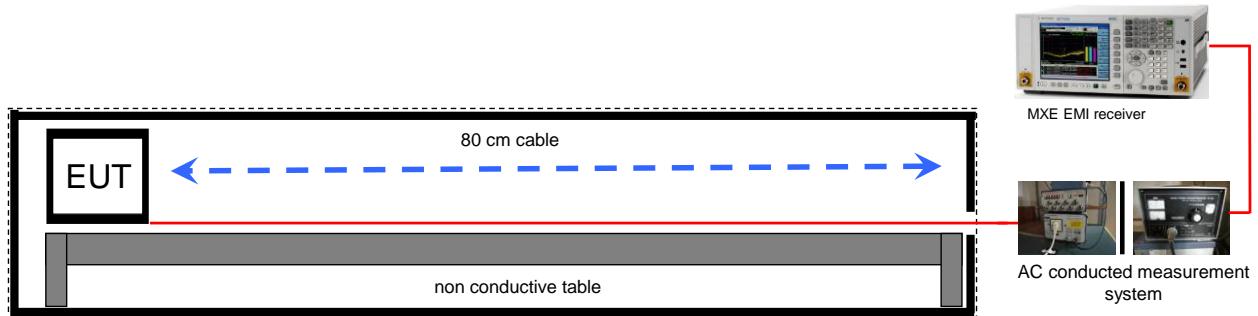
| Equipment                                    | Type                | Manufacturer  | Serial No. | INV. No Cetecon |
|----------------------------------------------|---------------------|---------------|------------|-----------------|
| Software                                     | EMC32 V. 9.12.05    | R&S           | -/-        | -/-             |
| Switch-Unit                                  | 3488A               | HP Meßtechnik | 2719A14505 | 300000368       |
| DC power supply, 60Vdc, 50A, 1200 W          | 6032A               | HP Meßtechnik | 2920A04466 | 300000580       |
| EMI Test Receiver                            | ESCI 3              | R&S           | 100083     | 300003312       |
| Amplifier                                    | JS42-00502650-28-5A | MITEQ         | 1084532    | 300003379       |
| Antenna Tower                                | Model 2175          | ETS-LINDGREN  | 64762      | 300003745       |
| Positioning Controller                       | Model 2090          | ETS-LINDGREN  | 64672      | 300003746       |
| Turntable Interface-Box                      | Model 105637        | ETS-LINDGREN  | 44583      | 300003747       |
| TRILOG Broadband Test-Antenna 30 MHz - 3 GHz | VULB9163            | Schwarzbeck   | 295        | 300003787       |


## 8.2 Radiated measurements chamber C




### Equipment table:

| Equipment                                      | Type                            | Manufacturer         | Serial No. | INV. No Cetecom |
|------------------------------------------------|---------------------------------|----------------------|------------|-----------------|
| MXE EMI Receiver 20 Hz bis 26,5 GHz            | N9038A                          | Agilent Technologies | MY51210197 | 300004405       |
| TRILOG Broadband Test-Antenna 30 MHz - 3 GHz   | VULB9163                        | Schwarzbeck          | 371        | 300003854       |
| Band Reject filter                             | WRCG2400/2483-2375/2505-50/10SS | Wainwright           | 11         | 300003351       |
| Highpass Filter                                | WHKX7.0/18G-8SS                 | Wainwright           | 18         | 300003789       |
| Double-Ridged Waveguide Horn Antenna 1-18.0GHz | 3115                            | EMCO                 | 8812-3088  | 300001032       |
| Active Loop Antenna                            | 6502                            | EMCO                 | 8905-2342  | 300000256       |
| Anechoic chamber                               | FAC 3/5m                        | MWB / TDK            | 87400/02   | 300000996       |
| Switch / Control Unit                          | 3488A                           | HP Meßtechnik        | *          | 300000199       |
| Switch / Control Unit                          | 3488A                           | HP Meßtechnik        | 2719A15013 | 300001156       |
| Isolating Transformer                          | MPL IEC625 Bus Regeltrenntravo  | Erfi                 | 91350      | 300001155       |
| Three-Way Power Splitter, 50 Ohm               | 11850C                          | HP Meßtechnik        |            | 300000997       |
| Amplifier                                      | js42-00502650-28-5a             | Parzich GMBH         | 928979     | 300003143       |


### 8.3 Radiated measurements 12.75 GHz to 50 GHz



### 8.4 Conducted measurements



## 8.5 AC conducted



### Equipment table:

| Equipment                           | Type                           | Manufacturer         | Serial No. | INV. No Cetecom |
|-------------------------------------|--------------------------------|----------------------|------------|-----------------|
| MXE EMI Receiver 20 Hz bis 26,5 GHz | N9038A                         | Agilent Technologies | MY51210197 | 300004405       |
| Isolating Transformer               | MPL IEC625 Bus Regeltronntravo | Erfi                 | 91350      | 300001155       |
| Switch / Control Unit               | 3488A                          | HP Meßtechnik        | *          | 300000199       |
| Switch / Control Unit               | 3488A                          | HP Meßtechnik        | 2719A15013 | 300001168       |
| Artificial Mains 9 kHz to 30 MHz    | ESH3-Z5                        | R&S                  | 828576/020 | 300001210       |

## 9 Test results

### 9.1 Frequency stability and fundamental bandwidth

#### Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

§15.256(f) The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

#### Measurement:

$f_C$  is the point in the radiation where the power is at maximum. The frequency points where the power falls 10 dB below the  $f_C$  level and above  $f_C$  level are designated as  $f_L$  and  $f_H$  respectively.

The operating frequency range (i.e. the frequency band of operation) is defined as  $f_H - f_L$ .

#### Measurement parameters:

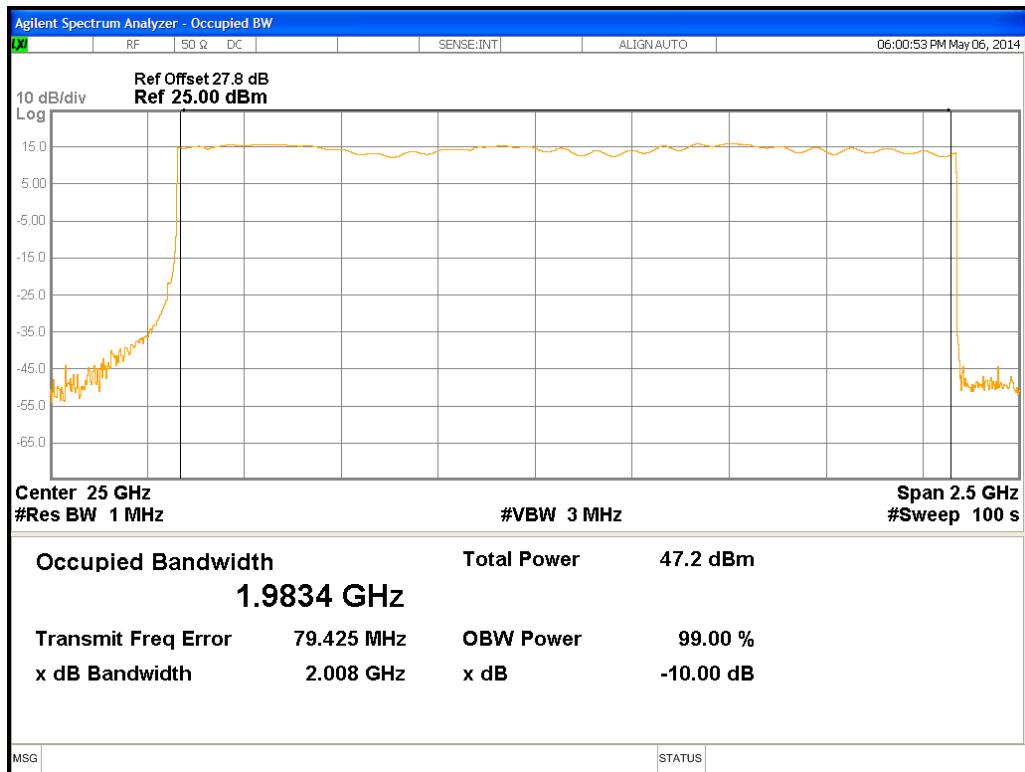
Resolution bandwidth: 1 MHz  
 Video bandwidth:  $\geq 1$  MHz  
 Detector: Pos-Peak  
 Trace: Max hold

#### Limits:

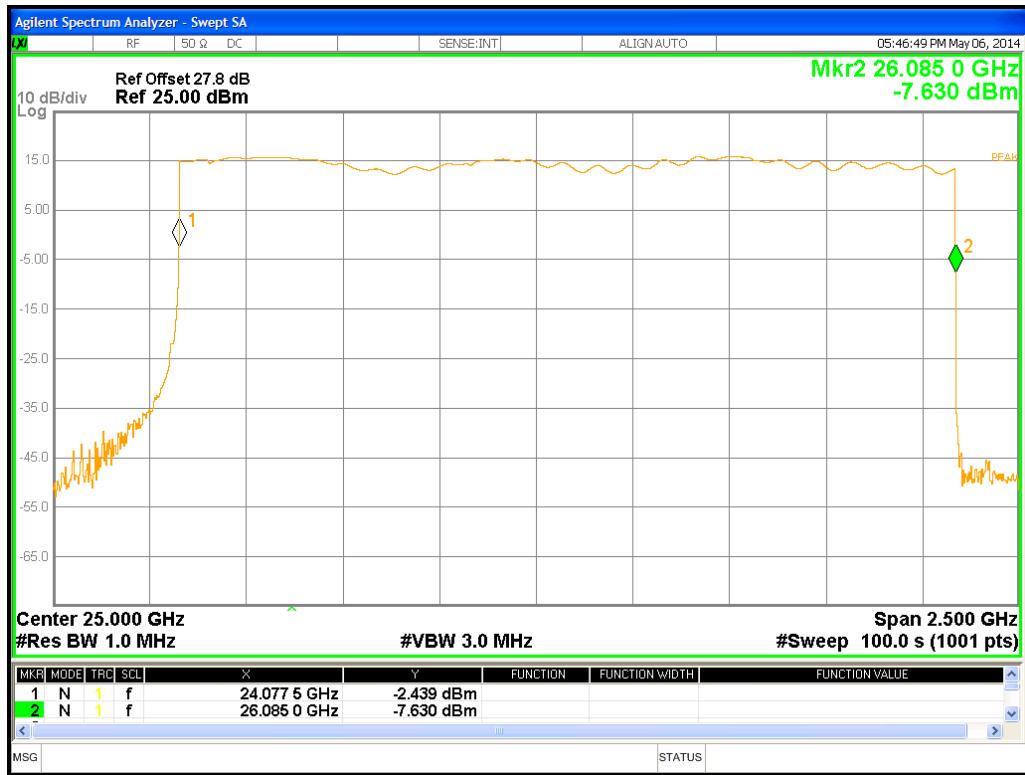
As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.

§15.256(f)(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

§15.256(f)(2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation.


Same requirements for fundamental emission bandwidth are given in RSS-211, 2.4 and 5.1.a)

**Results:**


| Test Conditions                           | Transmitter Frequency Range (GHz) |         | 10 dB bandwidth (GHz) |
|-------------------------------------------|-----------------------------------|---------|-----------------------|
|                                           | $f_L$                             | $f_H$   |                       |
| -20 °C / $V_{\text{nom}}$                 | 24.0775                           | 26.0855 | 2.0080                |
| -10 °C / $V_{\text{nom}}$                 | 24.0773                           | 26.0854 | 2.0081                |
| 0 °C / $V_{\text{nom}}$                   | 24.0773                           | 26.0853 | 2.0080                |
| 10 °C / $V_{\text{nom}}$                  | 24.0772                           | 26.0852 | 2.0080                |
| 20 °C / $V_{\text{min}} - V_{\text{max}}$ | 24.0771                           | 26.0851 | 2.0080                |
| 30 °C / $V_{\text{nom}}$                  | 24.0769                           | 26.0851 | 2.0082                |
| 40 °C / $V_{\text{nom}}$                  | 24.0767                           | 26.0850 | 2.0083                |
| 50 °C / $V_{\text{nom}}$                  | 24.0765                           | 26.0849 | 2.0084                |

**Result: Test passed**

Plot 1: 10 dB bandwidth, Pos-Peak-measurement (conducted measurement with special test adapter)



Plot 2:  $f_L - f_H$ , Pos-Peak-measurement (conducted measurement with special test adapter)



## 9.2 Fundamental emissions

### Description:

§15.256(g) Fundamental emissions limits.

