

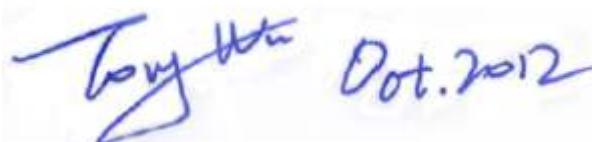
588 West Jindu Road, Songjiang District, Shanghai, China

Telephone: +86 (0) 21 6191 5666

Fax: +86 (0) 21 6191 5678

ee.shanghai@sgs.com

Report No.: SHEM121000144202


Page: 1 of 26

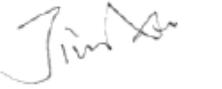
1 Cover Page

TEST REPORT

Application No.:	SHEM1210001442RF
Applicant:	Beijing Landwell Electron Technology Co.,LTD
Manufacturer:	Beijing Landwell Electron Technology Co.,LTD
Factory:	Beijing Landwell Electron Technology Co.,LTD
FCC ID:	Q65LW19990824
Product Name:	Acquisition data
Model No.(EUT):	L-3000
Add Model No.	L-9000; L-7000; L-2000; L-2000P; L-2000PF; L-3000E; L-3000EF; L-7000E; L-7000EF; L-9000P; L-9000PF; LW-01; LW-12; LW-24; LW-48; LW-110; LW-120; LW-150; LW-02; i-keybox12; i-keybox24; i-keybox48; i-keybox96; i-keybox120; i-keybox150
Standards:	FCC Part15 :2011
Date of Receipt:	October 10, 2012
Date of Test:	October 12, 2012 to October 17, 2012
Date of Issue:	October 20, 2012
Test Result :	Pass*

* In the configuration tested, the EUT (Equipment under test) complied with the standards specified above.

Tony Wu
E&E Section Manager
SGS-CSTC (Shanghai) Co., Ltd.


The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
00		Oct. 20,2012	Neil Zhang	Original

Authorized for issue by:				
Engineer		Neil Zhang		 Date(Oct. 20, 2012)
Clerk		Neil Zhang		 Date(Oct. 20, 2012)
Reviewer		Jim Xu		 Date(Oct. 20, 2012)

3 Test Summary

ELECTROMAGNETIC INTERFERENCE (EMI)				
Test	Test Requirement	Test Method	Class / Severity	Result
Conducted Emission (150KHz to 30MHz)	FCC Part15:2011	ANSI C63.4: 2009	Class B	PASS
Radiated Emission, (30MHz to 1GHz)	FCC Part15:2011	ANSI C63.4: 2009	Class B [♀]	PASS
Radiated Emission above 1 GHz	FCC Part15:2011	ANSI C63.4: 2009	Class B	N/A

♀ If the highest frequency of the internal sources of the EUT is less than 108MHz, the measurement shall only be made up to 1GHz.

4 Contents

1 COVER PAGE	1
2 VERSION.....	2
3 TEST SUMMARY	3
4 CONTENTS.....	4
5 GENERAL INFORMATION	5
5.1 Client Information.....	5
5.2 General Description of E.U.T.	5
5.3 Details of E.U.T.	5
5.4 Description of Support Units	6
5.5 Deviation from Standards	6
5.6 Abnormalities from Standard Conditions	6
5.7 Modification/Retest Record.....	6
5.8 Test Location.....	7
5.9 Test Facility.....	7
6 EQUIPMENT USED DURING TEST	8
7 ELECTROMAGNETIC INTERFERENCE TEST RESULTS.....	10
7.1 Conducted Emissions on Mains Terminals, 150 kHz to 30 MHz	10
7.2 Radiated Emissions, 30MHz to 1GHz	14
8 PHOTOGRAPHS (TEST SETUP FOR THE EUT).....	18
8.1 Conducted Emissions on Mains Terminals Test Setup.....	18
8.2 Radiated Emission Test Setup.....	18
9 EUT CONSTRUCTIONAL DETAILS	19
9.1 Exterior of EUT	19
9.2 Interior of EUT	23

5 General Information

5.1 Client Information

Applicant: Beijing Landwell Electron Technology Co.,LTD
Address of Applicant: Room 811,Ganglu Mansion,Jia 6 Huguang Street, Wangjing, Chaoyang,Beijing
Manufacturer: Beijing Landwell Electron Technology Co.,LTD
Address of Manufacturer: Room 811,Ganglu Mansion,Jia 6 Huguang Street, Wangjing, Chaoyang,Beijing
Factory: Beijing Landwell Electron Technology Co.,LTD
Address of Factory: Room 811,Ganglu Mansion,Jia 6 Huguang Street, Wangjing, Chaoyang,Beijing

