

*FCC PART 15, SUBPART B and C
TEST REPORT*

for
BLUETOOTH CLASS 2 MODULE
MODEL: 55001074

Prepared for

INSIDE OUT NETWORKS
 7004 BEE CAVES ROAD, BLDG. 3, SUITE 200
 AUSTIN, TEXAS 78746

Prepared by:_____

KYLE FUJIMOTO

Approved by:_____

MICHAEL CHRISTENSEN

COMPATIBLE ELECTRONICS INC.
 114 OLINDA DRIVE
 BREA, CALIFORNIA 92823
 (714) 579-0500

DATE: APRIL 28, 2003

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	23	2	2	2	15	54	98

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. Description of Test Configuration	9
4.1 Description of Test Configuration - EMI	9
4.1.1 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
7. CHARACTERISTICS OF THE TRANSMITTER	14
7.1 Transmitter Power	14
7.2 Channel Number and Frequencies	14
7.3 Antenna Gain	14
8. Test Procedures	15
8.1 RF Emissions	15
8.1.1 Conducted Emissions Test	15
8.1.2 Radiated Emissions (Spurious and Harmonics) Test	16
8.3 20 dB Bandwidth	18
8.4 Peak Output Power	19
8.5 RF Antenna Conducted Test	19
8.6 RF Band Edges	20
8.7 Carrier Frequency Separation	20
8.8 Number of Hopping Frequencies	20
8.8 Average Time of Occupancy Test	21
8.9 Spectral Density Test	22
9. CONCLUSIONS	23

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Recognitions
B	Modifications to the EUT
C	Additional Models Covered Under This Report
D	Diagrams, Charts, and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Radiated Emissions Photos• Antenna and Effective Gain Factors
E	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: Bluetooth Class 2 Module
Model: 55001074
S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Inside Out Networks
7004 Bee Caves Road
Austin, Texas 78746

Test Dates: February 4, 6, and 17, 2003

Test Specifications: EMI requirements
Limits: EN 55022: 1998 **Class B**; CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Test Procedure: ANSI C63.4: 1992

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	Complies with the Class B limits of EN 55022: 1998; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207
2	Spurious Radiated RF Emissions, 30 MHz – 1000 MHz	Complies with the Class B limits of EN 55022: 1998; and the limits of CFR Title 47, Part 15, Subpart C, section 15.209
3	Spurious Radiated RF Emissions, 10 kHz – 30 MHz and 1000 MHz – 25000 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.247(c)
4	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(c)
5	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 25 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209(a), and section 15.247 (c)
6	20 dB Bandwidth	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (a)(1)
7	Peak Power Output	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(1)
8	RF Conducted Antenna Test	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (c)
9	Channel Hopping Separation	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1) and 15.247 (a)(1)(iii)
10	Average Time of Occupancy	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(iii)
11	Peak Power Spectral Density from the Intentional Radiator to the Antenna	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (f)

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Bluetooth Class 2 Module Model: 55001074. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test for conducted emissions and for radiated emissions from 30 MHz to 1000 MHz, the EUT was within the Class B specification limits defined by C.I.S.P.R. Publication 22 for Information Technology Equipment. Under paragraph E of section 15.107 and paragraph G of section 15.109 of the Code of Federal Regulations Title 47, Part 15 of the FCC rules, FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Inside Out Networks

Stephen Popovich COO

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer
Michael Christensen Test Engineer

2.4 Date Test Sample was Received

The test sample was received on February 4, 2003.

2.5 Disposition of the Test Sample

The sample has not been returned to Inside Out Networks as of April 28, 2003.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators
EN 55022: 1998	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
CISPR 22: 1997	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The Bluetooth Class 2 Module Model: 55001074 (EUT) was connected to the power supply PCB. The power supply PCB was connected to an AC Adapter via its power port. The antenna is soldered onto the EUT.

Operation of the EUT during the testing

For the intentional radiator portion of the test - The EUT used a program that locked one channel at a time so that the low, middle, and high channels could be tested. This allowed the EUT to be in a no hopping mode. The EUT was testing in three orthogonal axis. The carrier was modulated in the same way it would be when the EUT was in its normal frequency hopping mode. The EUT was investigated during the preliminary scans in DH1, DH3, and DH5 modes. The DH5 mode was found to be worst case.