(1) All emission limits provided in this section are expressed in terms of Equivalent Isotropic Radiated Power (EIRP).

(2) The EIRP level is to be determined from the maximum measured power within a specified bandwidth.

(i) The EIRP in 1 MHz is computed from the maximum power level measured within any 1-MHz bandwidth using a power averaging detector;

(ii) The EIRP in 50 MHz is computed from the maximum power level measured with a peak detector in a 50-MHz bandwidth centered on the frequency at which the maximum average power level is realized and this 50 MHz bandwidth must be contained within the authorized operating bandwidth. For a RBW less than 50 MHz, the peak EIRP limit (in dBm) is reduced by  $20 \log(RBW/50)$  dB where RBW is the resolution bandwidth in megahertz. The RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than the RBW. If the RBW is greater than 3 MHz, the application for certification filed shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

(3) The EIRP limits for LPR operations in the bands authorized by this rule section are provided in Table below. The emission limits in Table below are based on boresight measurements (i.e., measurements performed within the main beam of an LPR antenna).

### Limits:

| Frequency range (GHz) | Average emission limit (EIRP in dBm / 1 MHz) | Peak emission limit (EIRP in dBm / 50 MHz) |
|-----------------------|----------------------------------------------|--------------------------------------------|
| 5.925 to 7.250        | -33                                          | +7 dBm                                     |
| 24.05 to 29.00        | -14                                          | +26 dBm                                    |
| 75.00 to 85.00        | -3                                           | +34 dBm                                    |

Same requirements are given in RSS-211, 5.2.b)

### Measurement parameters:

Resolution bandwidth: 1 MHz

Video bandwidth:  $\geq 1$  MHz

Span: depends on DUT

Detector: Pos-Peak

Trace: Max hold

**Results:**

| Antenna type                       | Antenna gain (dBi) | Peak EIRP (dBm) | Average EIRP (dBm) |
|------------------------------------|--------------------|-----------------|--------------------|
| Wave Horn DN 80 (stainless steel)  | 24.4               | 17.0            | -37.6              |
| Wave Horn DN 100 (stainless steel) | 25.8               | 18.4            | -36.2              |
| Wave Horn DN 80 (metal sheet)      | 24.5               | 17.1            | -37.5              |
| Wave Horn DN 100 (metal sheet)     | 25.9               | 18.5            | -36.1              |
| Wave Horn DN 150 (metal sheet)     | 27.9               | 20.5            | -34.1              |
| Wave Horn DN 200 (metal sheet)     | 28.4               | 21.0            | -33.6              |
| Drop Antenna DN 80                 | 25.8               | 18.4            | -36.2              |
| Drop Antenna DN 150                | 30.4               | 23.0            | -31.6              |
| Measurement uncertainty            |                    | ±2dB            |                    |

**Note:**

See manufacturer's documentation *Radio Approval Optiwave 7400, LPR antenna characteristics* of 2014-05-19.

There are two different aspects which will affect the peak-to-average ratio resp. RMS value at all:

- Duty cycle of the device
- Frequency domain mitigation due to FMCW-modulation

In normal use the EUT uses FMCW with a positive ramp over approx. 2 GHz within 7 ms.

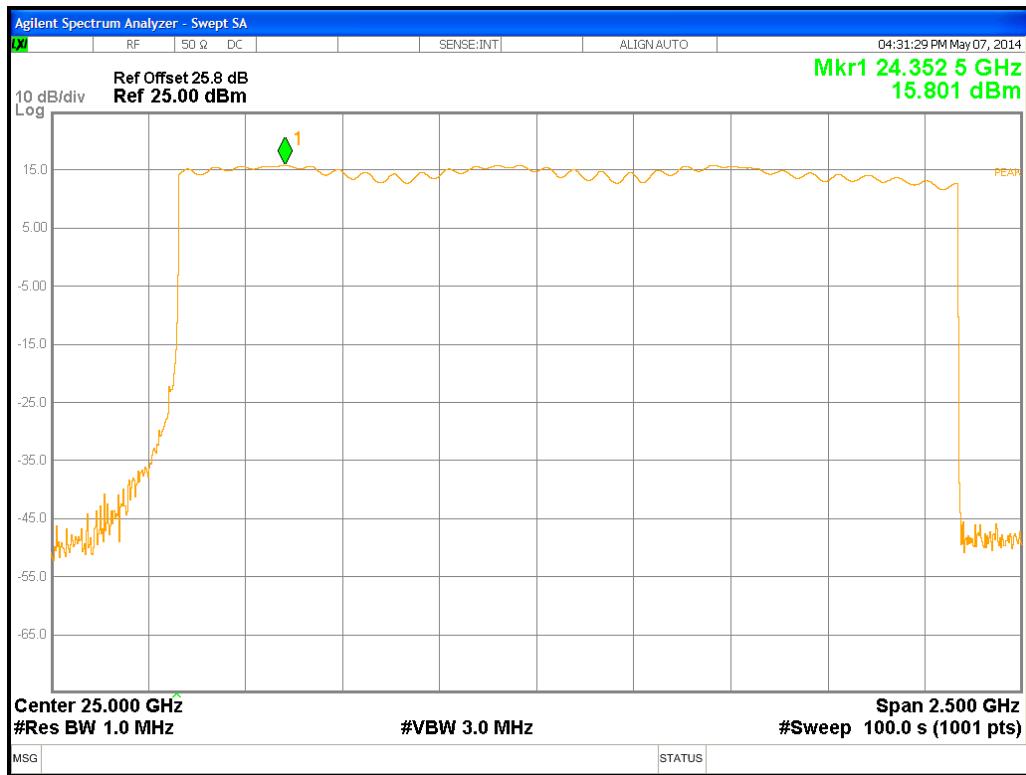
The total DUT cycle is 1000 ms. Therefore the blanking period between the emissions is 993 ms.

This will lead to:

- dwell time  $T_D = T_S / \Delta F = 3.5 \mu\text{s/MHz}$
- averaging factor  $AF = T_D / \text{cycle time} = 3.5 \cdot 10^{-6} \triangleq -54.6 \text{ dB}$

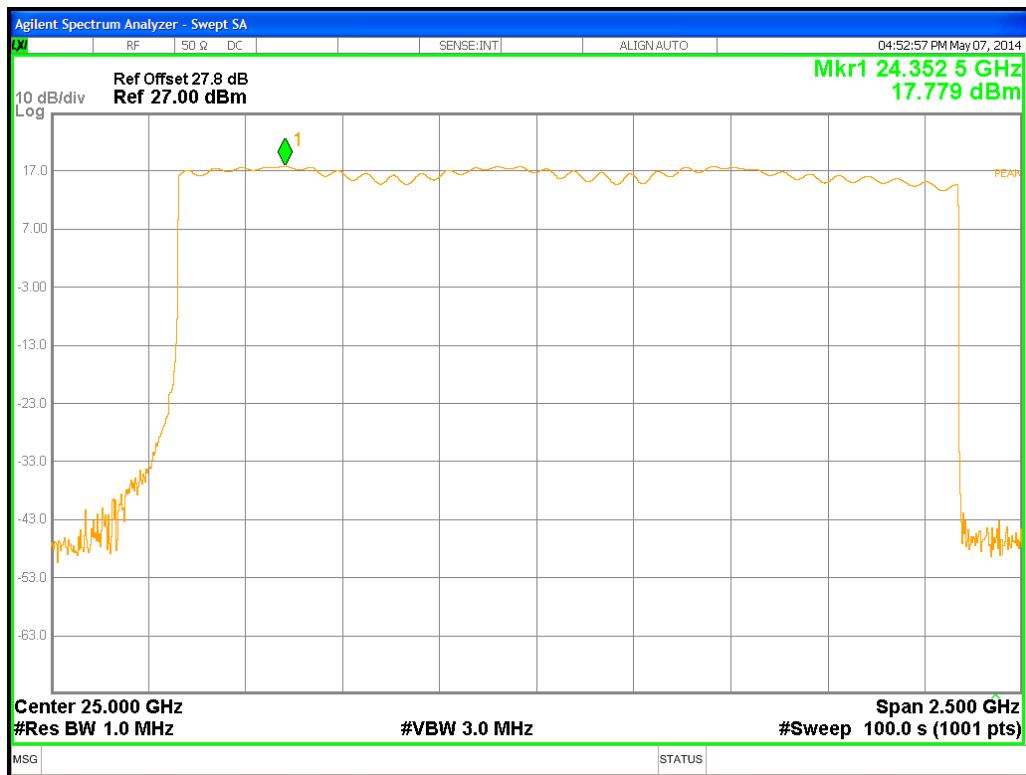
Peak output power was measured as conducted output power with settings shown in FCC document *890966 D01, Measurement Procedure for Level Probing Radars*. Measurements were performed using a special test adapter supplied by the manufacturer.

Peak EIRP was calculated based on the peak output power and the antenna gain given in above mentioned antenna test report of the manufacturer.


Plots show measurement results for horn antenna DN 200 and drop antenna DN 150 with highest antenna gain for each antenna type as worst case. Antenna gain is considered in reference level offset.

Average EIRP was calculated according to FCC document *890966 D01, Measurement Procedure for Level Probing Radars*.

Performing the measurements the reference level offset was set 5.2 dB too low. Measurement values of plot no. 3 - 4 have to be corrected by +5.2 dB.


**Result: Test passed**

Plot 3: Pos-Peak-measurement, horn DN 200 (1 MHz RBW)



Note: Measurement values need to be corrected by +5.2 dB.

Plot 4: Pos-Peak-measurement, Drop Antenna DN 150 (1 MHz RBW)



Note: Measurement values need to be corrected by +5.2 dB.

### 9.3 Unwanted emissions limit

#### Description:

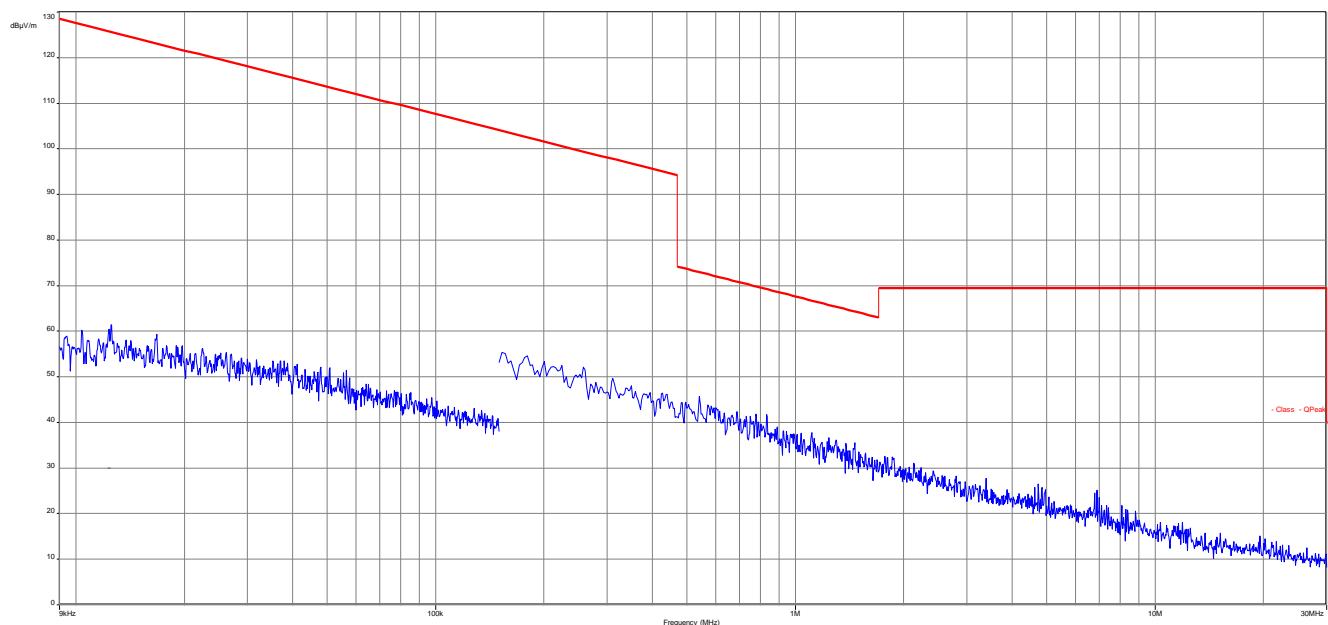
§15.256(h)

Unwanted emissions from LPR devices shall not exceed the general emission limit in §15.209 of this chapter.