5.2 General Description of E.U.T.

Product Name: Acquisition data
Model No.(EUT): L-3000
Add Model No. L-9000; L-7000; L-2000; L-2000P; L-2000PF; L-3000E; L-3000EF; L-7000E; L-7000EF; L-9000P; L-9000PF; LW-01; LW-12; LW-24; LW-48; LW-110; LW-120; LW-150; LW-02; i-keybox12; i-keybox24; i-keybox48; i-keybox96; i-keybox120; i-keybox150
Operating frequency: 4MHz (the Highest working frequency)

5.3 Details of E.U.T.

Battery Power Supply: 3.6V DC
Adapter Supply: N/A
Functions/Modes: Running the software installed at the PC to keeping the EUT reading the information from the EUT through USB cable.

5.4 Description of Support Units

Supporting equipments :

Description	Manufacturer	Model No.	Serial No.	Data Cable	Power Cable
Personal Computer	DELL	OPTIPLEX 755	E191 (reference no.)	N/A	1.5m
17" LCD	Lenovo	9227-AE1	VENCW23	VGA	1.5m
Universal Programmer	Qian LongSheng	QL-2006	201105116086	COM	1.5m
Keyboard	Lenovo	KB1021	0000319	USB ²⁾	N/A
Mouse	Lenovo	MO28UOL	4401282 081	USB ³⁾	N/A

Note: For the cable details please refer to below table.

Cables:

#	Type	Length, m	Shield	Metallic hood	Ferrite
1	VGA	1.8	Yes	No	Yes
2	COM	1.5	Yes	No	No
3	USB ¹⁾	1.5	Yes	No	Yes
4	USB ²⁾	1.8	Yes	No	No
5	USB ³⁾	1.8	Yes	No	No

Software:

Description	Manufacturer	Software name	Version no.
USB Driver	Microsoft	USB Input Device Driver	6.1.7601.17514
USB Driver	Microsoft	USB Mass Storage Device Driver	5.1.2600.0

5.5 Deviation from Standards

None.

5.6 Abnormalities from Standard Conditions

None.

5.7 Modification/Retest Record

None.

5.8 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab

No.588 West Jindu Road, Songjiang District, Shanghai, China. 201612.

Tel: +86 21 6191 5666

Fax: +86 21 6191 5678

No tests were sub-contracted.

5.9 Test Facility

- **CNAS (No. CNAS L0599)**

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. Date of expiry: 2014-07-26.

- **FCC – Registration No.: 402683**

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683, Expiry Date: 2015-02-22.

- **Industry Canada (IC) – IC Assigned Code: 8617A**

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A. Expiry Date: 2014-09-20.

- **VCCI (Member No.: 3061)**

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: **R-3868** and **C-4336** respectively. Date of Registration: 2012-05-29. Date of Expiry: 2015-05-28.

6 Equipment Used during Test

Conducted Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMI test receiver	Rohde & Schwarz	ESCS30	100086	2012-04-13	2013-04-12
2	Line impedance stabilization network	SCHWARZBECK	NSLK812 7	8127-490	2012-03-15	2013-03-14
3	Line impedance stabilization network	ETS	3816/2	00034161	2012-03-15	2013-03-14

Radiated Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMI test receiver	Rohde & Schwarz	ESU40	100109	2012-06-02	2013-06-01
2	Antenna	SCHWARZBECK	VULB916 8	9168-313	2012-03-15	2013-03-14
3	CONTROLLER	INNCO	CO200	474	/	/
4	Antenna	SCHWARZBECK	BBHA912 0D	9120D-67 9	2012-03-15	2013-03-14
5	Antenna	SCHWARZBECK	BBHA917 0	9170-373	2012-03-15	2013-03-14
6	Low noise amplifier	LNA6900	TESEQ	71033	2012-03-15	2013-03-14

General Equipment

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	Digital pressure meter	YONGZHI	DYM3-01	101012	2012-01-16	2013-01-14
2	Digital Multimeter	FLUKE	17B	10560713	2012-08-24	2013-08-22
3	Temperature& humidity recorder	ShangHai weather meter work	ZJ 1-2B	0804081 0802150 0805126	2012-07-25	2013-07-23

