

TABLE OF CONTENTS

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

TEST REPORT CONTAINING:

PAGE 1-3.....	TEST EQUIPMENT LIST
PAGE 4.....	TEST PROCEDURE
PAGE 5.....	RADIATION INTERFERENCE TEST DATA
PAGE 6.....	CALCULATION OF DUTY CYCLE
PAGE 7.....	DUTY CYCLE PLOT - PULSE WIDTH
PAGE 8.....	DUTY CYCLE PLOT - TIME BETWEEN PULSES
PAGE 9.....	OCCUPIED BANDWIDTH
PAGE 10.....	OCCUPIED BANDWIDTH PLOT
PAGE 11.....	POWER LINE CONDUCTED EMISSIONS
PAGE 12.....	POWER LINE CONDUCTED PLOT 1
PAGE 13.....	POWER LINE CONDUCTED PLOT 2

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....	BLOCK DIAGRAM
EXHIBIT 2.....	SCHEMATIC
EXHIBIT 3.....	INSTRUCTION MANUAL
EXHIBIT 4.....	FCC ID LABEL SAMPLE & LOCATION
EXHIBIT 5.....	EXTERNAL PHOTOGRAPHS
EXHIBIT 6.....	INTERNAL PHOTOGRAPHS
EXHIBIT 7.....	RADIATED TEST SET UP PHOTOGRAPHS
EXHIBIT 8.....	POWER LINE CONDUCTED TEST SET UP PHOTOGRAPHS
EXHIBIT 9.....	CIRCUIT DESCRIPTION

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

TABLE OF CONTENTS LIST

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 1 of 13

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DU DATE or STATUS
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
	Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 2 of 13

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 3 of 13

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 78°F with a humidity of 40%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

$$\begin{array}{ll} \text{Freq (MHz) METER READING + ACF = FS} \\ 33 \quad 20 \text{ dBuV} + 10.36 \text{ dB} = 30.36 \text{ dBuV/m @ 3m} \end{array}$$

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 849 N.W. State Road 45, Newberry, FL 32669.

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 4 of 13

APPLICANT: LIFEVINE, INC.
FCC ID: Q5VAP-1000
NAME OF TEST: RADIATION INTERFERENCE
RULES PART NUMBER: 15.249, 15.209

REQUIREMENTS:

FIELD STRENGTH of Fundamental:	FIELD STRENGTH of Harmonics	S15.209
902-928 MHZ	30 - 88 MHz	40 dBuV/m @3M
2.4-2.4835 GHz	88 -216 MHz	43.5
94 dBuV/m @3m	216 -960 MHz	46
	54 dBuV/m @3m	ABOVE 960 MHz 54dBuV/m

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

TEST RESULTS: This unit DOES meet the FCC requirements.

TEST DATA:

Emission Frequency MHz	Meter Reading dBuV	ANT. POLARITY	Coax Loss dB	Correction Factor dB	Duty Cycle Factor dB	Field Strength dBuV/m	Margin dB
PEAK							
916.00	73.4	H	3.84	24.14		101.38	-7.38
916.00	75.3	V	3.84	24.14		103.28	-9.28
QUASI PEAK							
916.00	63.0	H	3.84	24.14		90.98	3.02
916.00	64.8	V	3.84	24.14		92.78	1.22
AVERAGE							
1,832.00	35.7	H	2.82	28.76	15.4	51.88	2.12
1,832.00	28.2	V	2.82	28.76	15.4	44.38	9.62
2,748.00	** 33.9	H	3.60	31.30	15.4	53.40	0.60
2,748.00	** 34.2	V	3.60	31.30	15.4	53.70	0.30
3,664.00	** 29.0	H	4.46	33.49	15.4	51.55	2.45
3,664.00	** 28.2	V	4.46	33.49	15.4	50.75	3.25
4,580.00	** 24.2	H	5.61	34.12	15.4	48.53	5.47
4,580.00	** 21.3	V	5.61	34.12	15.4	45.63	8.37
5,496.00	24.6	H	6.37	36.19	15.4	51.76	2.24
5,496.00	20.7	V	6.37	36.19	15.4	47.86	6.14
6,412.00	15.3	H	6.63	36.44	15.4	42.97	11.03
6,412.00	11.9	V	6.63	36.44	15.4	39.57	14.43
7,328.00	** 20.3	H	7.16	37.72	15.4	49.78	4.22
7,328.00	** 10.7	V	7.16	37.72	15.4	40.18	13.82
8,244.00	** 4.8	H	8.06	37.99	15.4	35.45	18.55
8,244.00	** 4.9	V	8.06	37.99	15.4	35.55	18.45
9,160.00	** 5.2	H	8.37	39.62	15.4	37.79	16.21
9,160.00	** 6.3	V	8.37	39.62	15.4	38.89	15.11