#### Measurement parameters:

Resolution bandwidth: 100 kHz / 1 MHz  
 Video bandwidth:  $\geq$  resolution bandwidth  
 Detector: Quasi Peak / Average (RMS)  
 Trace: Max hold

#### Limits:


| FCC §15.209 / RSS-Gen                         |                             |                          |
|-----------------------------------------------|-----------------------------|--------------------------|
| Field strength of the harmonics and spurious. |                             |                          |
| Frequency (MHz)                               | Field strength ( $\mu$ V/m) | Measurement distance (m) |
| 0.009 – 0.490                                 | 2400/F(kHz)                 | 300                      |
| 0.490 – 1.705                                 | 24000/F(kHz)                | 30                       |
| 1.705 – 30                                    | 30 (29.5 dB $\mu$ V/m)      | 30                       |
| 30 – 88                                       | 100 (40 dB $\mu$ V/m)       | 3                        |
| 88 – 216                                      | 150 (43.5 dB $\mu$ V/m)     | 3                        |
| 216 – 960                                     | 200 (46 dB $\mu$ V/m)       | 3                        |
| >960                                          | 500 (54 dB $\mu$ V/m)       | 3                        |

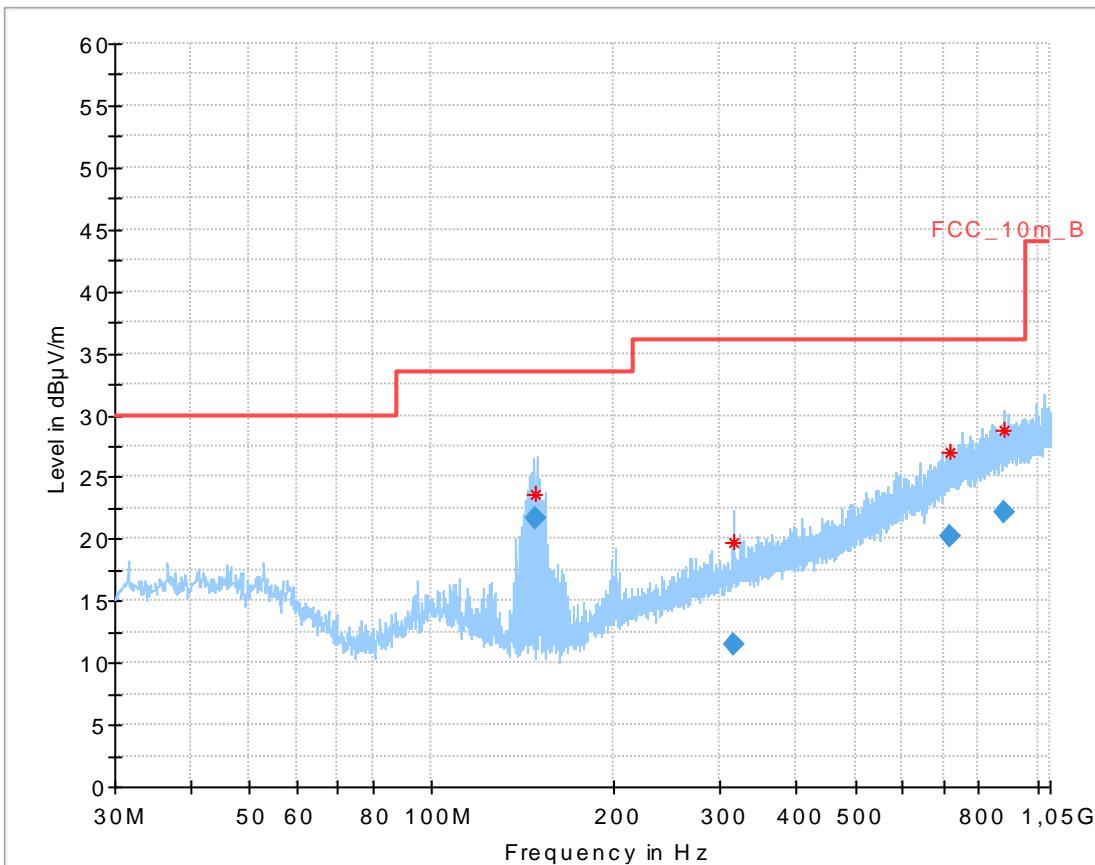
#### Results:

| Spurious emission level (dBm) |             |                |                    |             |                |                    |             |                |
|-------------------------------|-------------|----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|
| -/-                           |             |                | -/-                |             |                | -/-                |             |                |
| Frequency<br>[GHz]            | BW<br>[kHz] | Level<br>[dBm] | Frequency<br>[GHz] | BW<br>[kHz] | Level<br>[dBm] | Frequency<br>[GHz] | BW<br>[kHz] | Level<br>[dBm] |
| see plots                     |             |                |                    |             |                |                    |             |                |
|                               |             |                |                    |             |                |                    |             |                |
|                               |             |                |                    |             |                |                    |             |                |
|                               |             |                |                    |             |                |                    |             |                |
|                               |             |                |                    |             |                |                    |             |                |
| Measurement uncertainty       |             |                | $\pm 3$ dB         |             |                |                    |             |                |

**Result: Test passed**

Plot 5: 9 kHz – 30 MHz,  $f_{mid}$

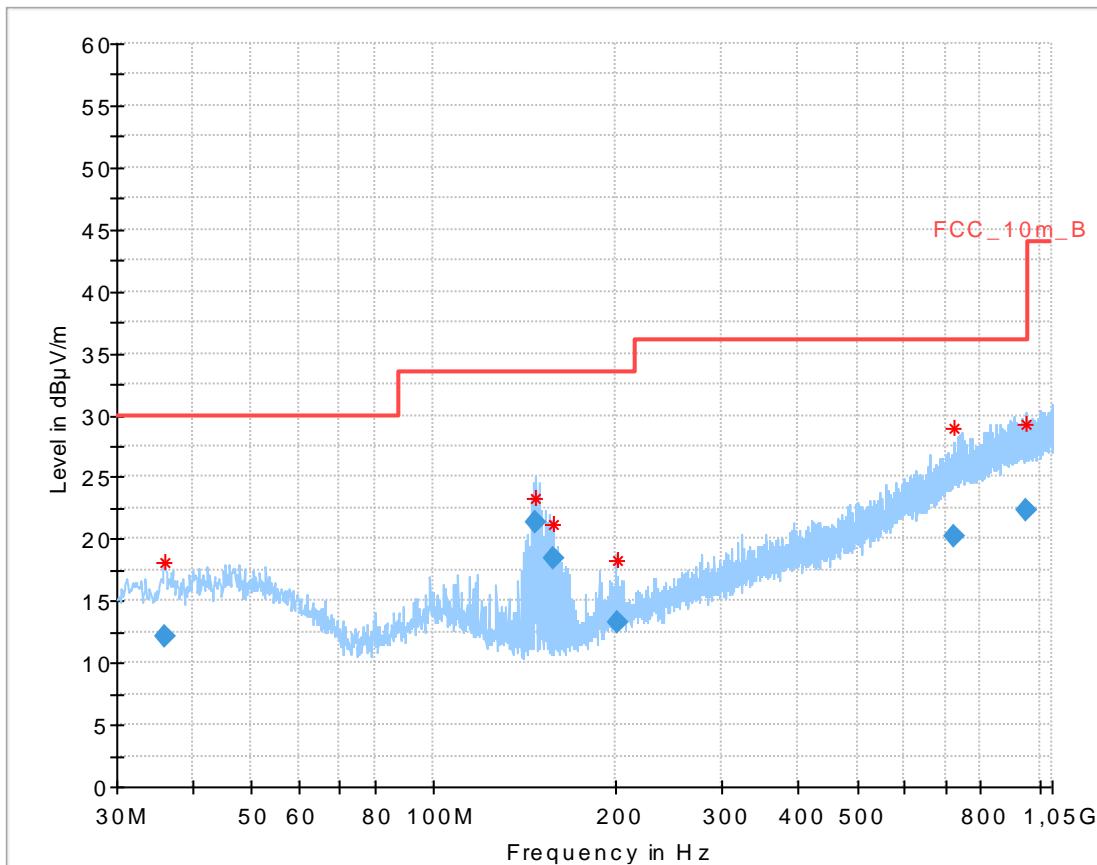



Plot 6: 30 MHz – 1000 MHz, special test mode, frequency sweep stopped at  $f_{low}$