7 Electromagnetic Interference Test Results

7.1 Conducted Emissions on Mains Terminals, 150 kHz to 30 MHz

Test Requirement: FCC Part15 :2011
Test Method: ANSI C63.4: 2009
Test Date: October 13, 2012
Test Voltage: AC 120V 60Hz
Frequency Range: 150 KHz to 30 MHz
Class / Severity: Class B
Detector: Peak for pre-scan (9 kHz Resolution Bandwidth from 150 KHz to 30 MHz)
Limit:

Frequency range MHz	Class B Limits dB (μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

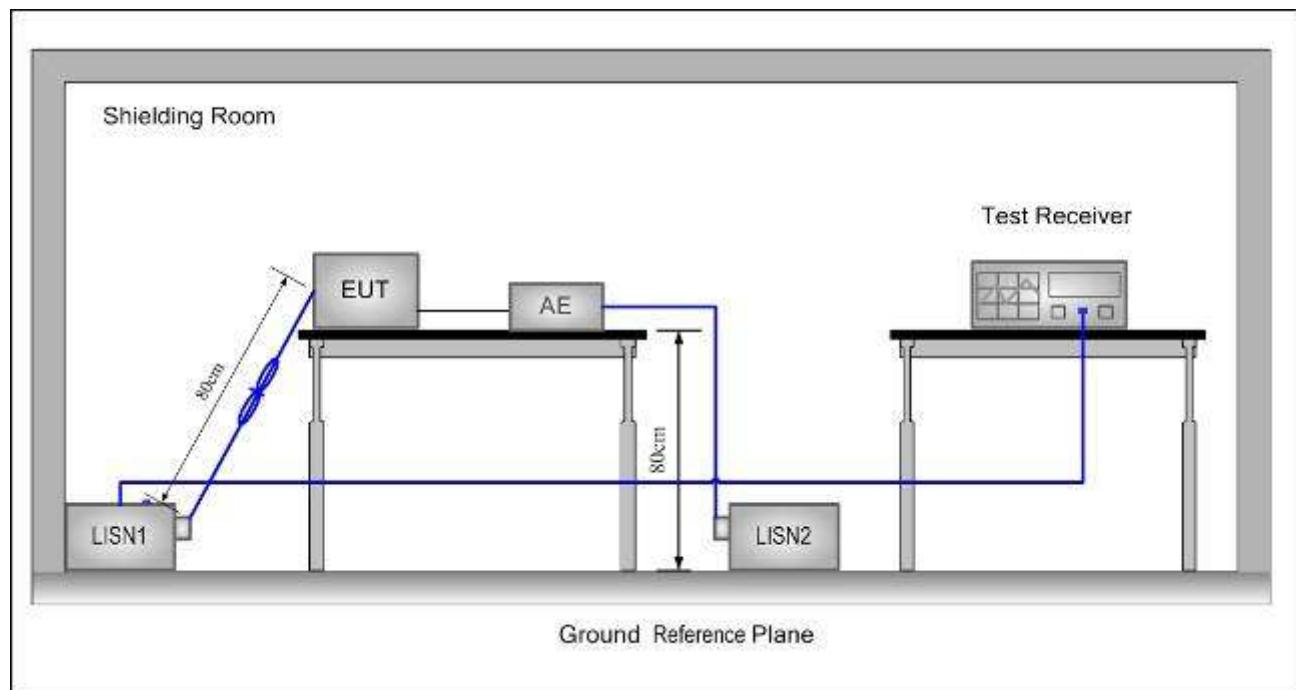
Note1: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

Note2: The lower limit is applicable at the transition frequency.

7.1.1 E.U.T. Operation

Operating Environment:

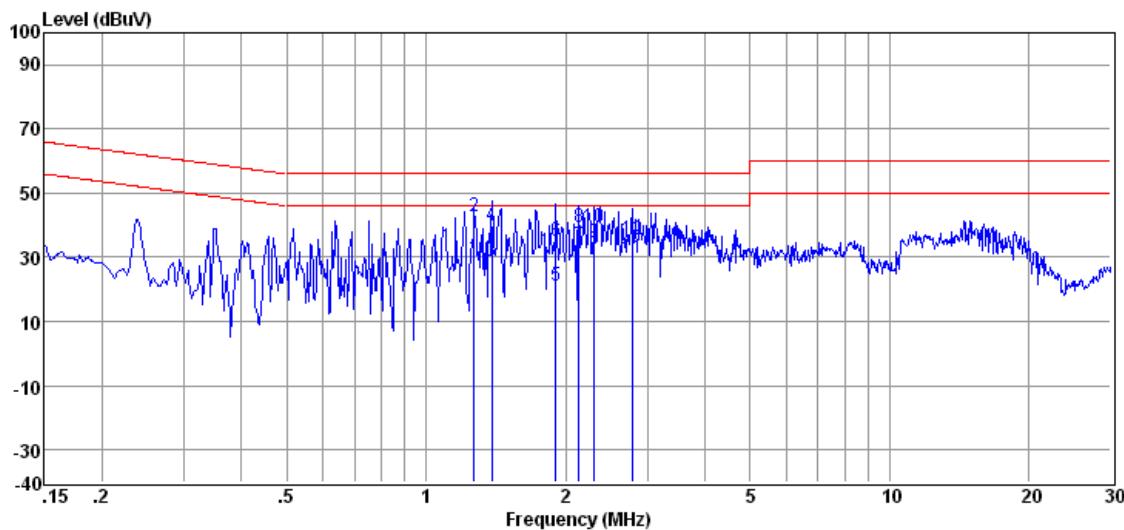
Temperature: 24.0 °C Humidity: 55 % RH Atmospheric Pressure: 100.1 kPa


Test mode: Reading card mode

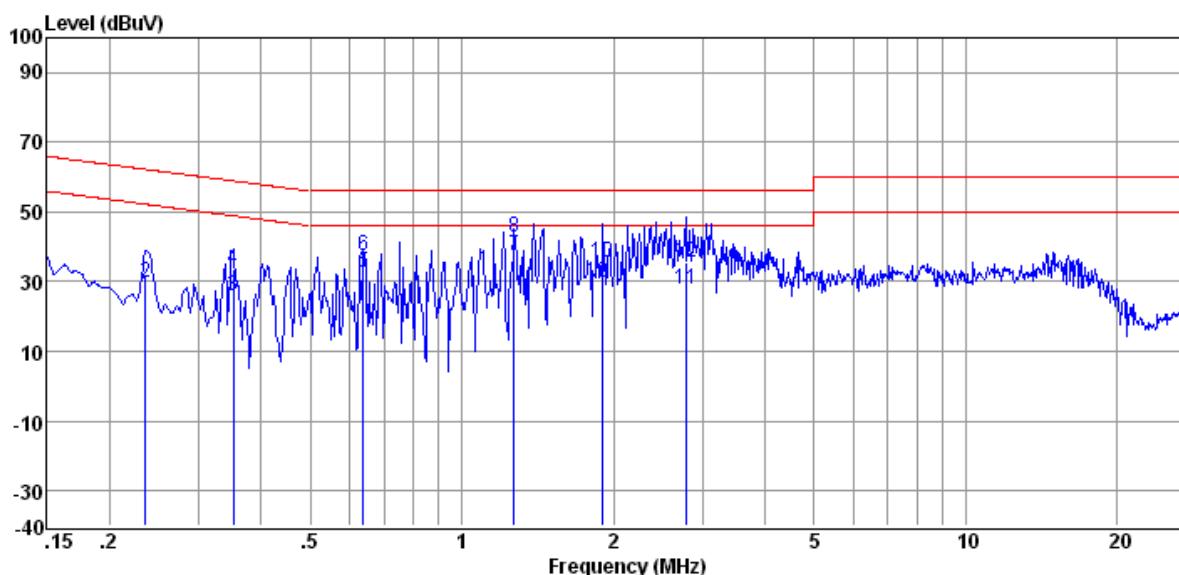
Pre-scan was performed with peak detected on all ports, Quasi-peak & average measurements were performed at the frequencies at which maximum peak emission level were detected.

Please see the attached Quasi-peak and Average test results.

Level = Read Level + LISN/ISN Factor + Cable Loss.


7.1.2 Test Setup and Procedure

1. The mains terminal disturbance voltage was measured with the EUT in a shielded room.
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT was connected to a second LISN, which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded
3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN and the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m. All other units of the EUT and associated equipment was at least 0.8 m from the LISN.