For the unintentional radiator and conducted emission portion of the test - The EUT used a program that allowed the EUT to function as normal (the channels frequency hopping) on a continuous basis.

Note: The D-9 port on the modular board is a diagnostic port only. It was only connected whenever the channel needed to be changed and/or change modes on the EUT.

The final radiated as well as the conducted data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 **Cable Construction and Termination**

Cables 1-2 These are two 1 foot cables connecting the EUT to the power supply PCB. They have terminal block connectors at each end.

Cable 3 This is a 6 foot unshielded cable connecting the power supply PCB to the AC Adapter. It has a 1/8 inch power connector at the power supply PCB end and is hard wired into the AC Adapter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
BLUETOOTH CLASS 2 MODULE (EUT)	INSIDE OUT NETWORKS	55001074	N/A	Q4W55M1074-01
AC ADAPTER	CUI STACK	DSA-0151F-05	N/A	N/A
POWER SUPPLY PCB	INSIDE OUT NETWORKS	200-0054A	B160210022	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Radiated Emissions Manual Test – Radiated	Compatible Electronics	N/A	N/A	N/A	N/A
Conducted Emissions Test Program	Compatible Electronics	N/A	N/A	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08784	June 14, 2002	June 14, 2003
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22279	June 14, 2002	June 14, 2003
Spectrum Analyzer – Quasi-Peak Adapter	Hewlett Packard	85650A	2430A00424	June 14, 2002	June 14, 2003
Preamplifier	Com Power	PA-102	1017	Jan. 2, 2003	Jan. 2, 2004
Biconical Antenna	Com Power	AB-100	1548	Sept. 19, 2002	Sept. 19, 2003
Log Periodic Antenna	Com Power	AL-100	16089	Oct. 4, 2002	Oct. 4, 2003
Computer	Hewlett Packard	D5251A 888	US74458128	N/A	N/A
Printer	Hewlett Packard	C5886A	SG7CM1P090	N/A	N/A
Monitor	Hewlett Packard	D5258A	DK74889705	N/A	N/A
Loop Antenna	Com-Power	AL-130	17070	June 19, 2002	June 19, 2003
Horn Antenna	Antenna Research	DRG-118/A	1053	Jan. 21, 2002	Jan. 21, 2004
Microwave Preamplifier	Com-Power	PA-122	25195	Jan. 2, 2003	Jan. 2, 2004
Amplifier	Hewlett Packard	11975A	2403A00202	Mar. 14, 2002	Mar. 14, 2004
Harmonic Mixer	Hewlett Packard	11970K	3003A05460	Mar. 14, 2002	Mar. 14, 2004
Microwave Preamplifier	Com-Power	PA-840	711013	Mar. 6, 2002	Mar. 6, 2004
Horn Antenna	Com-Power	AH826	0071957	Nov. 3, 2001	Nov. 3, 2003

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Transmitter Power

Transmit power is herein defined as the power calculated using the following equation:

$$P = [(E \cdot D)^2] / (30 \cdot G)$$

P = Power in Watts for which you are solving

E = the measured maximum field strength in V/m utilizing the widest available RBW.

G = the numeric gain of the transmitting antenna over an isotropic radiator.

Note: the lowest gain of the antenna was used, as this gives the worst-case power.

Power	Channel	Accuracy
3.26 dBm	LOW	+2/-2 dB
2.86 dBm	MIDDLE	+2/-2 dB
3.06 dBm	HIGH	+2/-2 dB

7.2 Channel Number and Frequencies

There are a total of 79 channels. The low channel is at 2402.0 MHz and the high channel is at 2480.0 MHz. There is a 1 MHz separation between channels.

Channel 1: 2402 MHz

Channel 2: 2403 MHz

(Etc.)

7.3 Antenna Gain

The antenna has a gain of between 3 and 4 dBi. Thus, the worst case gain for the antenna is 4 dBi.

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of EN 55022: 1998 for conducted emissions; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.

