6 – SPURIOUS EMISSIONS AT ANTENNA TERMINALS

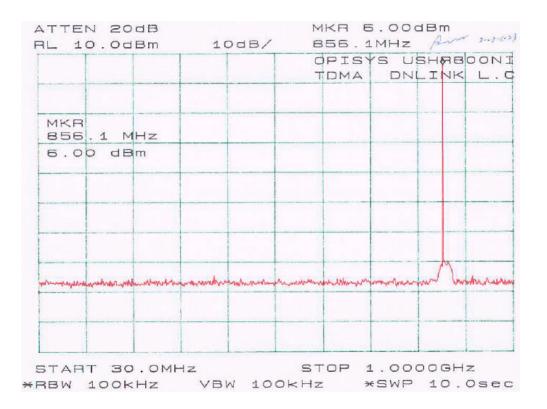
6.1 Applicable Standards

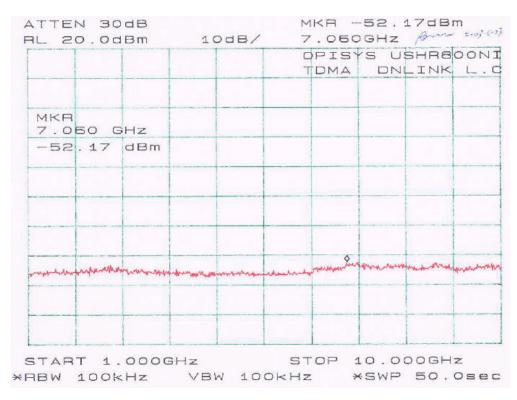
Per FCC §2.1051and FCC §90.210

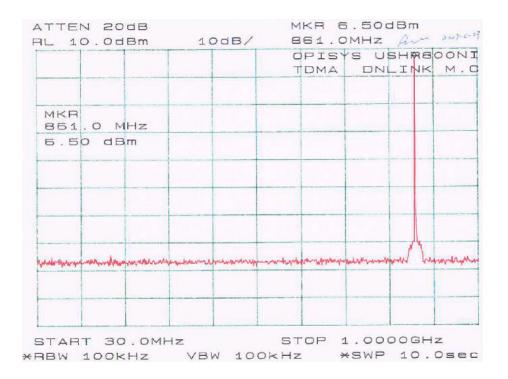
On any frequency removed from the center of the assigned channel by more than 250 percent at least:

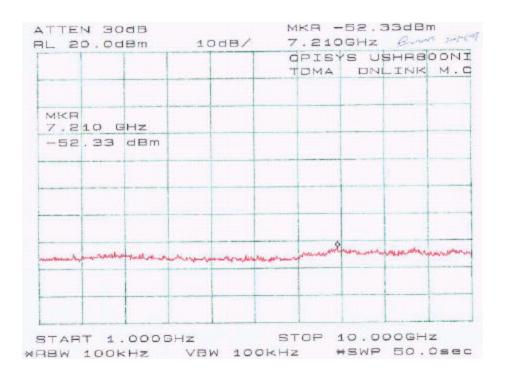
 $43 + 10 \log(P) dB$

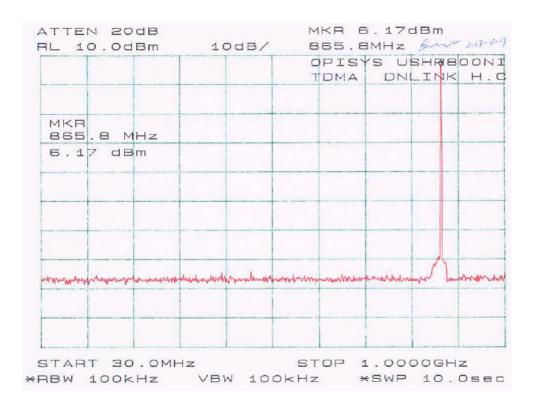
6.2 Test Procedure

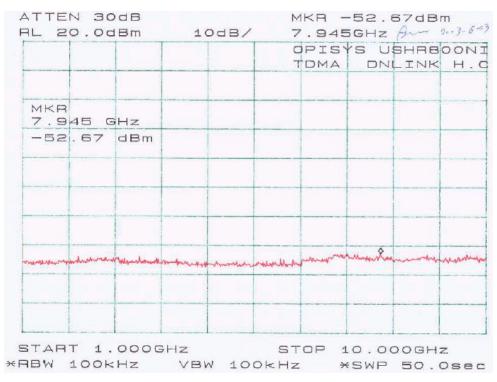

The RF output of the amplifier was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1 MHz. Sufficient scans were taken to show any out of band emissions up to $10^{\rm th}$ harmonic.

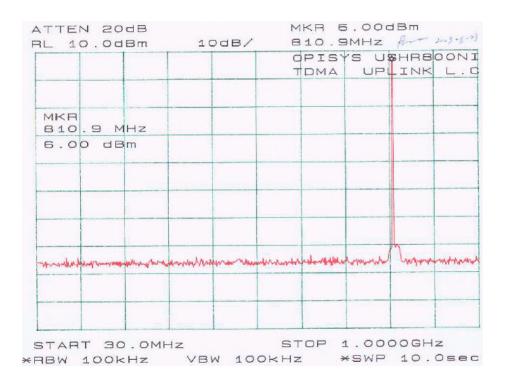

6.3 Test Results

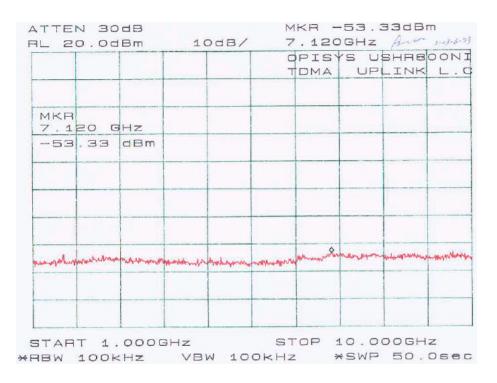

Modulation	Mode	Channel	Frequency MHz	Measured
	F	Low	855	<-13dBm
	Forward	Mid	860	<-13dBm
TDMA	(Down-link)	High	865	<-13dBm
TDMA	Darraga	Low	810	< -13dBm
	Reverse (Up-link)	Mid	815	< -13dBm
	(Ор-шк)	High	820	< -13dBm

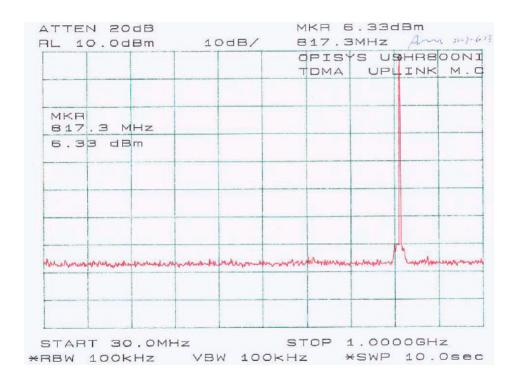

6.4 Plots of Out-of-Band Emissions at Antenna Terminal

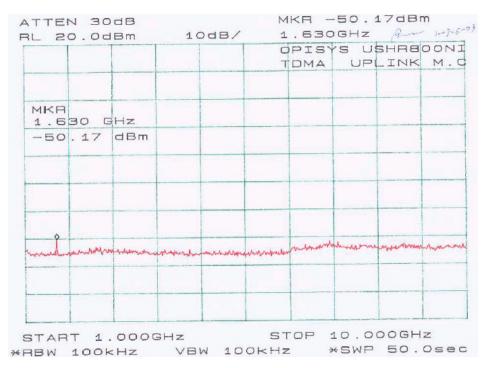

Please refer to plots hereinafter.