7.1.3 Measurement Data

Live Line:

Freq (MHz)	Read Level (dB μ V)	LISN Factor (dB)	Cable Loss (dB)	Level (dB μ V)	Limit Line (dB μ V)	Over Limit (dB)	Detector
1.269	29.44	0.23	0.10	29.77	46.00	-16.23	Average
1.269	42.44	0.23	0.10	42.77	56.00	-13.23	QP
1.388	28.24	0.24	0.10	28.58	46.00	-17.42	Average
1.388	39.31	0.24	0.10	39.65	56.00	-16.35	QP
1.908	20.85	0.29	0.10	21.24	46.00	-24.76	Average
1.908	34.51	0.29	0.10	34.90	56.00	-21.10	QP
2.133	33.37	0.30	0.10	33.77	46.00	-12.23	Average
2.133	39.19	0.30	0.10	39.59	56.00	-16.41	QP
2.309	34.06	0.30	0.11	34.47	46.00	-11.53	Average
2.309	39.10	0.30	0.11	39.51	56.00	-16.49	QP
2.779	29.33	0.30	0.13	29.76	46.00	-16.24	Average
2.779	35.30	0.30	0.13	35.73	56.00	-20.27	QP

Neutral Line:

Freq (MHz)	Read Level (dB μ V)	LISN Factor (dB)	Cable Loss (dB)	Level (dB μ V)	Limit Line (dB μ V)	Over Limit (dB)	Detector
0.235	25.68	0.11	0.10	25.89	52.26	-26.37	Average
0.235	29.65	0.11	0.10	29.86	62.26	-32.40	QP
0.352	25.52	0.15	0.10	25.77	48.91	-23.14	Average
0.352	33.25	0.15	0.10	33.50	58.91	-25.41	QP
0.637	32.13	0.20	0.10	32.43	46.00	-13.57	Average
0.637	37.11	0.20	0.10	37.41	56.00	-18.59	QP
1.269	37.13	0.23	0.10	37.46	46.00	-8.54	Average
1.269	42.45	0.23	0.10	42.78	56.00	-13.22	QP
1.908	29.46	0.29	0.10	29.85	46.00	-16.15	Average
1.908	35.22	0.29	0.10	35.61	56.00	-20.39	QP
2.779	27.20	0.30	0.13	27.63	46.00	-18.37	Average
2.779	35.11	0.30	0.13	35.54	56.00	-20.46	QP

7.2 Radiated Emissions, 30MHz to 1GHz

Test Requirement: FCC Part15 :2011
Test Method: ANSI C63.4: 2009
Test Date: October 15,2012
Test Voltage: AC 120V 60Hz
Frequency Range: 30 MHz to 1 GHz
Measurement Distance: 3m
Class: Class B
Detector: Peak for pre-scan (120 kHz resolution bandwidth)
Limit:

For 3m

Frequency range MHz	Quasi-peak limits dB (μ V/m)
30 to 88	40
88 to 216	43.5
216 to 960	46
Above 960	54

Note: At transitional frequencies the lower limit applies.

7.2.1 E.U.T. Operation

Operating Environment:

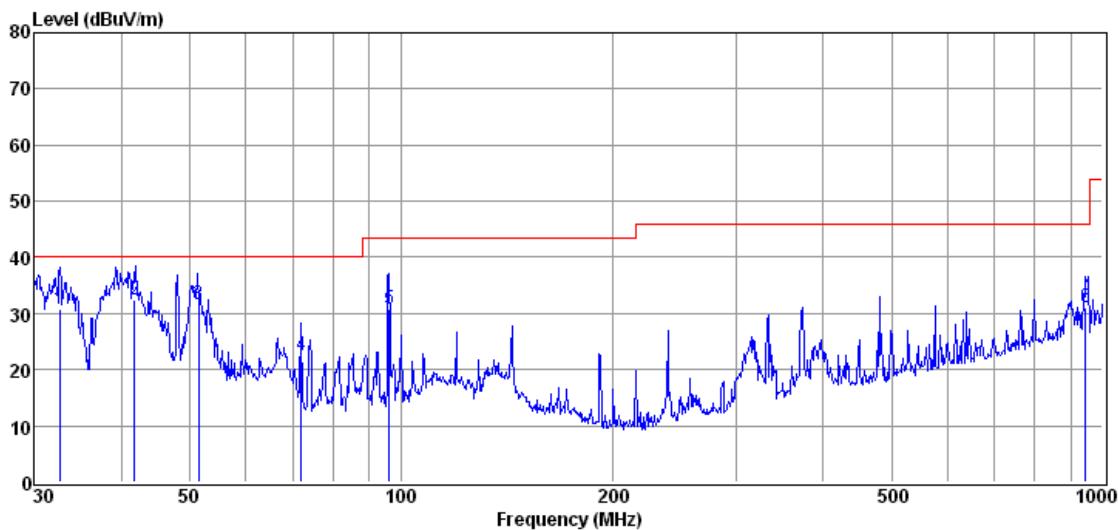
Temperature: 23.0 °C Humidity: 59 % RH Atmospheric Pressure: 100.8 kPa

Test mode: Reading Card mode

Pre-scan was performed with peak detected on all ports, Quasi-peak measurements was performed at the frequencies at which maximum peak emission level were detected.

