

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client EMC Technologies

CALIBRATION CERTIFICATE

Object(s) D300V2 - SN:1005

Calibration procedure(s) QA CAL-15.v2
Calibration procedure for dipole validation kits below 800 MHz

Calibration date: November 27, 2003

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Nov-03)	In house check: Nov 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-03)	In house check: Nov 05
Calibrated by:	Name Katja Pokovic	Function Laboratory Director	Signature
Approved by:	Name Flin Bomholt	Function R&D Director	Signature

Date issued: November 28, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

DASY

Dipole Validation Kit

Type: D300V2

Serial: 1005

Manufactured: September 2, 2003
Calibrated: November 27, 2003

1. Measurement Conditions

The measurements were performed in the 6mm thick flat phantom filled with head simulating liquid of the following electrical parameters at 300 MHz:

Relative Dielectricity	45.8	$\pm 5\%$
Conductivity	0.89 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 8.75 at 300 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center of the flat phantom and the dipole was oriented parallel to the longer side of the phantom. The standard measuring distance was 15mm from dipole center to the liquid surface including the 6mm thick phantom shell. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $398 \text{ mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm^3 (1 g) of tissue: **$2.94 \text{ mW/g} \pm 20.7\% (k=2)$** ¹

averaged over 10 cm^3 (10 g) of tissue: **$1.95 \text{ mW/g} \pm 20.2\% (k=2)$** ¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.747 ns	(one direction)
Transmission factor:	0.993	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 300 MHz: **Re{Z} = 53.4 Ω**

Im {Z} = -9.0 Ω

Return Loss at 300 MHz **-20.6 dB**

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

5. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

6. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: [D300_SN1005_SN1507_H300_271103.da4](#)

DUT: Dipole 300 MHz; Type: D300V2; Serial: D300V2 - SN:1005
Program Name: System Performance Check at 300 MHz

Communication System: CW; Frequency: 300 MHz; Duty Cycle: 1:1
Medium: HSL300 ($\sigma = 0.89$ mho/m, $\epsilon_r = 45.81$, $\rho = 1000$ kg/m³)
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507-Y2003; ConvF(8.75, 8.75, 8.75); Calibrated: 2/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 1001; Calibrated: 9/30/2003
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: TP:1002
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 59

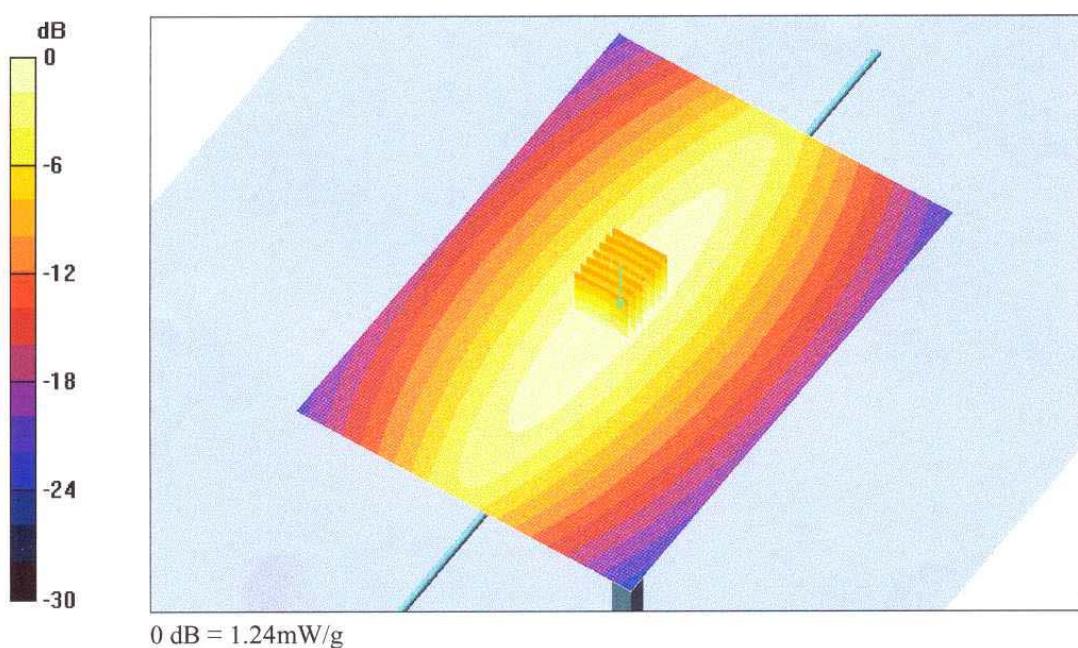
d=15mm, Pin=26dBm/Area Scan (121x171x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 37.6 V/m

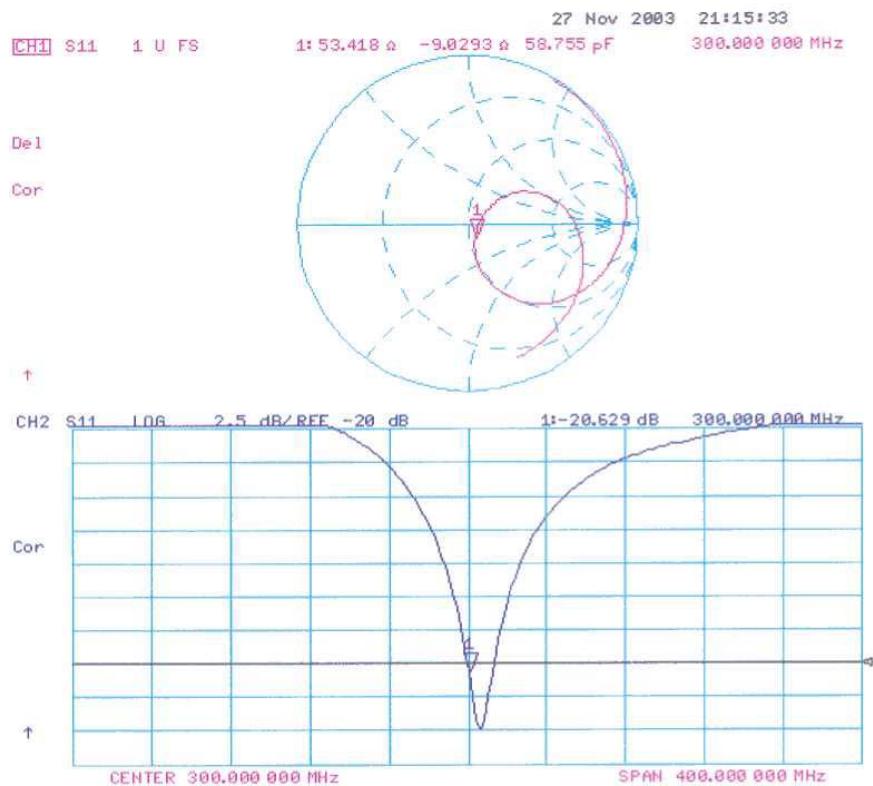
Power Drift = 0.006 dB

Maximum value of SAR = 1.23 mW/g

d=15mm, Pin=26dBm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.777 mW/g


Reference Value = 37.6 V/m

Power Drift = 0.006 dB

Maximum value of SAR = 1.24 mW/g

1005