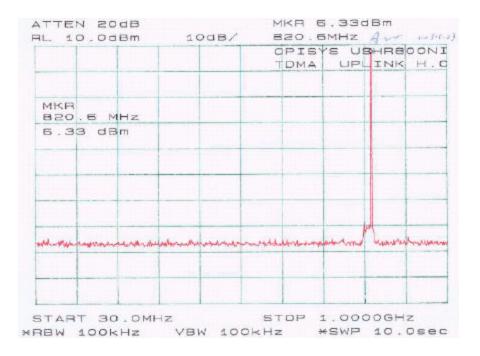


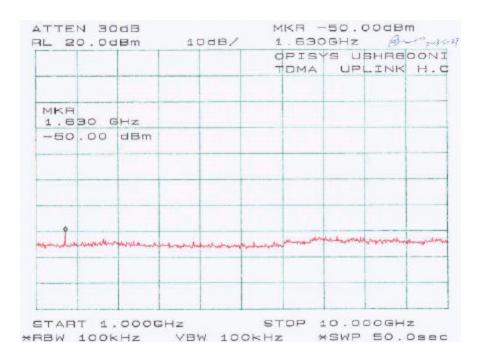












7 - TWO-TONE TEST

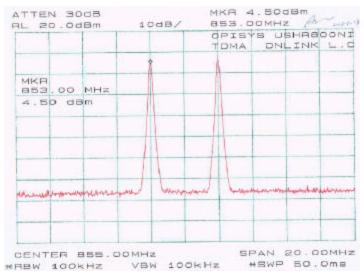
7.1 Applicable Standards

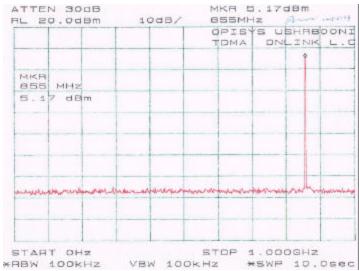
According to IS-138A (3.4.4), Intermodulation products must be attenuated below the rated power of the EUT by at least $43 +10\log (P)$, equivalent to -13 dBm.

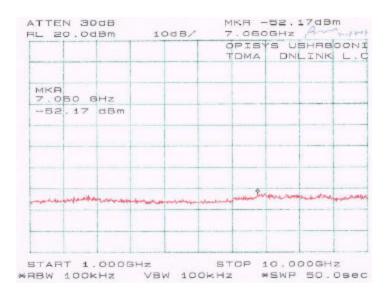
7.2 Test Procedure

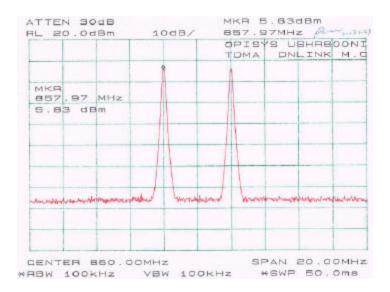
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1 MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic. Two input signals are equal in level (and can be raised equally), were send to the EUT.

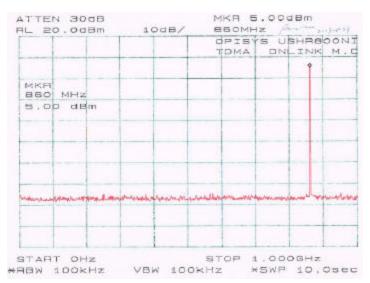
7.3 Test Equipment

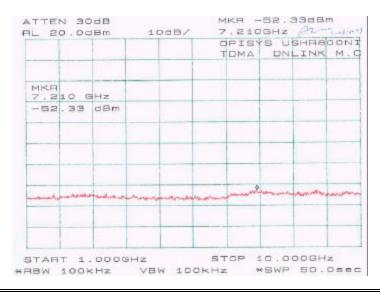

Hewlett Packard HP8565EC Spectrum Analyzer, Cal. Due Date: 2005-01-22 Rohde & Schwarz SMIQ03B Signal Generator, Cal. Due Date: 2003-07-05 Rohde & Schwarz AMIQ I/Q Modulation Generator, Cal. Due Date: 2003-07-05