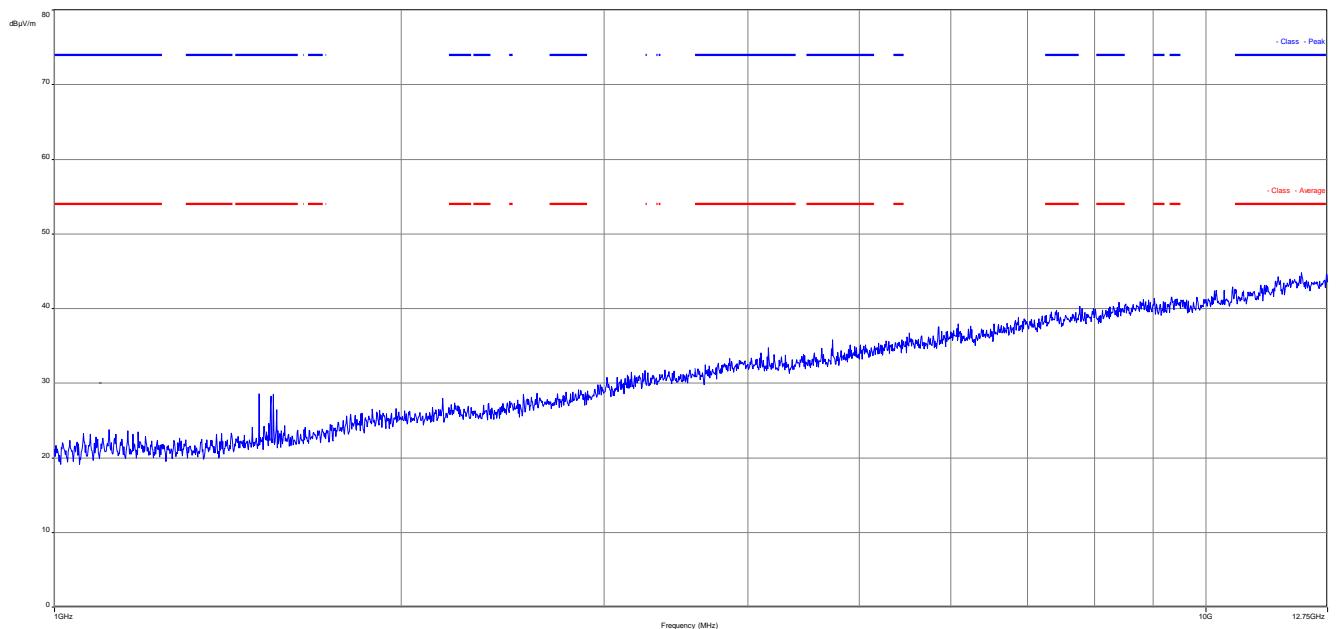
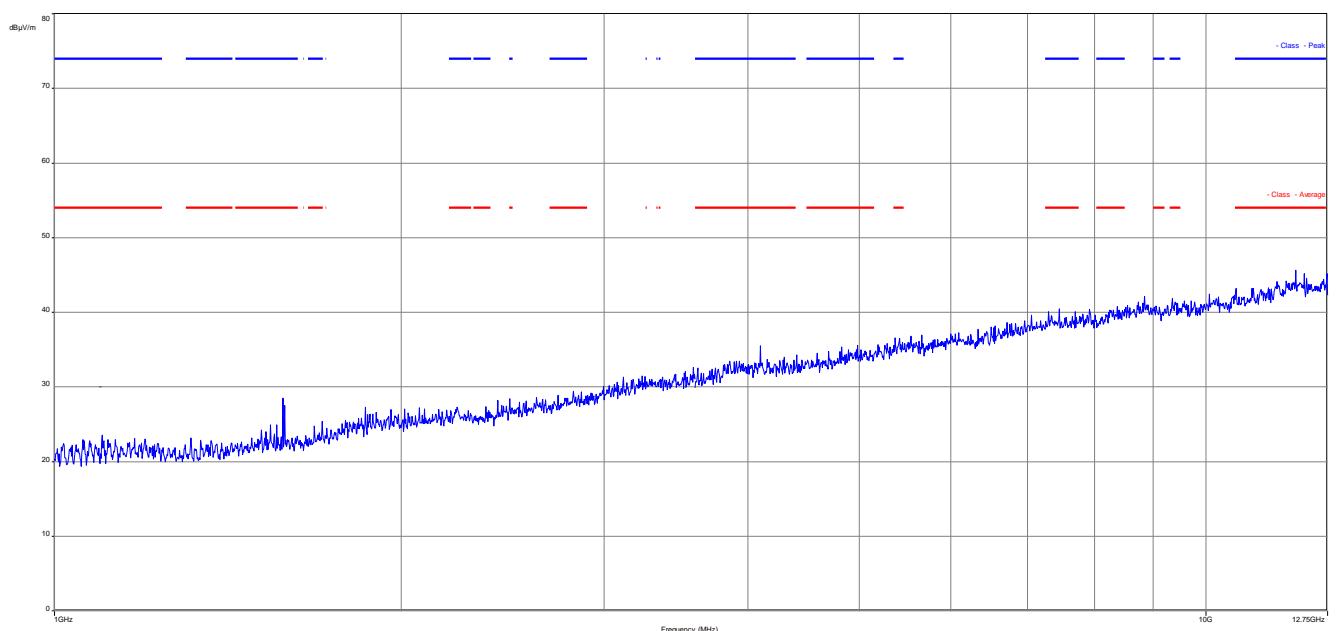
Final Result:

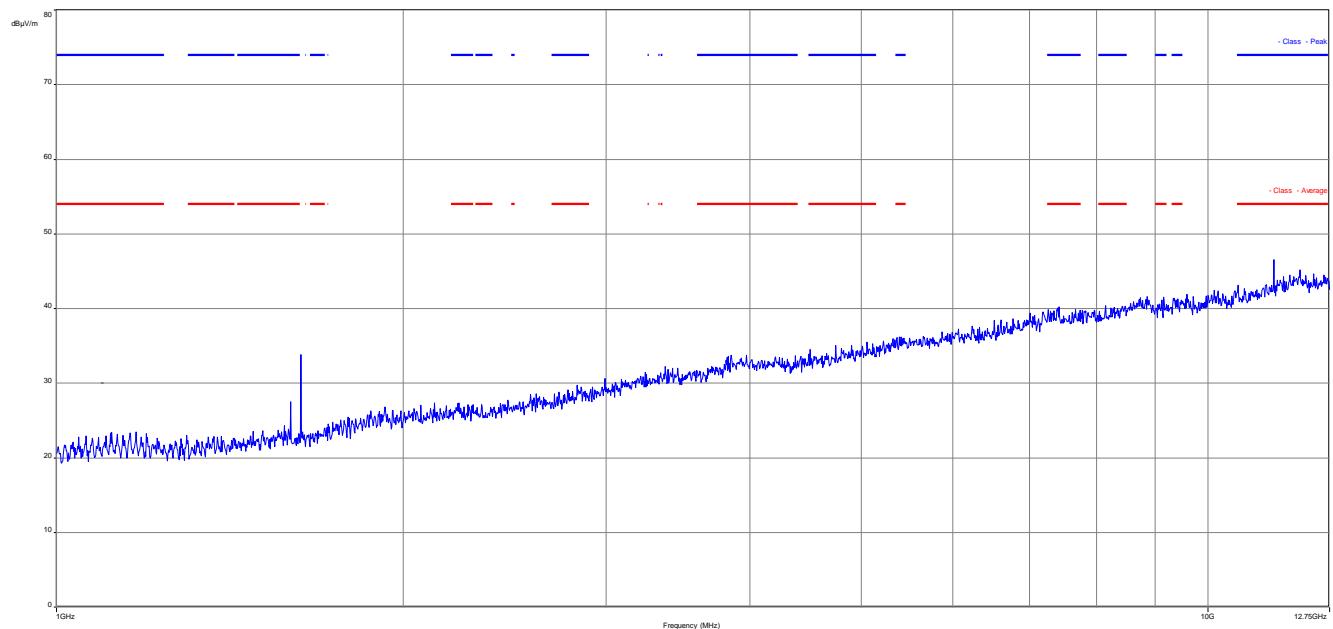
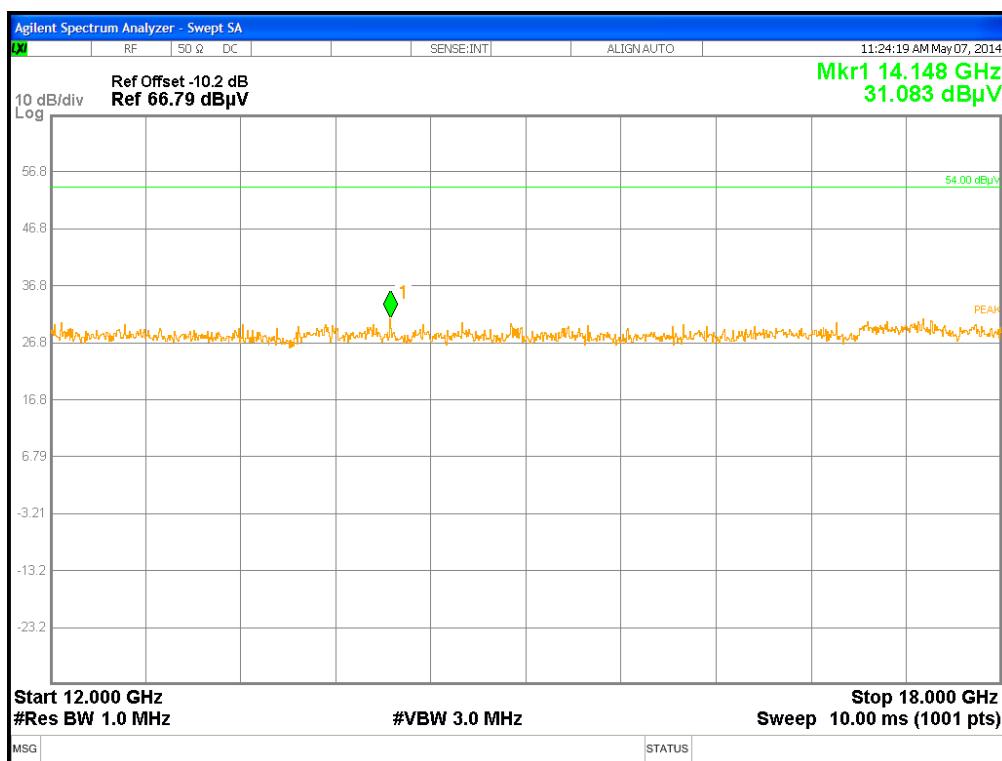
| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Pol | Azimuth (deg) | Corr. (dB) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------|-------------|-----|---------------|------------|
| 142.968000      | 20.37                    | 33.50                | 13.13       | 1000.0          | 120.000         | 107.0       | V   | 43.0          | 8.7        |
| 149.104050      | 24.27                    | 33.50                | 9.23        | 1000.0          | 120.000         | 103.0       | V   | 62.0          | 8.9        |
| 710.396700      | 19.95                    | 36.00                | 16.05       | 1000.0          | 120.000         | 200.0       | V   | 50.0          | 22.7       |
| 940.497000      | 22.32                    | 36.00                | 13.68       | 1000.0          | 120.000         | 365.0       | V   | 50.0          | 25.3       |

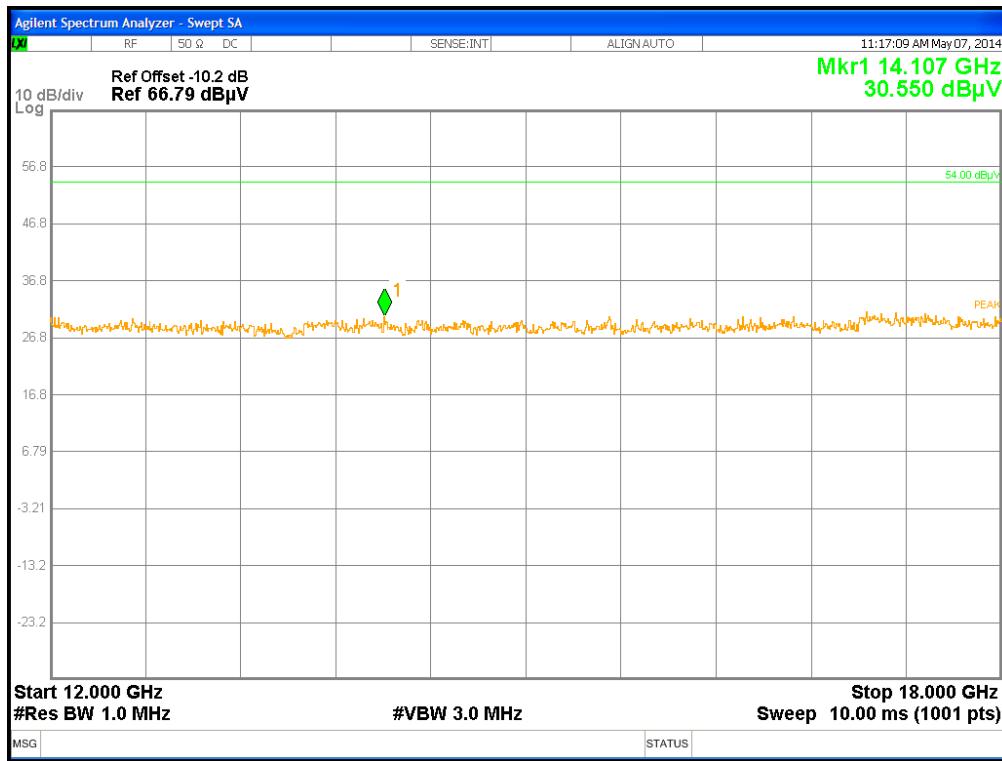
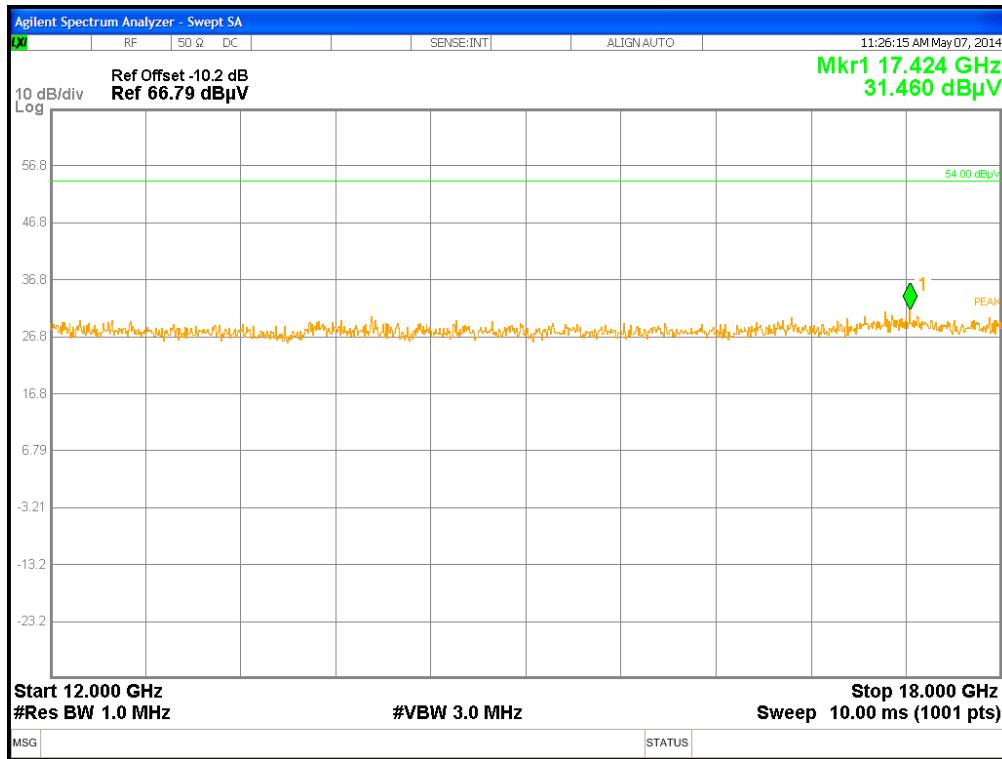