Please see the attached Quasi-peak test results.

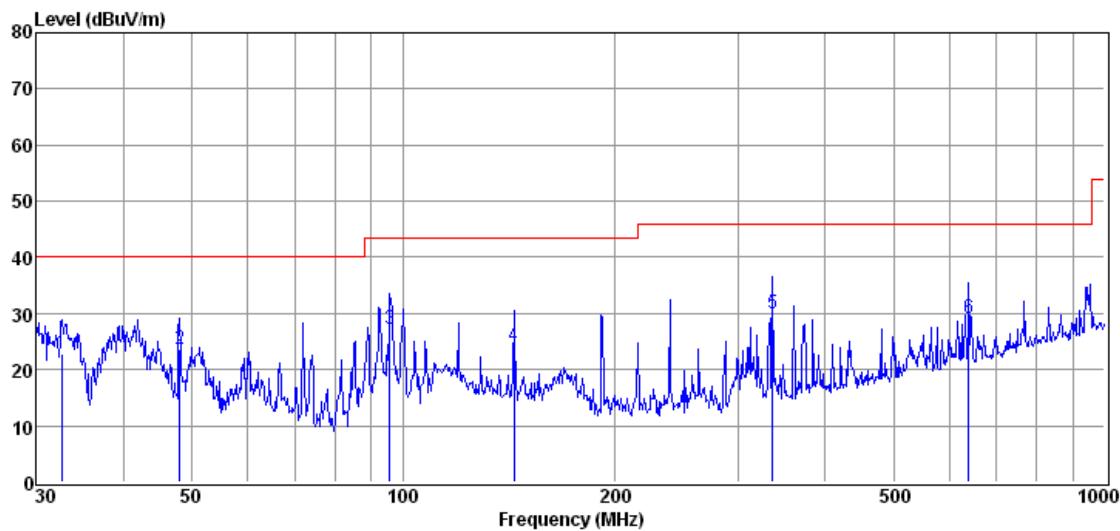
For radiated emission: Level = Read Level + Antenna Factor + Cable Loss – Preamp Factor.


7.2.2 Test Setup and Procedure

1. The radiated emissions test was conducted in a semi-anechoic chamber.
2. The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane; The mains cables shall drape to the ground reference plane.
3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum signature data plots of the EUT.
5. The frequencies of maximum emission were determined in the final radiated emissions measurement, the physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

7.2.3 Measurement Data

Vertical:



Item	Freq. (MHz)	Read Level (dB μ V)	Antenna Factor (dB/m)	Preamp Factor (dB)	Cable Loss (dB)	Result Level (dB μ V/m)	Limit Line (dB μ V/m)	Over Limit (dB)	Detector
(Mark)									
1	32.60	42.85	12.26	24.70	0.46	30.87	40.00	-9.13	QP
2	41.73	43.29	13.23	24.70	0.57	32.39	40.00	-7.61	QP
3	51.43	42.86	12.71	24.70	0.66	31.53	40.00	-8.47	QP
4	72.08	36.03	10.38	24.70	0.81	22.52	40.00	-17.48	QP
5	96.12	45.66	8.93	24.70	1.01	30.90	43.50	-12.60	QP
6	945.53	27.31	23.81	23.80	3.79	31.11	46.00	-14.89	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - Preamp Factor

2. If Peak Result comply with QP limit, QP Result is deemed to comply with QP limit

Horizontal:



Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB/m)	(dB)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1	32.56	34.85	12.25	24.70	0.46	22.86	40.00	-17.14	QP
2	48.02	34.86	12.92	24.70	0.63	23.71	40.00	-16.29	QP
3	95.71	42.13	8.90	24.70	1.00	27.33	43.50	-16.17	QP
4	143.76	35.24	12.33	24.70	1.25	24.12	43.50	-19.38	QP
5	336.21	38.98	13.32	24.50	2.08	29.88	46.00	-16.12	QP
6	640.34	30.47	19.82	24.17	3.00	29.12	46.00	-16.88	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - Preamp Factor
2. If Peak Result comply with QP limit, QP Result is deemed to comply with QP limit