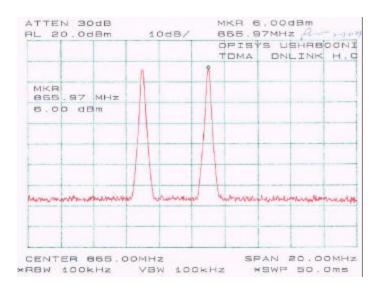

7.4 Test Results

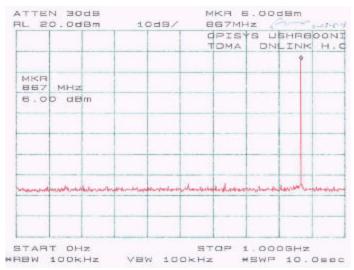

Modulation	Mode	Channel	Measured		
	F1	Low	<-13dBm		
	Forward (Down-link)	Mid	< -13dBm		
TDMA	(Down-lilik)	High	<-13dBm		
	Daviana	Low	<-13dBm		
	Reverse (Up-link)	Mid	<-13dBm		
	(Ор-Шік)	High	< -13dBm		

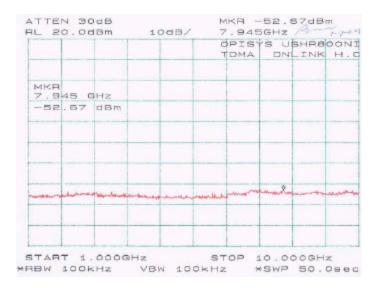

7.5 Plots of Two-Tone Test Result

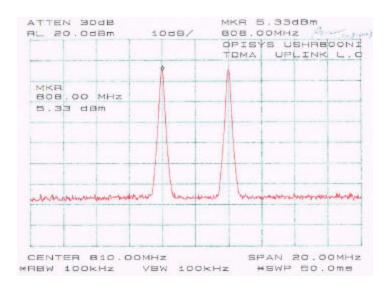

Please refer to plots hereinafter.