8.1.2

Radiated Emissions (Spurious and Harmonics) Test

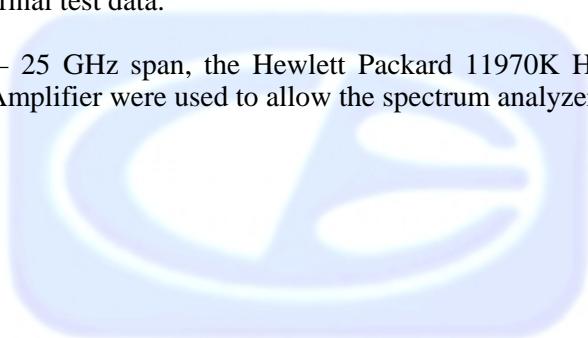
The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

After the readings above 1 GHz were average manually, the reading was further adjusted by a "duty cycle correction factor", derived from $20 \log(\text{dwell time} / 100 \text{ ms})$. Since the duty cycle was below 10%, the maximum allowed 20 dB was subtracted from the peak reading. The duty cycle correction factor is explained in Appendix E.

The measurement bandwidths and transducers used for the radiated emissions test were:


FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 25 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance from 10 kHz to 25 GHz to obtain final test data. From 30 MHz to 1000 MHz, the EUT was also tested at a 10 meter test distance to obtain final test data.

For the 22 GHz – 25 GHz span, the Hewlett Packard 11970K Harmonic Mixer and the Hewlett Packard 11975A Amplifier were used to allow the spectrum analyzer to scan up to 25 GHz.

8.3 20 dB Bandwidth

The 20 dB Bandwidth was measured using the spectrum analyzer. The bandwidth was measured after taking the field strength reading of the fundamental at 3 meters on the Lab D test site. The resolution and video bandwidths were $\geq 1\%$ of the 20 dB bandwidth.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.

8.4 Peak Output Power

Since antenna conducted tests could not be performed on the EUT due to a lack of an antenna connector on the EUT, the peak output power was calculated by the following equation:

$$P = [(E \cdot D)^2] / (30 \text{ G})$$

P = Power in Watts for which you are solving

E = the measured maximum field strength in V/m utilizing the widest available RBW.

G = the numeric gain of the transmitting antenna over an isotropic radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(1). The maximum peak output power is less than 1 watt. Please see the results in section 7.1 of this test report.

8.5 RF Antenna Conducted Test

Since antenna conducted tests could not be performed on the EUT due to a lack of an antenna connector on the EUT, all harmonics were tested using the radiated emissions test procedure located in section 8.1.2 of this test report.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (c). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

8.6 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (2400 MHz when the EUT was on the low channel and 2483.5 MHz when the EUT was on the high channel) using the spectrum analyzer. A preamplifier was used to boost the signal level, with the plots being taken at a 3 meter test distance. The frequencies below 2390 MHz were also averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated. A data sheet is also included, which compares the reading from the spectrum analyzer to the spec limit. The EUT was tested in DH5 mode, which is the worst case.

The frequencies between 2483.5 MHz and 2485.5 MHz were determined for compliance by using the Marker-Delta method based on Public Notice DA 00-705 released by the FCC.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (c). The RF power at the band edges at 2400 MHz and 2483.5 MHz meet the limits of section 15.209. Please see the data sheets located in Appendix E.

8.7 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the spectrum analyzer. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth 100 kHz. The frequency span was wide enough to include the peaks of two adjacent channels.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(iii). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix D.

8.8 Number of Hopping Frequencies

The Channel Hopping Separation Test was measured using the spectrum analyzer. The EUT was operating in its normal operating mode. The resolution bandwidth was 1 MHz, and the video bandwidth 1 MHz. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(iii). The number of hopping frequencies is 79. Please see the data sheets located in Appendix E.

8.8 Average Time of Occupancy Test

The Average Time of Occupancy Test was measured using the spectrum analyzer. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz with a sweep time of 20 msec to determine the time for each transmission. The EUT was tested in DH1, DH3, and DH5 modes.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. This means the time of occupancy of any one channel cannot be greater than 0.4 seconds in a 31.6 second period (0.4 seconds * 79 channels).

For DH1 mode, the sweep time was then changed to 3 seconds and the number of pulses taken. The number of pulses was multiplied by 10.533 to determine the number of pulses in a 31.6 second period. The number of pulses was then multiplied by the time for each pulse to determine the average time of occupancy.