TEST PROCEDURE: ANSI STANDARD C63.4-1992 using a Hewlett Packard Model 8566B spectrum analyzer, a Hewlett Packard Model 85685A Pre-selector, a Hewlett Packard Model 85650A Quasi-Peak adapter, and an appropriate antenna. The bandwidth of spectrum analyzer was 100 kHz with an appropriate sweep speed. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The spectrum was searched to at least the tenth (10) harmonic of the fundamental.

PERFORMED BY: NAM NGUYEN

DATE TESTED: APRIL 24, 2003

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

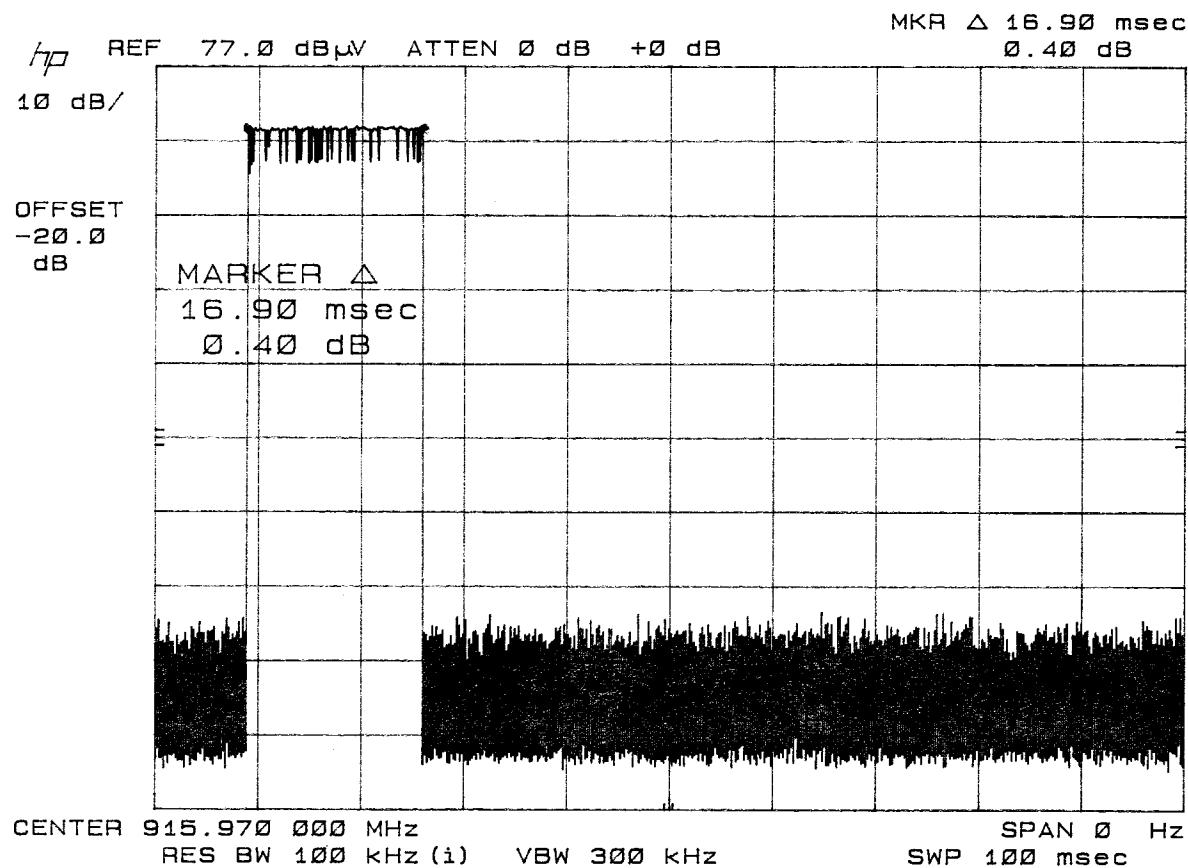
Page 5 of 13

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100msec. This sweep determines the duration of the pulse train, which in this case is milliseconds. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100millisecond Plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100msec. If the pulse train is longer than 100milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100msec the total on time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there was a 16.9 msec long pulse in 100 msec of time. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON time was 16.9% which equates to -15.4dB duty cycle factor.