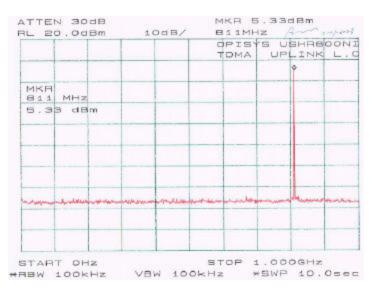


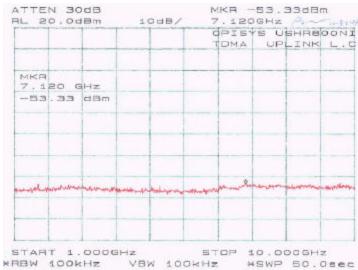


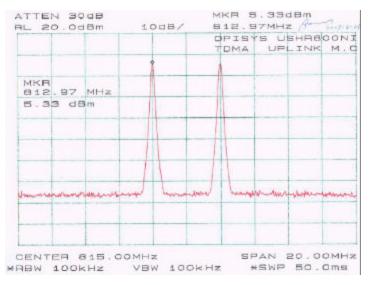


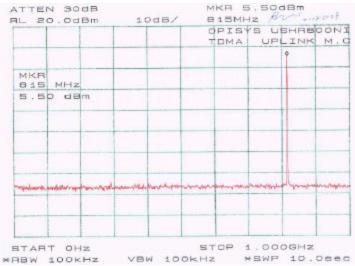


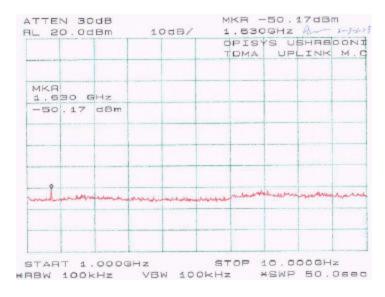


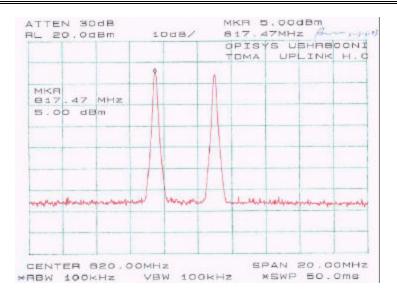


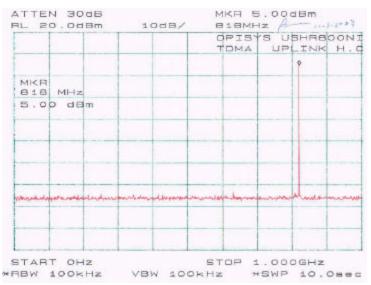


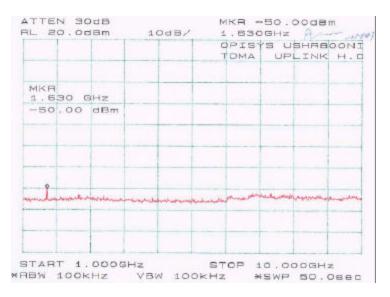












8 – RADIATED SPURIOUS EMISSION

8.1 Test Procedure

Per FCC §2.1051and FCC §90.210

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

 $43 + 10 \log(P) dB$

8.2 Test Procedure

The amplifier was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

8.3 Test Equipment

Com-Power AL-100 Antenna, Cal. Due Date: 2004-05-01 Com-Power AB-100 Antenna, Cal. Due Date: 2004-05-01 Com-Power AB-900 Antenna, Cal. Due Date: 2004-05-01 HP 8564E Spectrum Analyzer, Cal. Due Date: 2003-08-01 A.H.System SAS-200 Antenna, Cal. Due Date: 2004-05-31 HP 8449B Preamplifiers, Cal. Due Date: 2004-03-14

Rohde & Schwarz SICQ03 Generator, Cal. Due Date: 2003-07-05

8.4 Test Result

Up-link:

Low Frequency: -37.9 dBm at 1620 MHz Middle Frequency: -37.5 dBm at 1630 MHz High Frequency: -37.9 dBm at 1640 MHz

Down-link:

Low Frequency: -38.3 dBm at 1710 MHz Middle Frequency: -37.6 dBm at 1720 MHz High Frequency: -38.9 dBm at 1730 MHz

Up-Link, Low Channel at 810 MHz

		EUT	i				Gener	ator		i	Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
810	101.3	15	1.2	V	810	5.4	V	0	0.3	5.1		
810	100.3	210	1.5	h	810	4.7	h	0	0.3	4.4		
1620	54.1	30	1.2	V	1620	-57.2	V	6.8	0.5	-50.9	-13	-37.9
2430	48.6	110	1.5	V	2430	-61.3	V	7.6	0.7	-54.4	-13	-41.4
1620	48.7	90	1.5	h	1620	-61.8	h	6.8	0.5	-55.5	-13	-42.5
2430	43.9	160	1.2	h	2430	-63.7	h	7.6	0.7	-56.8	-13	-43.8

Up-link, Mid. Channel at 815 MHz

		EUT	1				Gener	ator	1		Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
815	102.2	230	1.8	V	815	5.8	v	0	0.3	5.5		
815	99.8	150	1.2	h	815	4.4	h	0	0.3	4.1		
1630	54.3	0	1.5	V	1630	-56.8	V	6.8	0.5	-50.5	-13	-37.5
2445	48.7	110	1.5	V	2445	-61.1	V	7.6	0.7	-54.2	-13	-41.2
1630	48.5	45	1.8	h	1630	-62.5	h	6.8	0.5	-56.2	-13	-43.2
2445	43.9	170	1.5	h	2445	-64.5	h	7.6	0.7	-57.6	-13	-44.6