For DH3 mode, the sweep time was then changed to 5 seconds and the number of pulses taken. The number of pulses was then multiplied by 6.32 to determine the number of pulses in a 31.6 second period. The number of pulses was then multiplied by the time for each pulse to determine the average time of occupancy

For DH5 mode, the sweep time was then changed to 10 seconds and the number of pulses taken. The number of pulses was then multiplied by 3.16 to determine the number of pulses in a 31.6 second period. The number of pulses was then multiplied by the time for each pulse to determine the average time of occupancy

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(iii). The EUT does not transmit for more than 400 msec during a 30 second period on any frequency. Please see the data sheets located in Appendix E.

8.9 Spectral Density Test

Since antenna conducted tests could not be performed on the EUT due to a lack of an antenna connector on the EUT, the spectral density was measured as follows:

- A. The spectrum analyzer was tuned to the highest point of the maximized fundamental emission based on the procedure used in section 8.1.2. The spectrum analyzer was then set to an RBW of 3 kHz, VBW of 10 kHz, frequency span of 300 kHz, and a sweep time of 100 seconds. Using these settings, the peak level was obtained.
- B. Using the peak level obtained in step 1, the field strength, E, was derived by applying the appropriate antenna factor, cable loss, and pre-amp gain for that frequency.
- C. The following equation was then used to calculate the power level for comparison to the +8 dBm limit:

$$P = [(E \cdot D)^2] / (30 \text{ G})$$

P = Power in Watts for which you are solving

E = the field strength in V/m obtained in step 2.

G = the numeric gain of the transmitting antenna over an isotropic radiator.

Note: The lowest gain of the antenna was used, as this gives the worst-case for spectral density.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (f). The spectral density output does not exceed +8 dBm based on the procedure mentioned above. Please see the data sheets located in Appendix E.

9. CONCLUSIONS

The Bluetooth Class 2 Module meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test for conducted emissions and for radiated emissions from 30 MHz to 1000 MHz, the EUT was within the Class B specification limits defined by C.I.S.P.R. Publication 22 for Information Technology Equipment. Under paragraph E of section 15.107 and paragraph G of section 15.109 of the Code of Federal Regulations Title 47, Part 15 of the FCC rules, FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