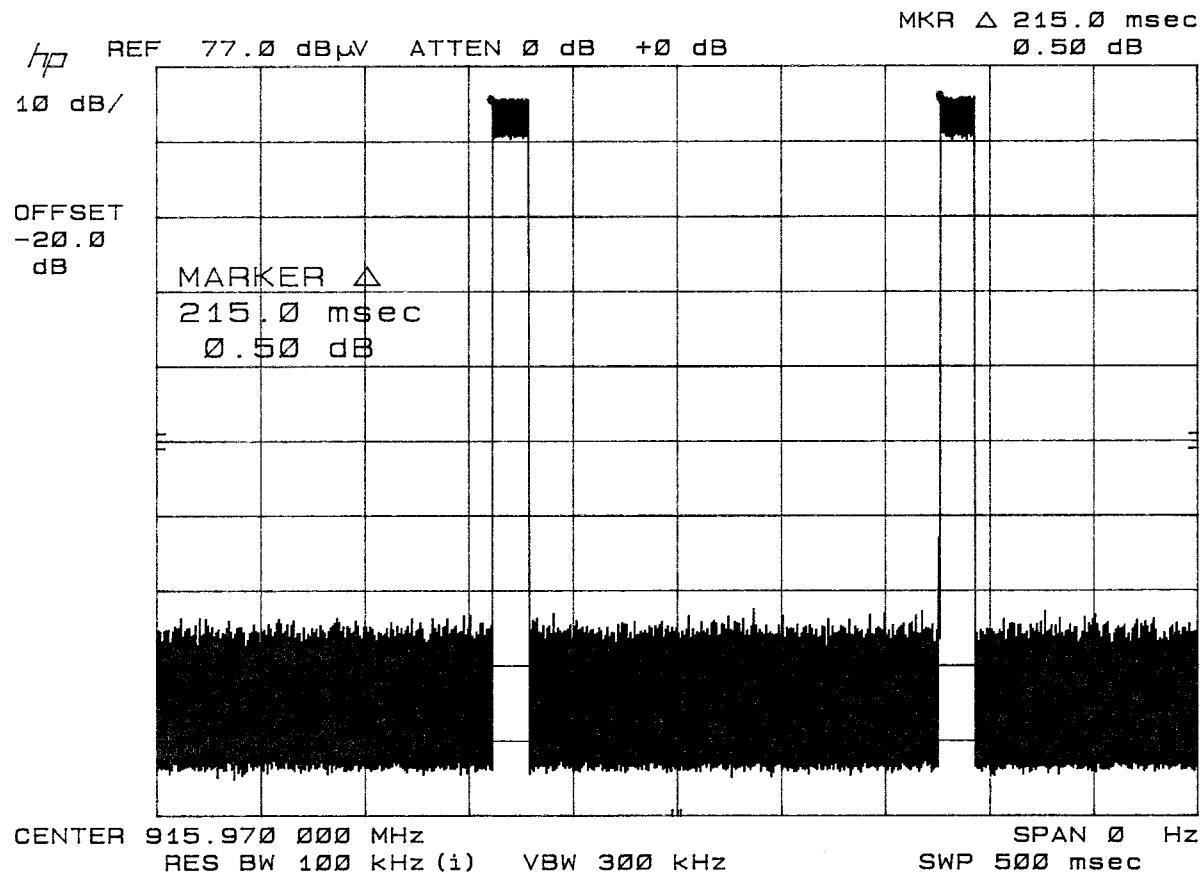

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 6 of 13

DUTY CYCLE PLOT - PULSE WIDTH


APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 7 of 13

DUTY CYCLE PLOT - TIME BETWEEN PULSES

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 8 of 13

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.249

REQUIREMENTS: The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

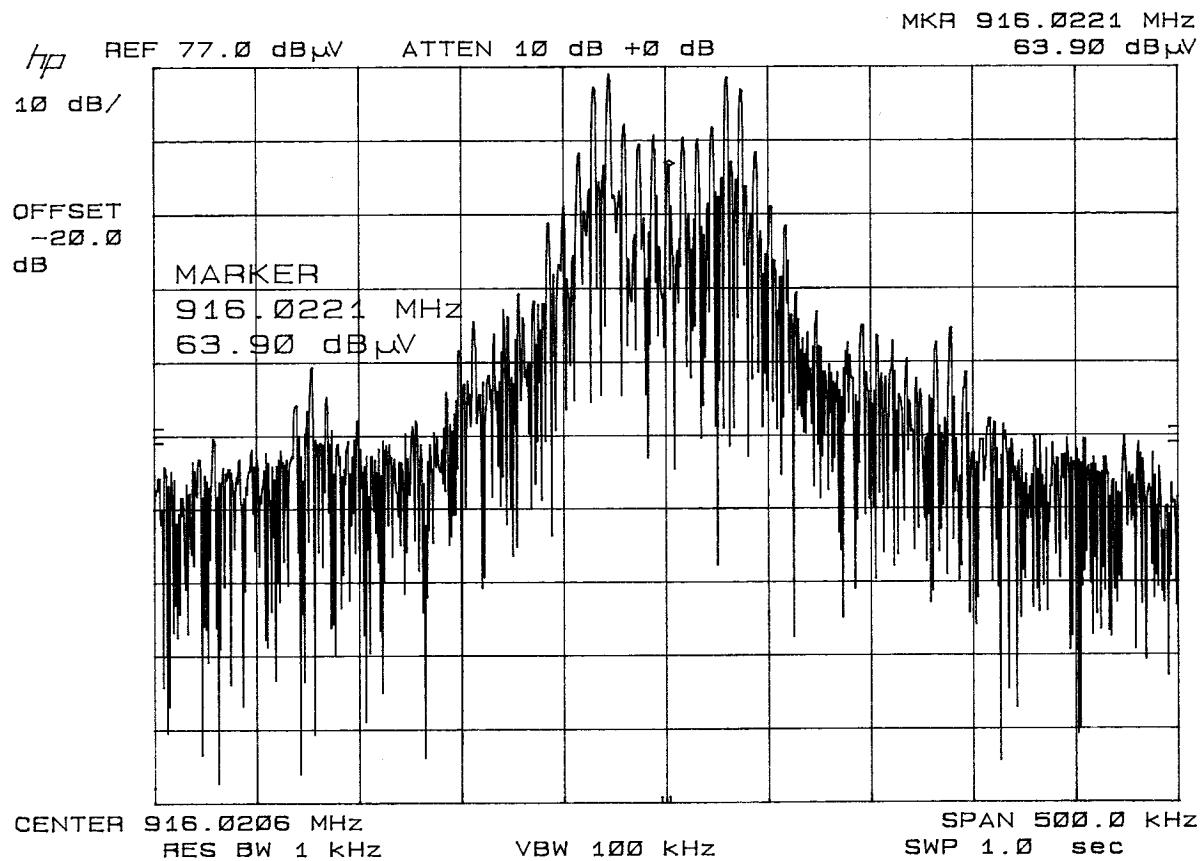
THE PLOTS ON THE NEXT PAGE REPRESENTS THE EMISSIONS TAKEN FOR THIS DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was printed. The vertical scale is set to -10 dBm per division. The horizontal scale is set to 50 kHz per division.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO

DATE: 4/22/2003


APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 9 of 13

OCCUPIED BANDWIDTH PLOT

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 10 of 13

APPLICANT: LIFEVINE, INC.