8 Photographs (Test Setup For the EUT)

8.1 Conducted Emissions on Mains Terminals Test Setup

8.2 Radiated Emission Test Setup

9 EUT Constructional Details

9.1 Exterior of EUT

USB Cable

Top View

Rear View

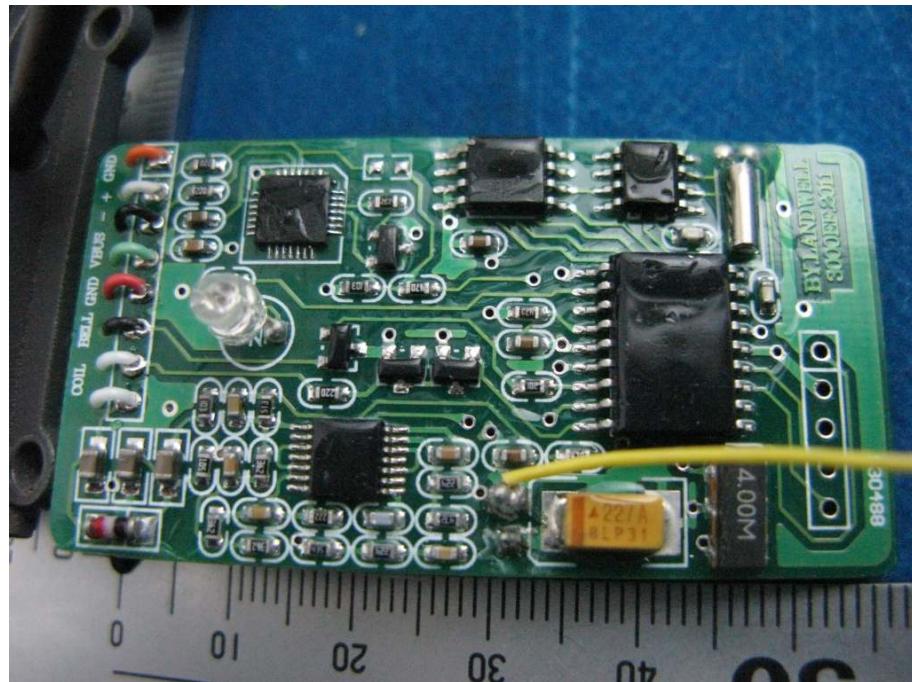
Left View

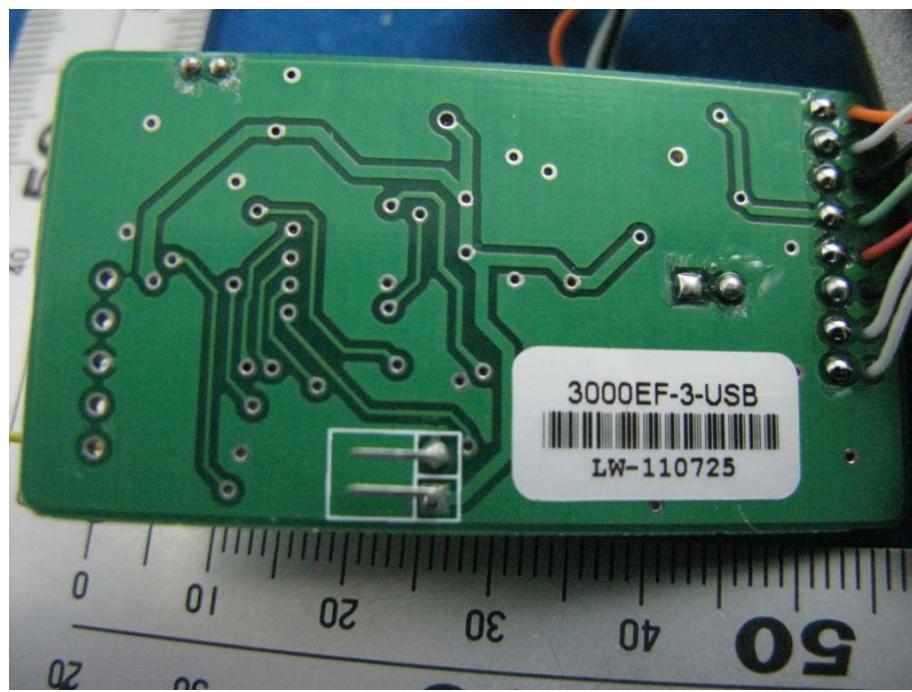
Right View

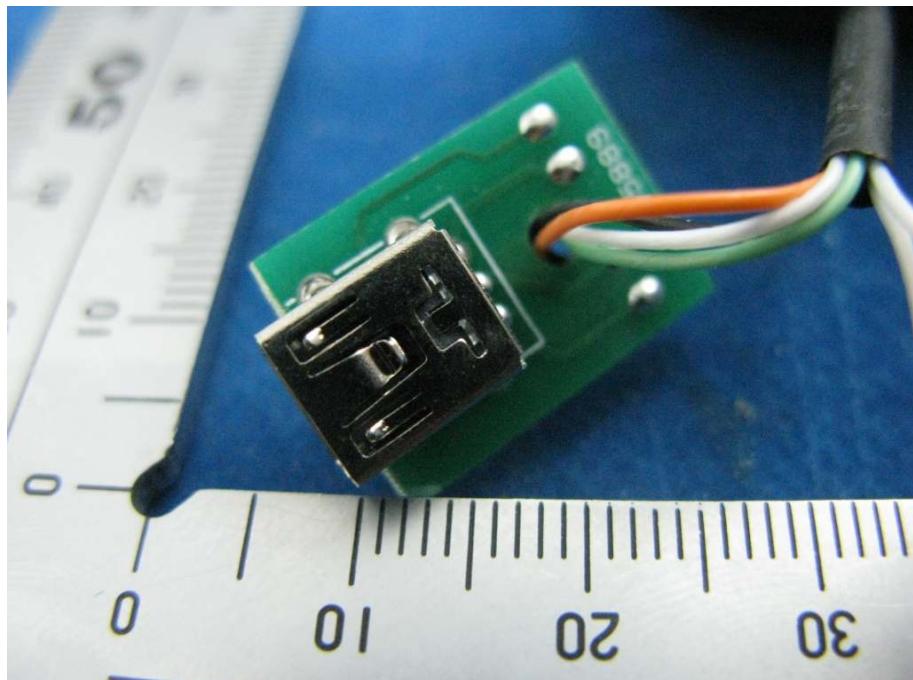