APPENDIX A

LABORATORY RECOGNITIONS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

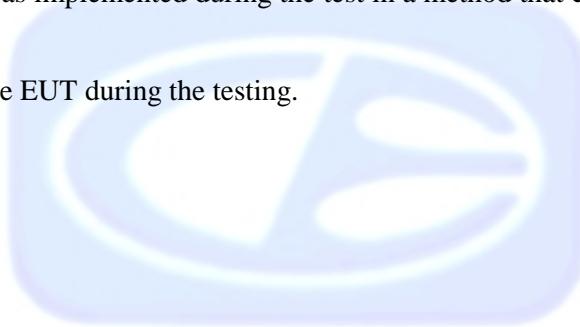
APPENDIX B

MODIFICATIONS TO THE EUT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700


Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

ADDITIONAL MODELS COVERED UNDER THIS REPORT

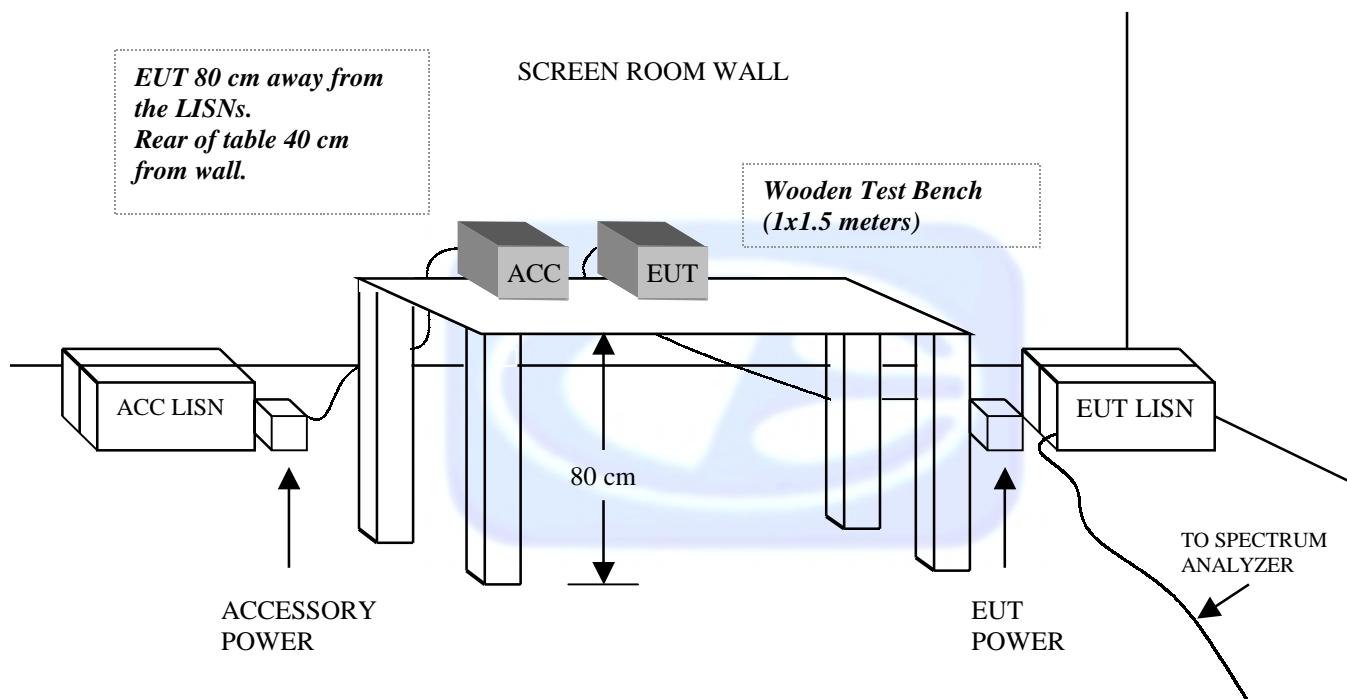
USED FOR THE PRIMARY TEST

Bluetooth Class 2 Module
Model: 55001074
S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS


Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

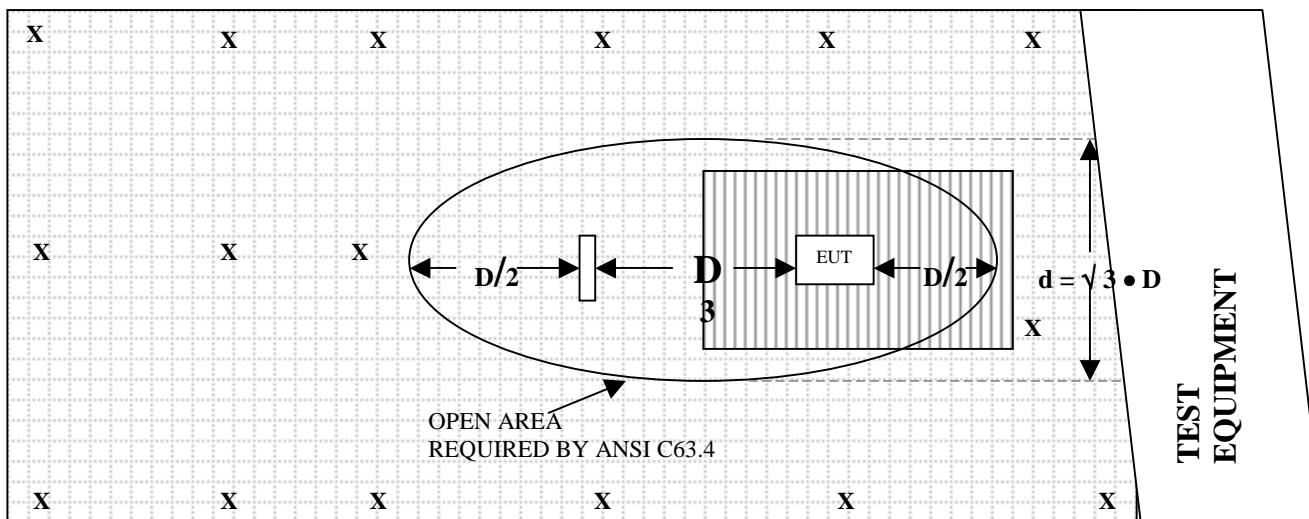

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

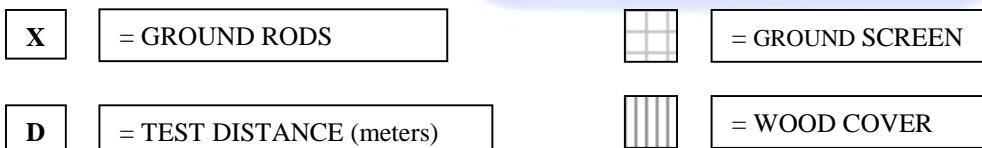


FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

COM-POWER AB-100
BICONICAL ANTENNA
S/N: 01548
CALIBRATION DATE: SEPTEMBER 19, 2002

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	14.30	120	10.70
35	14.00	125	11.40
40	13.70	140	12.70
45	12.00	150	12.50
50	11.40	160	12.90
60	9.70	175	14.10
70	8.30	180	14.70
80	7.60	200	15.10
90	7.80	250	16.90
100	8.60	300	19.10

COM-POWER AL-100**LOG PERIODIC ANTENNA****S/N: 16089****CALIBRATION DATE: OCTOBER 4, 2002**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	13.10	700	17.70
350	14.40	750	19.60
400	14.30	800	20.50
450	15.70	850	21.20
500	16.60	900	21.20
550	16.60	950	22.50
600	17.30	1000	24.60
650	18.80		

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 2, 2003

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	38.4	300	38.3
40	38.4	350	38.3
50	38.3	400	38.3
60	38.4	450	37.9
70	38.4	500	38.1
80	38.4	550	38.2
90	38.4	600	38.1
100	38.3	650	37.9
125	38.4	700	37.9
150	38.4	750	37.7
175	38.2	800	37.4
200	38.4	850	37.6
225	38.2	900	37.4
250	38.3	950	36.7
275	38.5	1000	37.0

COM-POWER PA-122
MICROWAVE PREAMPLIFIER
S/N: 25195
CALIBRATION DATE: JANUARY 2, 2003

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	33.3	9.5	30.0
1.1	33.2	10.0	31.9
1.2	33.4	11.0	29.9
1.3	32.8	12.0	24.7
1.4	32.4	13.0	32.0
1.5	32.7	14.0	30.7
1.6	32.1	15.0	30.1
1.7	32.4	16.0	29.2
1.8	32.3	17.0	28.9
1.9	32.6	18.0	28.7
2.0	33.4		
2.5	31.2		
3.0	31.2		
3.5	32.0		
4.0	31.3		
4.5	31.2		
5.0	33.3		
5.5	34.0		
6.0	32.2		
6.5	32.2		
7.0	31.8		
7.5	32.1		
8.0	32.7		
8.5	31.5		
9.0	30.3		

ANTENNA RESEARCH DRG-118/A

HORN ANTENNA

S/N: 1053

CALIBRATION DATE: JANUARY 13, 2002

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	25.5	9.5	39.1
1.5	26.6	10.0	39.7
2.0	29.4	10.5	40.9
2.5	30.4	11.0	40.7
3.0	31.2	11.5	42.4
3.5	32.3	12.0	42.6
4.0	32.9	12.5	42.4
4.5	33.0	13.0	41.5
5.0	34.8	13.5	41.0
5.5	35.2	14.0	40.5
6.0	36.4	14.5	43.6
6.5	36.6	15.0	43.7
7.0	38.8	15.5	43.3
7.5	38.8	16.0	42.8
8.0	38.0	16.5	43.0
8.5	38.1	17.0	42.7
9.0	39.9	17.5	44.0
		18.0	41.8

COM-POWER AL-130
LOOP ANTENNA
S/N: 17070
CALIBRATION DATE: JUNE 19, 2002

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-40.4	11.1
0.01	-40.3	11.2
0.02	-41.2	10.3
0.05	-41.6	9.9
0.07	-41.4	10.1
0.1	-41.7	9.8
0.2	-44.0	7.5
0.3	-41.6	9.9
0.5	-41.3	10.2
0.7	-41.4	10.1
1	-40.9	10.6
2	-40.6	10.9
3	-40.5	11.0
4	-40.8	10.7
5	-40.2	11.3
10	-40.7	10.8
15	-41.4	10.1
20	-41.6	9.9
25	-41.7	9.8
30	-42.9	8.6