FCC ID #: Q5VAP-1000

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NUMBER: 15.107(a)

REQUIREMENTS:	QUASI-PEAK	AVERAGE
.15 - 0.5 MHz	66-56 dBuV	56-46 dBuV
0.5 - 5.0	56	46
5.0 - 30.	60	50

TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from .15 to 30 MHz.

TEST DATA:

THE HIGHEST EMISSION READ FOR LINE 1 WAS 200 uV @ 210 kHz.

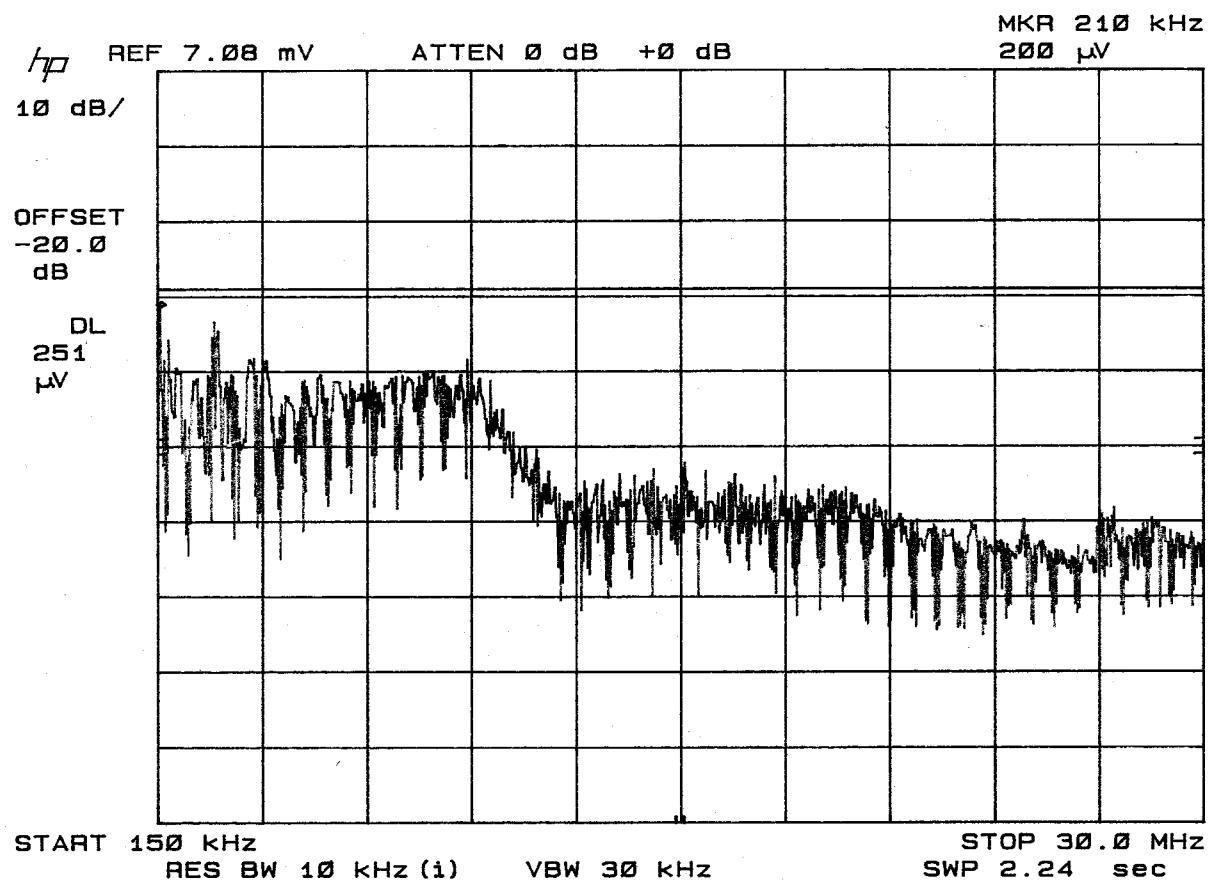
THE HIGHEST EMISSION READ FOR LINE 2 WAS 151 uV @ 210 kHz.