Plot 7: 30 MHz – 1000 MHz, special test mode, frequency sweep stopped at  $f_{mid}$

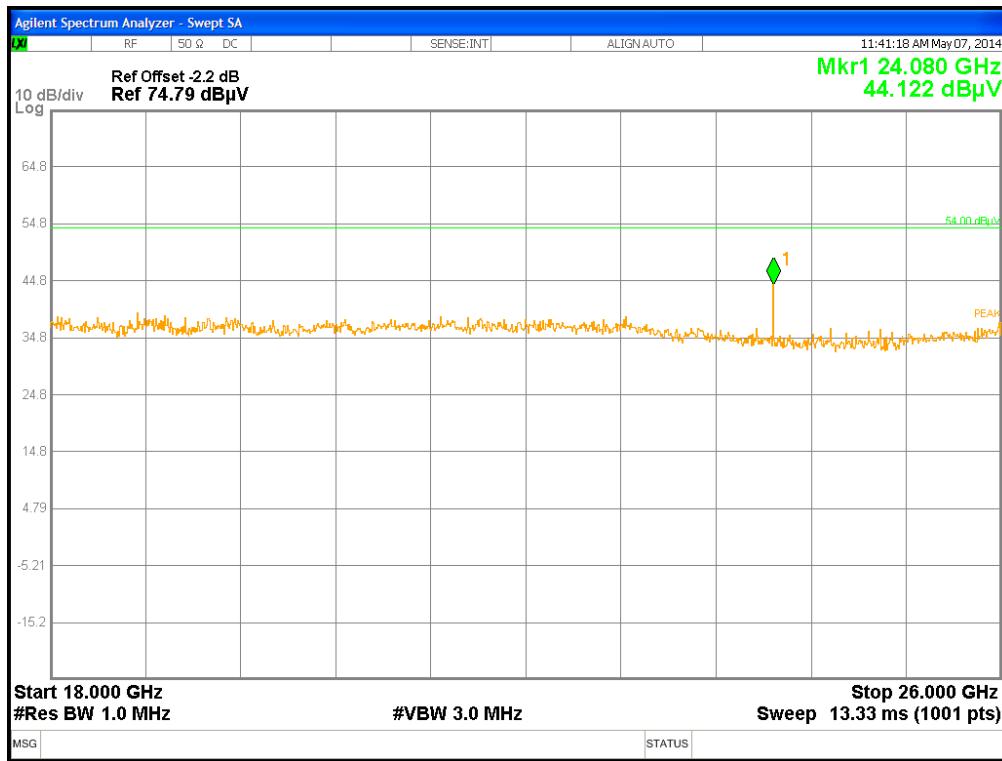
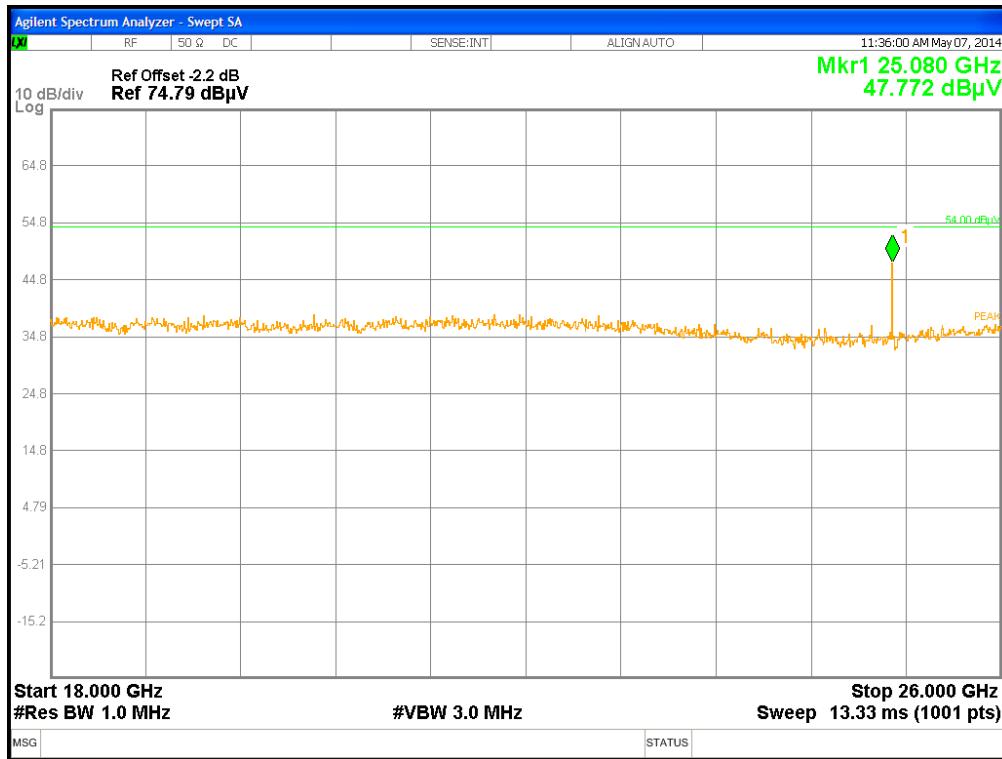


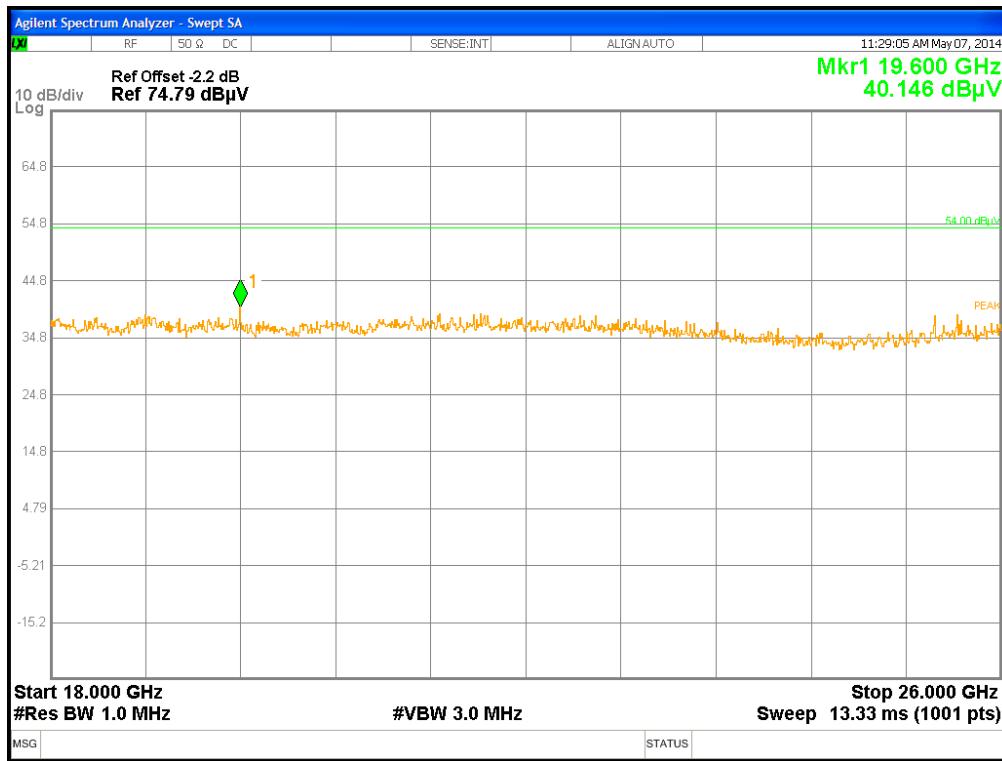
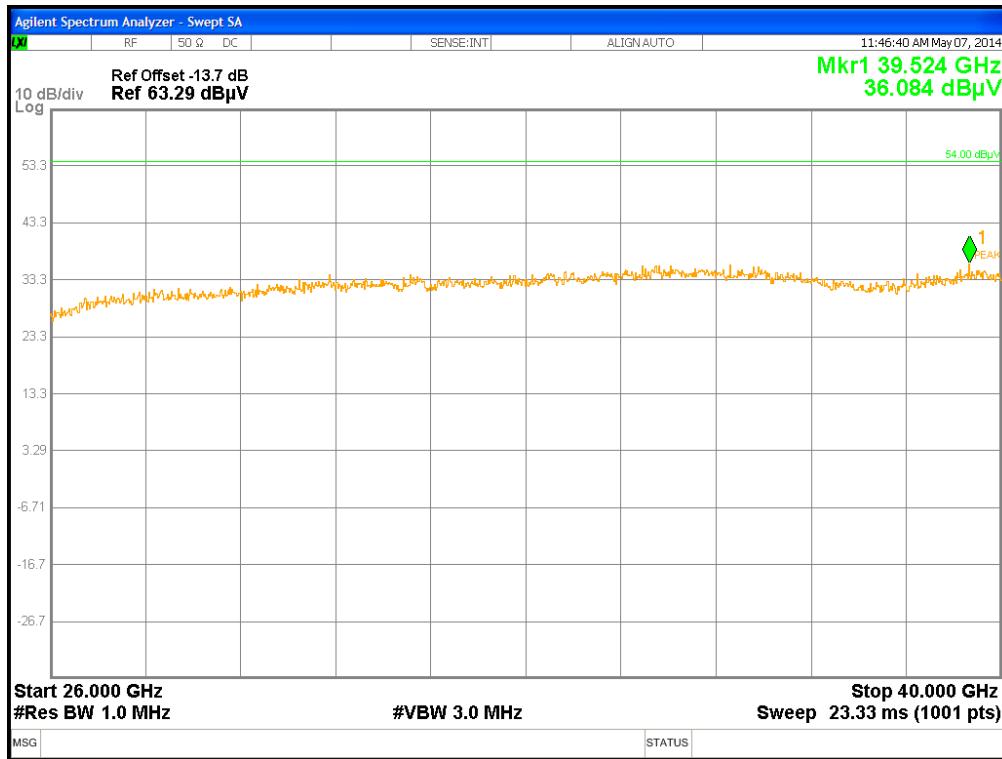
Final Result:

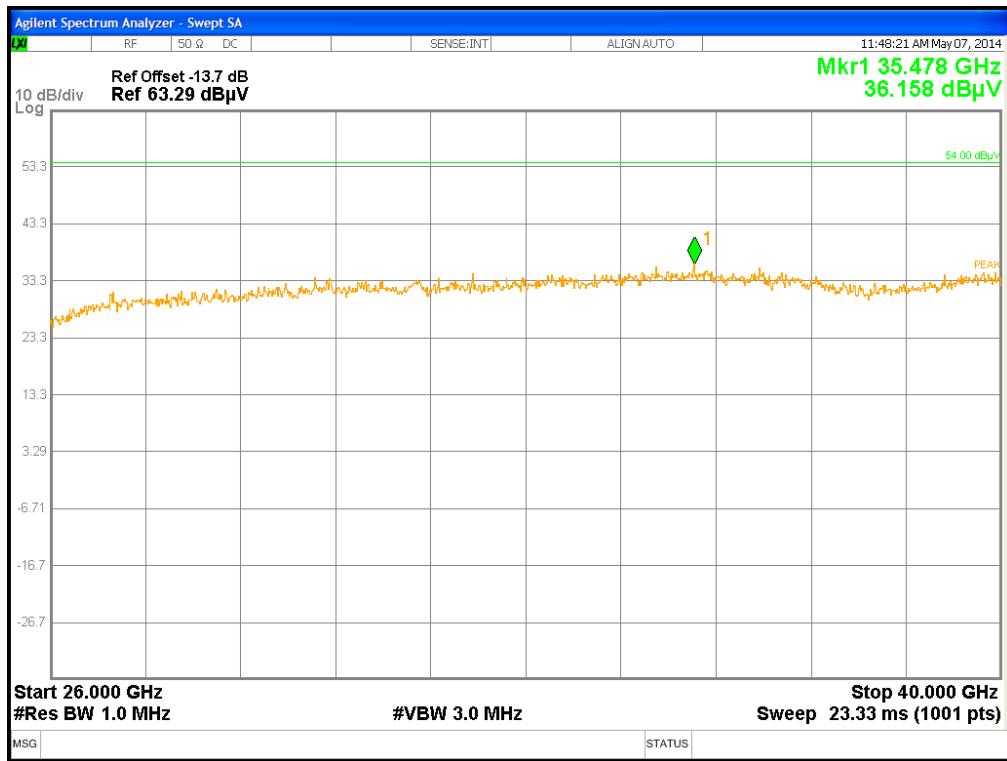


| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Pol | Azimuth (deg) | Corr. (dB) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------|-------------|-----|---------------|------------|
| 148.699950      | 21.67                    | 33.50                | 11.83       | 1000.0          | 120.000         | 115.0       | V   | 27.0          | 8.9        |
| 314.443950      | 11.44                    | 36.00                | 24.56       | 1000.0          | 120.000         | 124.0       | V   | 302.0         | 15.0       |
| 718.740000      | 20.14                    | 36.00                | 15.86       | 1000.0          | 120.000         | 200.0       | V   | 300.0         | 22.9       |
| 880.333200      | 22.15                    | 36.00                | 13.85       | 1000.0          | 120.000         | 124.0       | V   | 199.0         | 24.9       |

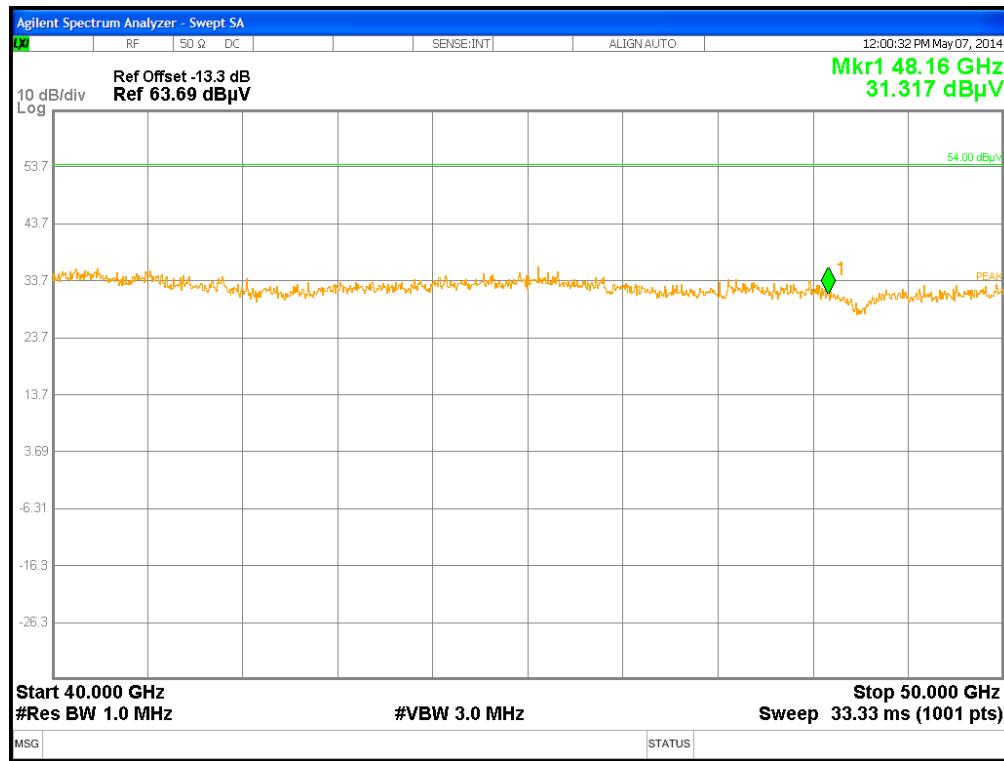
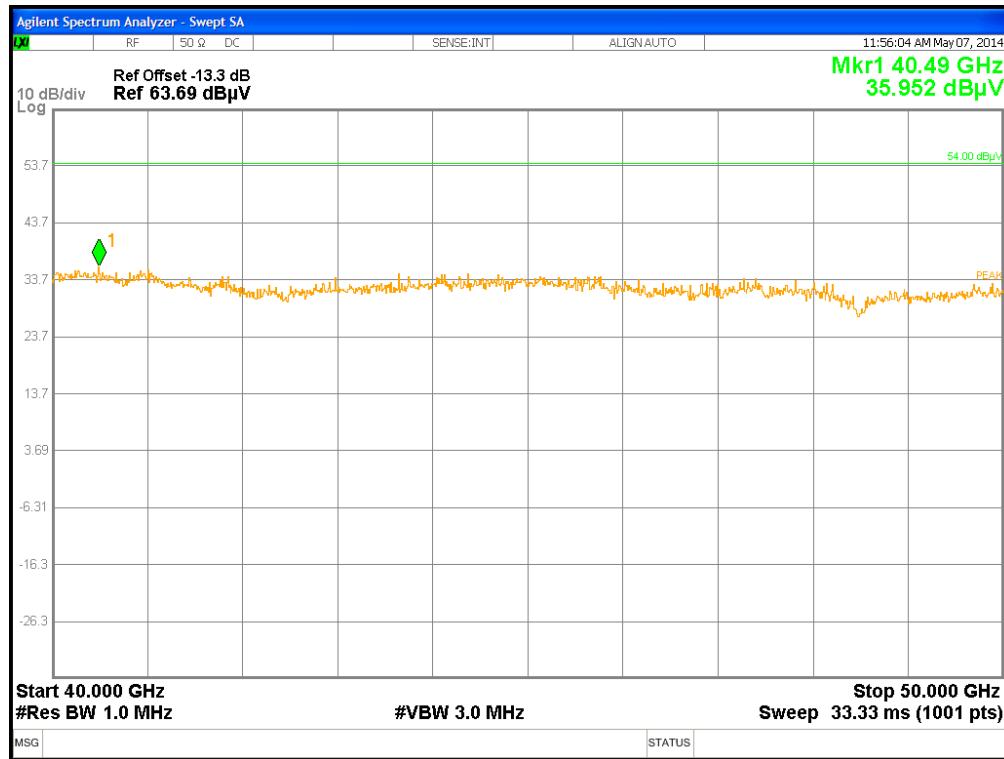


Plot 8: 30 MHz – 1000 MHz, special test mode, frequency sweep stopped at  $f_{\text{high}}$

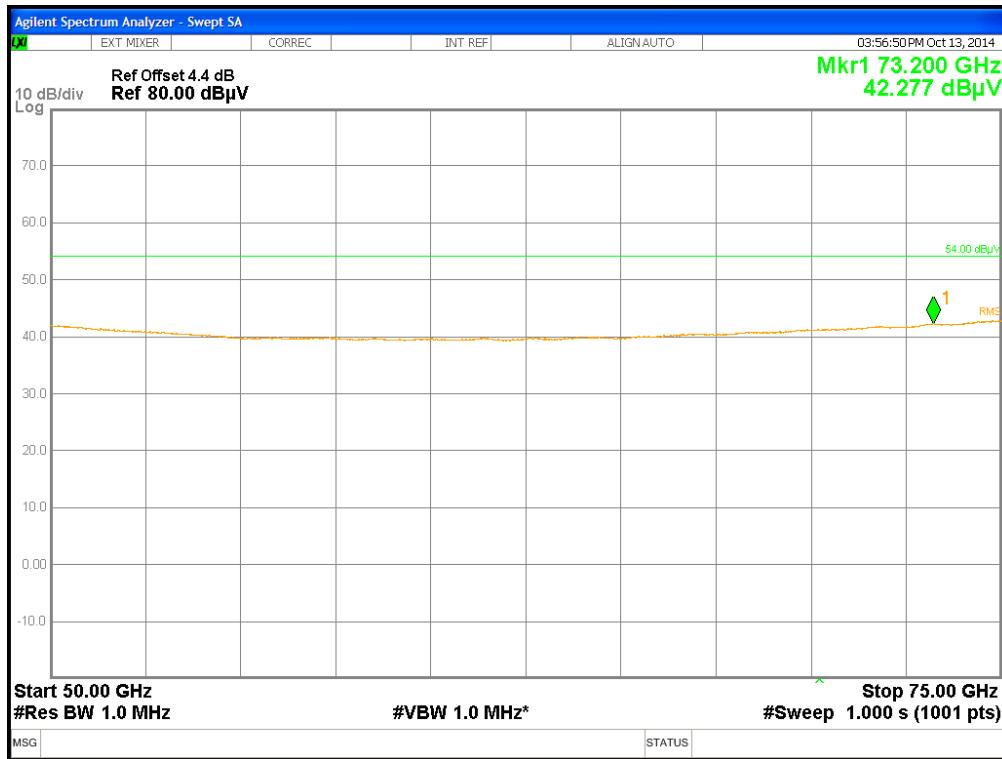






Final Result:

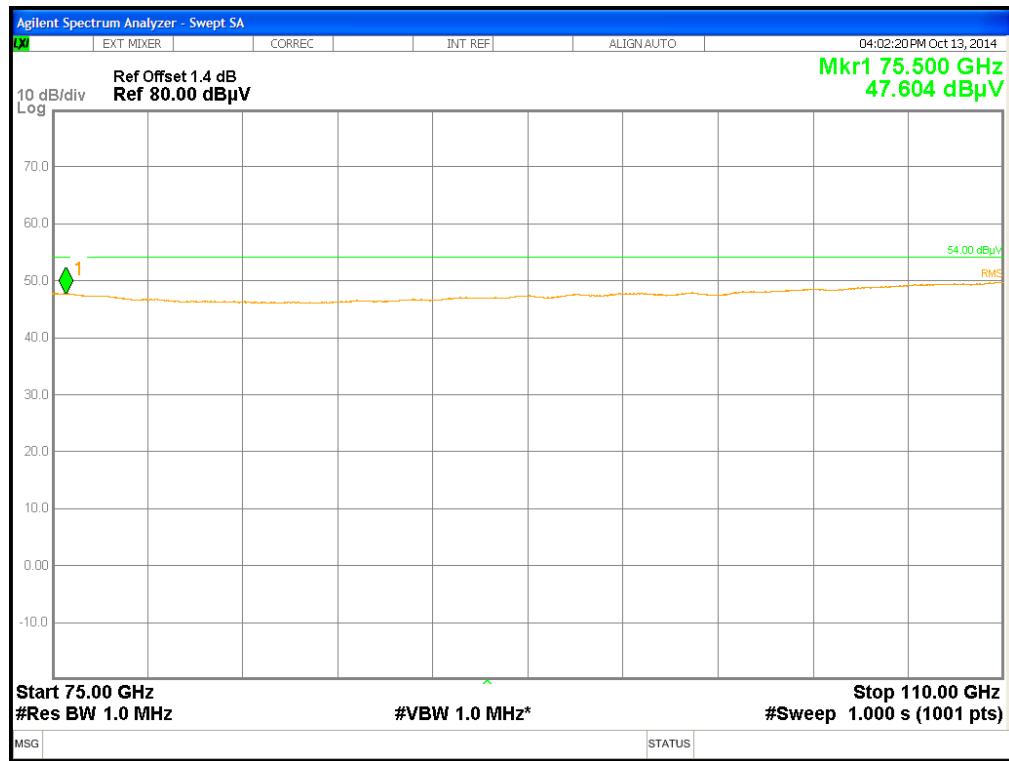


| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Height (cm) | Pol | Azimuth (deg) | Corr. (dB) |
|-----------------|--------------------------|----------------------|-------------|-----------------|-----------------|-------------|-----|---------------|------------|
| 35.977050       | 12.18                    | 30.00                | 17.82       | 1000.0          | 120.000         | 308.0       | V   | 284.0         | 13.1       |
| 147.471450      | 21.33                    | 33.50                | 12.17       | 1000.0          | 120.000         | 102.0       | V   | 5.0           | 8.9        |
| 157.728900      | 18.43                    | 33.50                | 15.07       | 1000.0          | 120.000         | 109.0       | V   | 50.0          | 9.1        |
| 200.684700      | 13.33                    | 33.50                | 20.17       | 1000.0          | 120.000         | 104.0       | V   | 352.0         | 11.7       |
| 725.264550      | 20.21                    | 36.00                | 15.79       | 1000.0          | 120.000         | 387.0       | H   | 4.0           | 23.1       |
| 947.677500      | 22.27                    | 36.00                | 13.73       | 1000.0          | 120.000         | 400.0       | H   | 260.0         | 25.3       |


Plot 9: 1 GHz – 12.75 GHz, special test mode, frequency sweep stopped at  $f_{low}$ Plot 10: 1 GHz – 12.75 GHz, special test mode, frequency sweep stopped at  $f_{mid}$ 



Plot 11: 1 GHz – 12.75 GHz, special test mode, frequency sweep stopped at  $f_{high}$ Plot 12: 12 GHz – 18 GHz, special test mode,  $f_{low}$ 



Plot 13: 12 GHz – 18 GHz, special test mode,  $f_{\text{mid}}$ Plot 14: 12 GHz – 18 GHz, special test mode,  $f_{\text{high}}$ 

Plot 15: 18 GHz – 26 GHz, special test mode,  $f_{low}$ Plot 16: 18 GHz – 26 GHz, special test mode,  $f_{mid}$ 


Plot 17: 18 GHz – 26 GHz, special test mode,  $f_{high}$ Plot 18: 26 GHz – 40 GHz, special test mode,  $f_{low}$ 

Plot 19: 26 GHz – 40 GHz, special test mode, special test mode,  $f_{mid}$ Plot 20: 26 GHz – 40 GHz, special test mode,  $f_{high}$ 

Plot 21: 40 GHz – 50 GHz, special test mode,  $f_{low}$ Plot 22: 40 GHz – 50 GHz, special test mode,  $f_{mid}$ 

Plot 23: 40 GHz – 50 GHz, special test mode,  $f_{high}$ Plot 24: 50 GHz – 75 GHz, special test mode,  $f_{low/mid/high}$ 

Plot 25: 75 GHz – 110 GHz, special test mode,  $f_{low/mid/high}$



## 9.4 Antenna beamwidth and antenna side lobe gain

### Description:

§15.256(i) Antenna beamwidth

(A) LPR devices operating under the provisions of this section within the 5.925-7.250 GHz and 24.05-29.00 GHz bands must use an antenna with a -3 dB beamwidth no greater than 12 degrees.

(B) LPR devices operating under the provisions of this section within the 75-85 GHz band must use an antenna with a -3 dB beamwidth no greater than 8 degrees.

(j) Antenna side lobe gain. LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in Table below.

### Limits:

| FCC §15.256 / RSS-211 5.2a) c) |                                 |                                                              |
|--------------------------------|---------------------------------|--------------------------------------------------------------|
| Frequency range (GHz)          | Antenna beamwidth in degree (°) | Antenna side lobe gain limit relative to main beam gain (dB) |
| 5.925 to 7.250                 | 12                              | -22                                                          |
| 24.05 to 29.00                 | 12                              | -27                                                          |
| 75.00 to 85.00                 | 8                               | -38                                                          |

### Antenna data:

| Antenna type                       | Antenna gain | 3 dB beam width | Side lobe gain |
|------------------------------------|--------------|-----------------|----------------|
| Wave Horn DN 80 (stainless steel)  | 24.4 dBi     | 11.4°           | <-27 dB        |
| Wave Horn DN 100 (stainless steel) | 25.8 dBi     | 9.6°            | <-27 dB        |
| Wave Horn DN 80 (metal sheet)      | 24.5 dBi     | 11.7°           | <-27 dB        |
| Wave Horn DN 100 (metal sheet)     | 25.9 dBi     | 9.6°            | <-27 dB        |
| Wave Horn DN 150 (metal sheet)     | 27.9 dBi     | 6.6°            | <-27 dB        |
| Wave Horn DN 200 (metal sheet)     | 28.4 dBi     | 5.6°            | <-27 dB        |
| Drop Antenna DN 80                 | 25.8 dBi     | 7.9°            | <-27 dB        |
| Drop Antenna DN 150                | 30.4 dBi     | 4.0°            | <-27 dB        |

### Note:

See manufacturer's documentation *Radio Approval Optiwave 7400, LPR antenna characteristics* of 2014-05-19.

### Result: Test passed

## 9.5 Emissions from digital circuitry

### Description:

§15.256(k) Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209 of this chapter provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k) of this part, e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B, part 15 of this chapter. Emissions from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

### Measurement:

| Measurement parameter |                            |
|-----------------------|----------------------------|
| Detector:             | Quasi Peak / Average (RMS) |
| Sweep time:           | Auto                       |
| Resolution bandwidth: | 100 kHz / 1 MHz            |
| Video bandwidth:      | > resbw                    |
| Trace-Mode:           | Max-Hold                   |

### Limits:

| FCC §15.209 / RSS-Gen                         |                             |                          |
|-----------------------------------------------|-----------------------------|--------------------------|
| Field strength of the harmonics and spurious. |                             |                          |
| Frequency (MHz)                               | Field strength ( $\mu$ V/m) | Measurement distance (m) |
| 0.009 – 0.490                                 | 2400/F(kHz)                 | 300                      |
| 0.490 – 1.705                                 | 24000/F(kHz)                | 30                       |
| 1.705 – 30                                    | 30 (29.5 dB $\mu$ V/m)      | 30                       |
| 30 – 88                                       | 100 (40 dB $\mu$ V/m)       | 3                        |
| 88 – 216                                      | 150 (43.5 dB $\mu$ V/m)     | 3                        |
| 216 – 960                                     | 200 (46 dB $\mu$ V/m)       | 3                        |
| >960                                          | 500 (54 dB $\mu$ V/m)       | 3                        |

### Results:

See §15.256(h) Unwanted emissions limit.

**Result: Test passed**

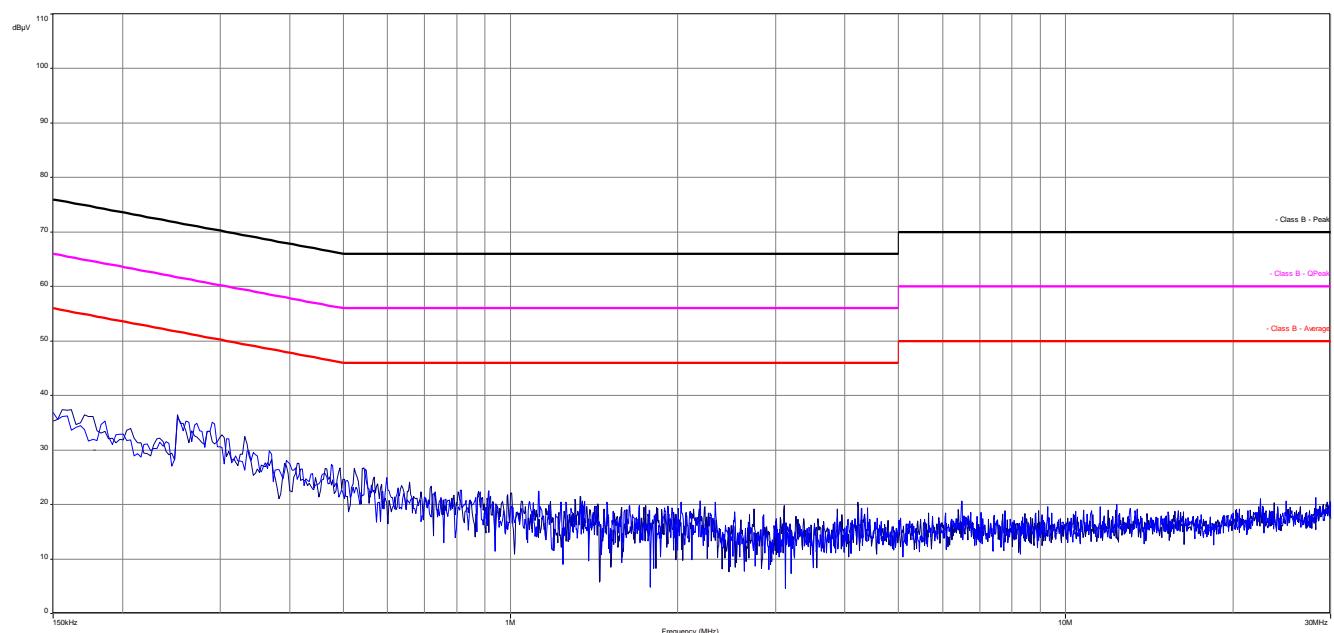
## 9.6 Conducted limits

### Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

### Measurement:

| Measurement parameter |                                            |
|-----------------------|--------------------------------------------|
| Detector:             | Peak - Quasi Peak / Average                |
| Sweep time:           | Auto                                       |
| Resolution bandwidth: | F < 150 kHz: 200 Hz<br>F > 150 kHz: 9 kHz  |
| Video bandwidth:      | F < 150 kHz: 1 kHz<br>F > 150 kHz: 100 kHz |
| Span:                 | 9 kHz to 30 MHz                            |
| Trace-Mode:           | Max Hold                                   |