Up-Link, High Channel at 820 MHz

		EUT	1				Gener	ator			Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
820	101.3	270	1.8	V	820	4.4	V	2.1	0.3	6.2		
820	100.2	180	1.2	h	820	3.5	h	2.1	0.3	5.3		
1640	54.1	30	1.2	v	1640	-57.2	v	6.8	0.5	-50.9	-13	-37.9
2460	48.9	150	1.2	V	2460	-60.5	V	7.6	0.7	-53.6	-13	-40.6
1640	48.7	60	1.5	h	1640	-62.3	h	6.8	0.5	-56	-13	-43
2460	44.2	210	1.2	h	2460	-63.7	h	7.6	0.7	-56.8	-13	-43.8

Down-Link, Low Channel at 855 MHz

		EUT					Gener	ator			Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
855	101.3	330	1.5	V	855	5.5	v	0	0.3	5.2		
855	100.7	0	1.5	h	855	4.6	h	0	0.3	4.3		
1710	53.5	30	1.2	V	1710	-57.6	V	6.8	0.5	-51.3	-13	-38.3
1710	49.7	90	1.5	h	1710	-65.3	h	6.8	0.5	-59	-13	-46
2565	43.4	110	1.5	V	2565	-68.7	V	7.6	0.7	-61.8	-13	-48.8
2565	40.6	160	1.2	h	2565	-70.1	h	7.6	0.7	-63.2	-13	-50.2

Down-Link, Mid. Channel at 860 MHz

		EUT	1				Gener	ator	1		Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
860	104.3	310	1.8	V	860	6.1	v	0	0.3	5.8		
860	102.2	180	1.5	h	860	5.2	h	0	0.3	4.9		
1720	54.3	120	1.8	V	1720	-56.9	V	6.8	0.5	-50.6	-13	-37.6
1720	51.7	90	1.8	h	1720	-62.1	h	6.8	0.5	-55.8	-13	-42.8
2580	45.4	0	1.2	v	2580	-65.3	v	7.6	0.7	-58.4	-13	-45.4
2580	41.7	330	1.5	h	2580	-68.4	h	7.6	0.7	-61.5	-13	-48.5

Down-Link, High Channel at 865 MHz

		EUT	1				Gener	ator			Sta	ndard
Indic	ated	Table	Test Ar	ntenna	S	ubstitutio	on 	Antenna	Cable	Absolute	FCC	FCC
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar H/V	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm		Corrected	dBm	dB	dBm	DBm
865	103.7	120	1.8	V	865	5.9	V	0	0.3	5.6		
865	98.3	250	1.2	h	865	4.4	h	0	0.3	4.1		
1730	53.2	180	1.5	v	1730	-58.2	v	6.8	0.5	-51.9	-13	-38.9
1730	49.5	160	1.8	h	1730	-65.4	h	6.8	0.5	-59.1	-13	-46.1
2595	43.4	15	1.2	v	2595	-67.7	v	7.6	0.7	-60.8	-13	-47.8
2595	40.3	0	1.5	h	2595	-70.2	h	7.6	0.7	-63.3	-13	-50.3

9 – Modulation Characteristics

This EUT only is an amplifier, it is not a transmitter. There is no modulating circuit in the EUT and no modulating characteristics measurement required.

10 - FREQUENCY STABILITY

This EUT only is an amplifier, it is not a transmitter. There is no oscillator circuit in the EUT, and no frequency stability measurement required.

OPISYS Incorporated		FCC ID: Q4EUSHR-800NI
11 - CONDUCTED EM	IISSION	
Not Applicable.		
Not Applicable.		