Front View

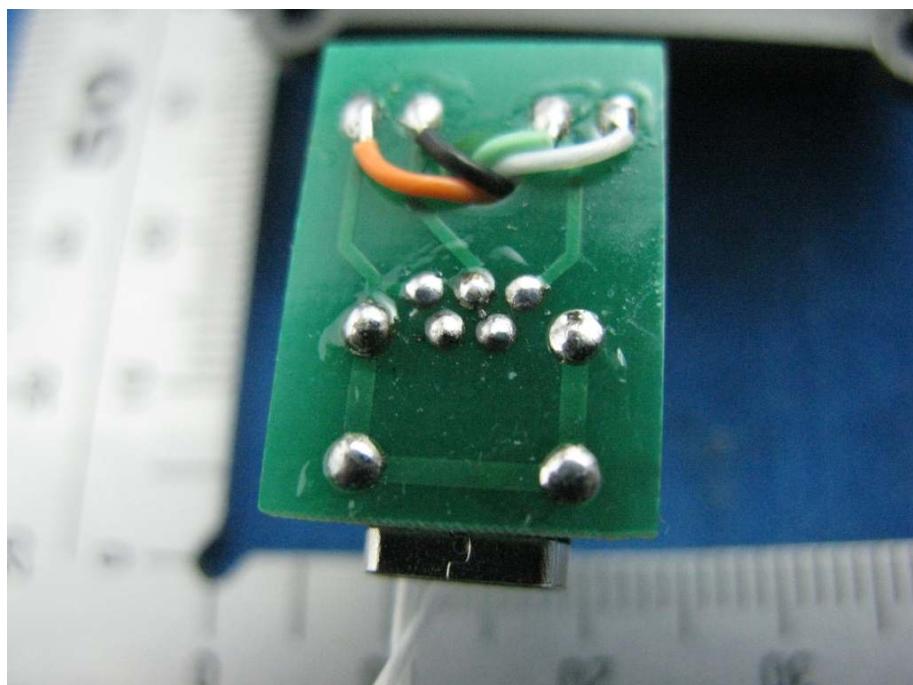
Front View Remove USB Cover

Back View


9.2 Interior of EUT


EUT Interior Photo Front View


EUT Interior Photo Rear View


PCB Front View

PCB Rear View

USB Connection Front View

USB Connection Rear View

Battery Front View

Battery Rear View

--End of the Report--