THE GRAPHS ON THE FOLLOWING PAGES REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.

PERFORMED BY: NAM NGUYEN

DATE: APRIL 24, 2003

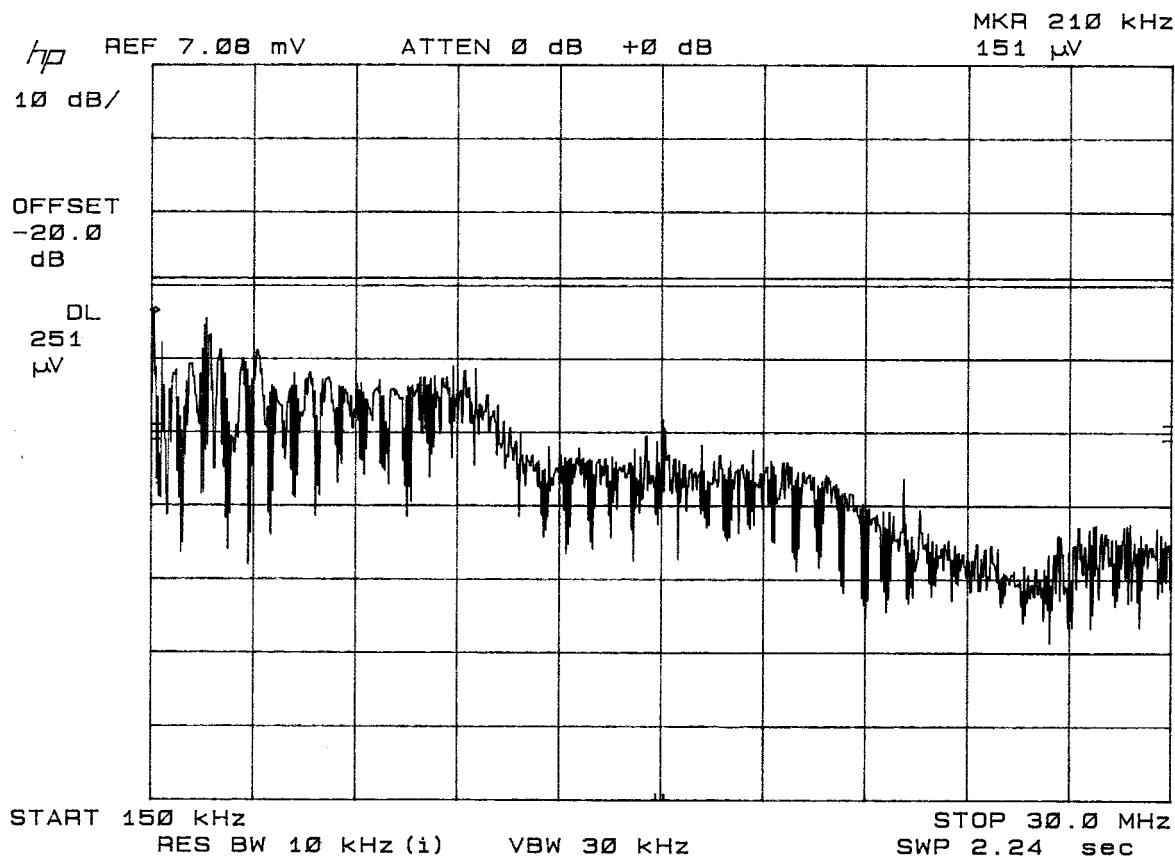

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 11 of 13

POWER LINE CONDUCTED PLOT - LINE 1


APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 12 of 13

POWER LINE CONDUCTED PLOT - LINE 2

APPLICANT: LIFEVINE, INC.

FCC ID: Q5VAP-1000

REPORT #: L/LIFEVINE_\310XAUT3\310XAUT3TestReport.doc

Page 13 of 13