COM-POWER AH826**HORN ANTENNA****S/N: 0071957****CALIBRATION DATE: NOVEMBER 03, 2001**

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	32.3	22.5	32.5
18.5	32.2	23.0	32.1
19.0	32.3	23.5	32.3
19.5	31.9	24.0	32.3
20.0	32.0	24.5	32.9
20.5	32.3	25.0	33.1
21.0	32.0	25.5	32.9
21.5	32.3	26.0	33.4
22.0	32.5	26.5	33.0

COM-POWER PA-840
MICROWAVE PREAMPLIFIER
S/N: 711013
CALIBRATION DATE: MARCH 06, 2002

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	26.4	30.0	27.6
19.0	25.4	31.0	27.3
20.0	24.5	32.0	26.9
21.0	23.9	33.0	26.7
22.0	24.0	34.0	27.0
23.0	24.4	35.0	25.9
24.0	25.2	36.0	25.5
25.0	26.1	37.0	26.2
26.0	26.6	38.0	25.6
27.0	27.2	39.0	23.4
28.0	27.4	40.0	24.3
29.0	27.5		

FRONT VIEW

INSIDE OUT NETWORKS
BLUETOOTH CLASS 2 MODULE
MODEL: 55001074

FCC SUBPART B AND C - RADIATED EMISSIONS – 02-06-03 and 02-17-03

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

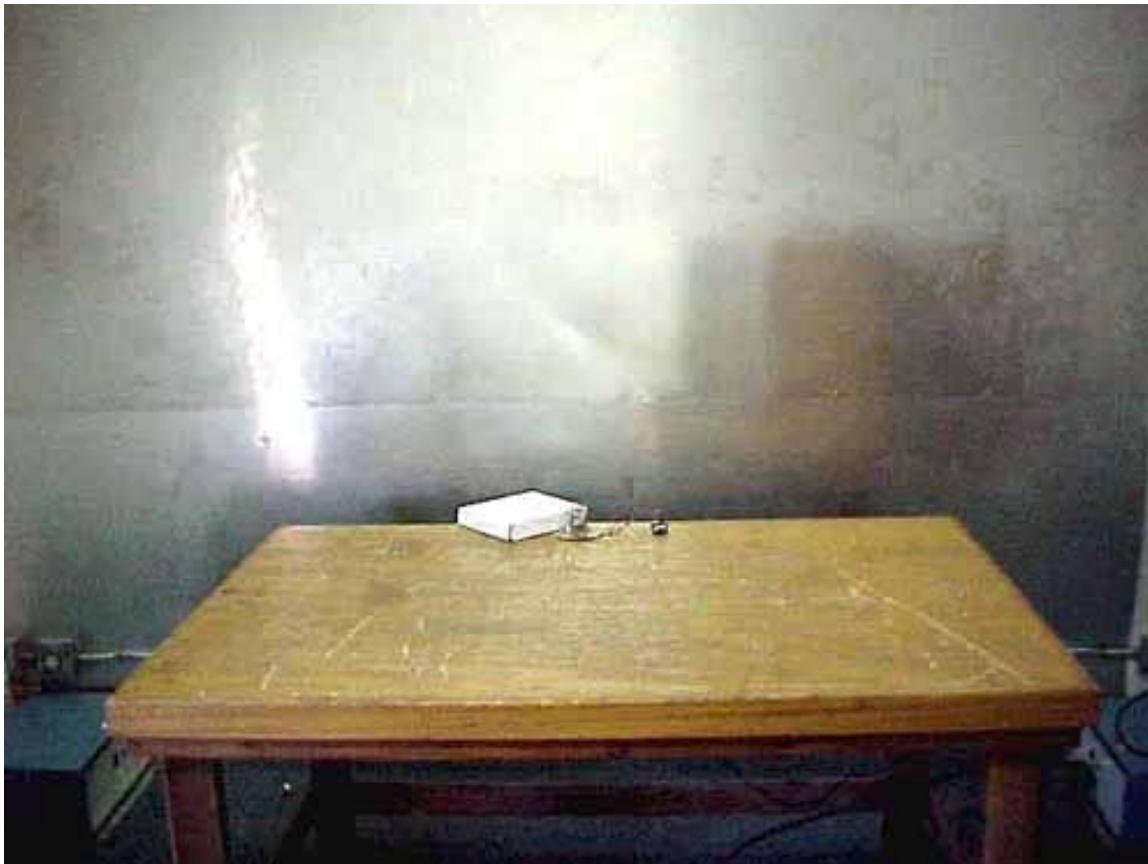
Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