### Limits:

| FCC §15.107 / §15.207 / RSS-Gen |                              |            |
|---------------------------------|------------------------------|------------|
| Conducted limits                |                              |            |
| Frequency of Emission (MHz)     | Conducted Limit (dB $\mu$ V) |            |
|                                 | Quasi-peak                   | Average    |
| 0.15 – 0.5                      | 66 to 56 *                   | 56 to 46 * |
| 0.5 – 5                         | 56                           | 46         |
| 5 - 30                          | 60                           | 50         |

\*Decreases with the logarithm of the frequency

**Result: Test passed**

Plot 26:



## 10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

| No. | Lab / Item | Equipment                                      | Type                            | Manufact.            | Serial No. | INV. No Cetecom | Kind of Calibration | Last Calibration | Next Calibration |
|-----|------------|------------------------------------------------|---------------------------------|----------------------|------------|-----------------|---------------------|------------------|------------------|
| 1   | n. a.      | DC power supply, 60Vdc, 50A, 1200 W            | 6032A                           | HP Meßtechnik        | 2818A03450 | 300001040       | Ve                  | 12.01.2012       | 12.01.2015       |
| 2   | n. a.      | Double-Ridged Waveguide Horn Antenna 1-18.0GHz | 3115                            | EMCO                 | 8812-3088  | 300001032       | vlKII               | 08.05.2013       | 08.05.2015       |
| 3   | n. a.      | Anechoic chamber                               | FAC 3/5m                        | MWB / TDK            | 87400/02   | 300000996       | ev                  |                  |                  |
| 4   | n. a.      | Switch / Control Unit                          | 3488A                           | HP Meßtechnik        | *          | 300000199       | ne                  |                  |                  |
| 5   | 9          | Artificial Mains 9 kHz to 30 MHz               | ESH3-Z5                         | R&S                  | 828576/020 | 300001210       | Ve                  | 30.01.2014       | 30.01.2016       |
| 6   | n. a.      | Switch / Control Unit                          | 3488A                           | HP Meßtechnik        | 2719A15013 | 300001156       | ne                  |                  |                  |
| 7   | 9          | Isolating Transformer                          | MPL IEC625 Bus Regel trenntravo | Erfi                 | 91350      | 300001155       | ne                  |                  |                  |
| 8   | n. a.      | Three-Way Power Splitter, 50 Ohm               | 11850C                          | HP Meßtechnik        |            | 300000997       | ne                  |                  |                  |
| 9   | 90         | Active Loop Antenna 10 kHz to 30 MHz           | 6502                            | Kontron Psychotech   | 8905-2342  | 300000256       | k                   | 13.06.2013       | 13.06.2015       |
| 10  | n. a.      | Amplifier                                      | js42-00502650-28-5a             | Parzich GMBH         | 928979     | 300003143       | ne                  |                  |                  |
| 11  | n. a.      | Band Reject filter                             | WRCG1855/1910-1835/1925-40/8SS  | Wainwright           | 7          | 300003350       | ev                  |                  |                  |
| 12  | n. a.      | Band Reject filter                             | WRCG2400/2483-2375/2505-50/10SS | Wainwright           | 11         | 300003351       | ev                  |                  |                  |
| 13  | n. a.      | Highpass Filter                                | WHKX7.0/18G-8SS                 | Wainwright           | 18         | 300003789       | ne                  |                  |                  |
| 14  | n. a.      | TRILOG Broadband Test-Antenna 30 MHz - 3 GHz   | VULB9163                        | Schwarzbeck          | 371        | 300003854       | vlKII               | 14.10.2011       | 14.10.2014       |
| 15  | n. a.      | MXE EMI Receiver 20 Hz bis 26,5 GHz            | N9038A                          | Agilent Technologies | MY51210197 | 300004405       | k                   | 13.03.2014       | 13.03.2015       |
| 16  | CR 79      | Std. Gain Horn Antenna 26.5-40.0 GHz           | V637                            | Narda                | 7911       | 300001751       | ne                  |                  |                  |
| 17  | 11b        | Microwave System Amplifier, 0.5-26.5 GHz       | 83017A                          | HP Meßtechnik        | 00419      | 300002268       | ev                  |                  |                  |
| 18  | n. a.      | Broadband Low Noise Amplifier 18-50 GHz        | CBL19503070-XX                  | CERNEX               | 19338      | 300004273       | ne                  |                  |                  |
| 19  | A023       | Std. Gain Horn Antenna 39.3-59.7 GHz           | 2424-20                         | Flann                | 75         | 300001979       | ne                  |                  |                  |
| 20  | A025       | Std. Gain Horn Antenna 49.9-75.8 GHz           | 2524-20                         | Flann                | *          | 300001983       | ne                  |                  |                  |
| 21  | A028       | Std. Gain Horn Antenna 73.8-112 GHz            | 2724-20                         | Flann                | *          | 300001991       | ne                  |                  |                  |
| 22  | A026       | Std. Gain Horn Antenna 12.4 to 18.0 GHz        | 639                             | Narda                | 8402       | 300000787       | k                   | 22.07.2013       | 22.07.2015       |
| 23  | A029       | Std. Gain Horn Antenna 18.0 to 26.5 GHz        | 638                             | Narda                | 8205       | 300002442       | k                   | 19.07.2013       | 19.07.2015       |
| 24  | 8          | DC Power Supply, 60V, 10A                      | 6038A                           | HP Meßtechnik        | 3122A11097 | 300001204       | Ve                  | 10.01.2012       | 10.01.2015       |
| 25  | n. a.      | PXA Spectrum Analyzer 3Hz to 50GHz             | N9030A PXA Signal Analyzer      | Agilent Technologies | US51350267 | 300004338       | k                   | 09.01.2014       | 09.01.2015       |
| 26  | n. a.      | Harmonic mixer 50 - 75 GHz                     |                                 | HP Meßtechnik        |            |                 |                     |                  |                  |
| 27  | n. a.      | Harmonic mixer 75-110 GHz                      |                                 | HP Meßtechnik        |            |                 |                     |                  |                  |
| 28  | n. a.      | 4U RF Switch Platform                          | L4491A                          | Agilent Technologies | MY50000037 | 300004509       | ne                  |                  |                  |
| 29  | 45         | Switch-Unit                                    | 3488A                           | HP Meßtechnik        | 2719A14505 | 300000368       | g                   |                  |                  |

|    |       |                                                    |              |                  |            |           |     |            |            |
|----|-------|----------------------------------------------------|--------------|------------------|------------|-----------|-----|------------|------------|
| 30 | 50    | DC power supply,<br>60Vdc, 50A, 1200 W             | 6032A        | HP<br>Meßtechnik | 2920A04466 | 300000580 | ne  |            |            |
| 31 | n. a. | EMI Test Receiver                                  | ESCI 3       | R&S              | 100083     | 300003312 | k   | 27.01.2014 | 27.01.2015 |
| 32 | n. a. | EMI Test Receiver<br>20Hz- 26.5GHz                 | ESU26        | R&S              | 100037     | 300003555 | k   | 28.02.2014 | 28.02.2015 |
| 33 | n. a. | Antenna Tower                                      | Model 2175   | ETS-<br>LINDGREN | 64762      | 300003745 | izw |            |            |
| 34 | n. a. | Positioning Controller                             | Model 2090   | ETS-<br>LINDGREN | 64672      | 300003746 | izw |            |            |
| 35 | n. a. | Turntable Interface-Box                            | Model 105637 | ETS-<br>LINDGREN | 44583      | 300003747 | izw |            |            |
| 36 | n. a. | TRILOG Broadband<br>Test-Antenna<br>30 MHz - 3 GHz | VULB9163     | Schwarzbeck      | 295        | 300003787 | k   | 22.04.2014 | 22.04.2016 |

Agenda: Kind of Calibration

|       |                                            |     |                                                      |
|-------|--------------------------------------------|-----|------------------------------------------------------|
| k     | calibration / calibrated                   | EK  | limited calibration                                  |
| ne    | not required (k, ev, izw, zw not required) | zw  | cyclical maintenance (external cyclical maintenance) |
| ev    | periodic self-verification                 | izw | internal cyclical maintenance                        |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                       |
| vlkl! | Attention: extended calibration interval   |     |                                                      |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress     |

## 11 Observations

No observations except those reported with the single test cases have been made.

## 12 Document history

| Version | Applied changes                                              | Date of release |
|---------|--------------------------------------------------------------|-----------------|
| DRAFT   | Initial release - DRAFT                                      | 2014-11-27      |
| final   | minor editorial changes                                      | 2014-12-11      |
| -A      | RSS-211 status changed from <i>Draft</i> to <i>published</i> | 2015-03-27      |
| -B      | Plots 30MHz – 1 GHz replaced                                 | 2015-04-16      |
| -C      | FCC ID and IC changed                                        | 2016-01-12      |

## 13 Further information

### Glossary

|          |   |                                                |
|----------|---|------------------------------------------------|
| AVG      | - | Average                                        |
| DUT      | - | Device under test                              |
| EMC      | - | Electromagnetic Compatibility                  |
| EN       | - | European Standard                              |
| EUT      | - | Equipment under test                           |
| ETSI     | - | European Telecommunications Standard Institute |
| FCC      | - | Federal Communication Commission               |
| FCC ID   | - | Company Identifier at FCC                      |
| HW       | - | Hardware                                       |
| IC       | - | Industry Canada                                |
| Inv. No. | - | Inventory number                               |
| N/A      | - | Not applicable                                 |
| PP       | - | Positive peak                                  |
| QP       | - | Quasi peak                                     |
| S/N      | - | Serial number                                  |
| SW       | - | Software                                       |

## 14 Accreditation Certificate

Front side of certificate



Deutsche Akkreditierungsstelle GmbH

Beiliegene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV  
Unterzeichnerin der Multilateralen Akkreditierung  
von EA, ILAC und IAF zur gegenseitigen Anerkennung

**Akkreditierung** 

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüfungsunternehmen

**CETECOM ICT Services GmbH**  
Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen  
durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL  
VoIP und DECT  
Allgemeine  
Funk einschließlich WLAN  
Short Range Devices (SRD)  
RFID  
WiMax und Richtfunk  
Mobilfunk (GSM / DCS, Over the Air (OTA) Performance)  
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive  
Produktsicherheit  
SAR und Hearing Aid Compatibility (HAC)  
Umweltsicherheit  
Smart Card Terminals  
Bluetooth  
Wi-Fi-Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der  
Akkreditierungsnr. D-PL-12076-01 und ist gültig 17.01.2018. Sie besteht aus diesem Deckblatt, der  
Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

  
In Auftrag D-PL-12076-01 Ralf Egner  
Akkreditierungsteilnehmer

Deutsche Akkreditierungsstelle

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Standort Berlin  
Spittelmarkt 10  
10117 Berlin

Standort Frankfurt am Main  
Gartenstraße 6  
60591 Frankfurt am Main

Standort Braunschweig  
Bünderallee 100  
38116 Braunschweig

Die ausgewiesene Verbreitung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen  
Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkkS). Angenommen davon ist die separate  
Weiterverbreitung des Deckblatts durch die umso genannte Konformitätsbewertungsstelle in  
unveränderter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt,  
die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom  
31. Juli 2009 (BGBl. I S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments  
und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung  
im Zusammenhang mit Prüfungen und Prüferen (ABl. L 218 vom 9. Juli 2008, S. 30).

Die DAkkS ist Unterzeichnerin der Multilateralen Akkreditierung zur gegenseitigen Anerkennung der  
Formen von operation for Accreditation (EA), des International Accreditation Forum (IAF) und  
der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen  
erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:  
EA: [www.european-accreditation.org](http://www.european-accreditation.org)  
ILAC: [www.ilac.org](http://www.ilac.org)  
IAF: [www.iaf.nu](http://www.iaf.nu)

### Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

<http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html>