INSIDE OUT NETWORKS
BLUETOOTH CLASS 2 MODULE
MODEL: 55001074

FCC SUBPART B AND C - RADIATED EMISSIONS – 02-06-03 and 02-17-03

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

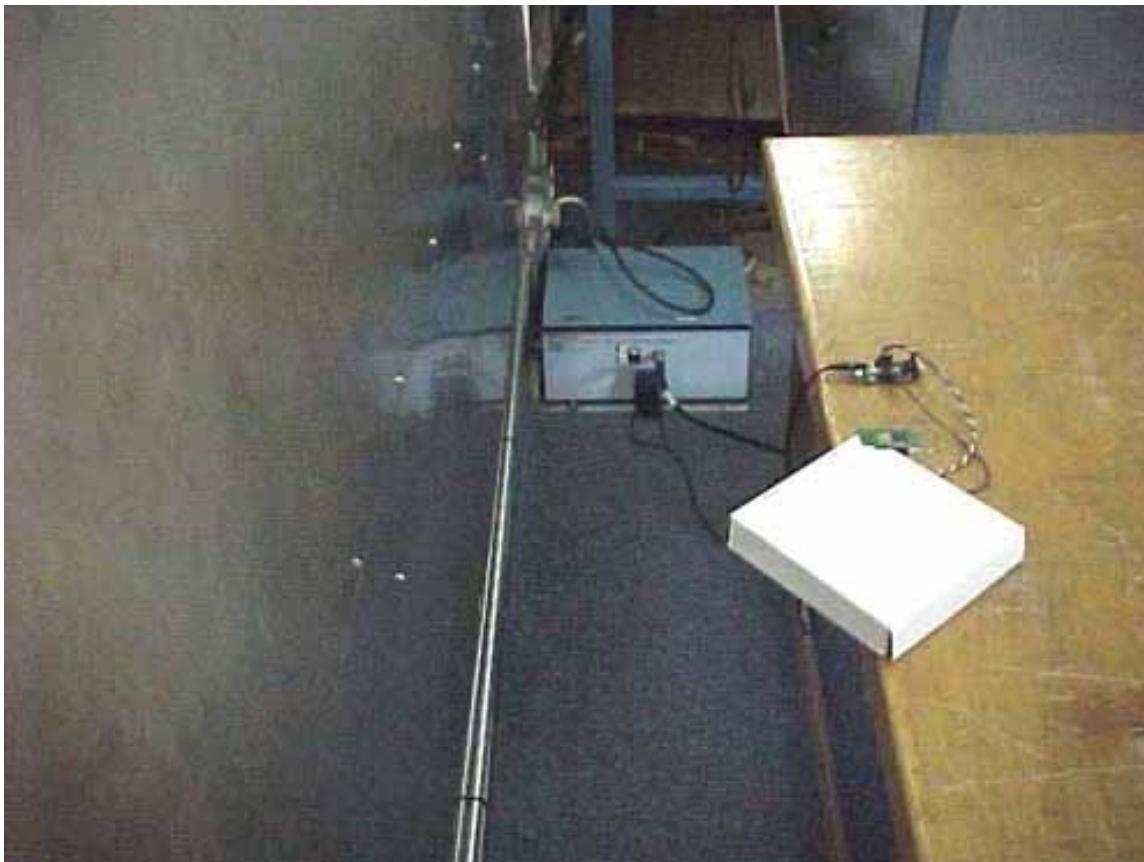
Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FRONT VIEW

INSIDE OUT NETWORKS
BLUETOOTH CLASS 2 MODULE
MODEL: 55001074

FCC SUBPART B AND C - CONDUCTED EMISSIONS – 02-04-03

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

INSIDE OUT NETWORKS
BLUETOOTH CLASS 2 MODULE
MODEL: 55001074

FCC SUBPART B AND C - CONDUCTED EMISSIONS – 02-04-03

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400