

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 15 Subpart E 15.407

Report No.: RDWN73-U4 Rev A

Company: Radwin

Model Name: NEO, NEO DUO

REGULATORY COMPLIANCE TEST REPORT

Company Name: Radwin

Model Name: NEO, NEO DUO

To: FCC CFR 47 Part 15 Subpart E 15.407

Test Report Serial No.: RDWN73-U4 Rev A

This report supersedes: NONE

Applicant: Radwin
27 Habarzel Street
Tel Aviv 6971039
Israel

Issue Date: 12th April 2021

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.
575 Boulder Court
Pleasanton California 94566
USA
Phone: +1 (925) 462-0304
Fax: +1 (925) 462-0306
www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	5
1.1. TESTING ACCREDITATION	5
1.2. RECOGNITION	6
1.3. PRODUCT CERTIFICATION	7
2. DOCUMENT HISTORY	8
3. TEST RESULT CERTIFICATE	9
4. REFERENCES AND MEASUREMENT UNCERTAINTY	10
4.1. Normative References	10
4.2. Test and Uncertainty Procedure	11
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	12
5.1. Technical Details	12
5.2. Scope Of Test Program	13
5.3. Equipment Model(s) and Serial Number(s)	14
5.4. Antenna Details	14
5.5. Cabling and I/O Ports	14
5.6. Test Configurations	14
5.7. Equipment Modifications	15
5.8. Deviations from the Test Standard	15
6. TEST SUMMARY	16
7. TEST EQUIPMENT CONFIGURATION(S)	17
7.1. Radiated Emissions - 3m Chamber	17
7.2. ac Wireline	19
8. MEASUREMENT AND PRESENTATION OF TEST DATA	21
9. TEST RESULTS	22
9.1. Peak Transmit Power	22
9.1.1. <i>Non-Beamforming</i>	25
9.1.2. <i>Beamforming</i>	29
9.2. 26 dB & 99% Bandwidth	33
9.3. Power Spectral Density	38
9.3.1. <i>Non-Beamforming</i>	40
9.3.2. <i>Beamforming</i>	44
9.4. Radiated	48
9.4.1. <i>TX Spurious & Restricted Band Emissions</i>	51
9.4.1.1. RADWIN MR0269440	51
9.4.1.2. RADWIN MR0269440BF	54
9.4.2. <i>Restricted Edge & Band-Edge Emissions</i>	57
9.4.2.3. RADWIN MR0269440	57
9.4.2.4. RADWIN MR0269440BF	62
9.4.3. <i>Digital Emissions</i>	67
9.5. AC Wireline	70
A. APPENDIX - GRAPHICAL IMAGES	73
A.1. 26 dB & 99% Bandwidth	74
A.2. Power Spectral Density	94
A.1.1 <i>Non-Beamforming</i>	94
A.1.1 <i>Beamforming</i>	114
A.3. Radiated	134
A.3.1. <i>TX Spurious & Restricted Band Emissions</i>	134
A.3.1.1. RADWIN MR0269440	134

A.3.1.2. RADWIN MR0269440BF	137
A.3.2. <i>Restricted Edge & Band-Edge Emissions</i>	140
A.3.2.3. RADWIN MR0269440	140
A.3.2.4. RADWIN MR0269440BF	144
A.3.3. <i>Digital Emissions</i>	148

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-01.pdf>

1.2. RECOGNITION

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM test reports. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	US0159 Test Site Designation #: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 Test Company #: 4143A
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	Japan MRA 2	RCB 210
	Japan Approvals Institute for Telecommunication Equipment (JATE)			
	VCCI			
Europe	European Commission	NB	EU MRA 2	NB 2280
United Kingdom	Department for Business, Energy & Industrial Strategy (BEIS)	AB	UK MRA 2	AB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	US0159
Hong Kong	Office of the Telecommunication Authority (OFTA)			
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)			
Singapore	Infocomm Development Authority (IDA)			
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)			
Vietnam	Ministry of Communication (MIC)			

TCB- Telecommunications Certification Bodies (TCB)

FCB – Foreign Certification Body

CAB – Conformity Assessment Body

NB – Notified Body;

AB – Approved Body

MRA – Mutual Recognition Agreement

MRA Phases

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <http://www.a2la.org/scopepdf/2381-02.pdf>

Accredited Product Certification Body

A2LA has accredited

MiCOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 – Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 24th day of February 2020

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2021

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB)

Industry Canada – Certification Body, CAB Identifier – US0159

Europe – Notified Body (NB), NB Identifier - 2280

UK – Approved Body (AB), AB Identifier - 2280

Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	6 th April 2021	Draft for comment
Draft #2	8 th April 2021	
Rev A	12 th April 2021	Initial release

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer: Radwin
27 Habarzel Street
Tel Aviv 6971039
Israel

Tested By: MiCOM Labs, Inc.
575 Boulder Court
Pleasanton
California 94566 USA

Model: NEO, NEO DUO

Telephone: +1 925 462 0304
Fax: +1 925 462 0306

Type Of Equipment: 5 GHz Single, Dual Carrier
Beamforming Base Station

S/N's: Prototype #1

Test Date(s): 16th – 26th March 2021

Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC CFR 47 Part 15 Subpart E 15.407

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.
2. Details of test methods used have been recorded and kept on file by the laboratory.
3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve
Quality Manager MiCOM Labs, Inc.

Gordon Hurst
President & CEO MiCOM Labs, Inc.

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 905462 D07 v02	22nd August 2016	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.
III	KDB 926956 D01 v02	22nd August 2016	U-NII Device Transition Plan
IV	A2LA	5th October 2020	R105 - Requirement's When Making Reference to A2LA Accreditation Status
V	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VI	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VII	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VIII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
IX	FCC 06-96	Jun 30 2006	Memorandum Opinion and Order
X	FCC 47 CFR Part 15.407	2020	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices
XI	ICES-003	Issue 7 ; October 15,2020	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
XII	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XIII	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSS), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XIV	RSS-Gen Issue 5	March 2019 Amendment 1	General Requirements for Compliance of Radio Apparatus
XV	FCC 47 CFR Part 2.1033	2020	FCC requirements and rules regarding photographs and test setup diagrams.
XVI	KDB 905462 D02 v02	April 8 2016	Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
XVII	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor $k = 2$, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Radwin NEO, NEO DUO to FCC CFR 47 Part 15 Subpart E 15.407. Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5150 to 5250 MHz
Applicant:	Radwin 27 Habarzel Street Tel Aviv 6971039 Israel
Manufacturer:	Radwin
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA
Test report reference number:	RDWN73-U4
Date EUT received:	15 March 2021
Standard(s) applied:	FCC CFR 47 Part 15 Subpart E 15.407.
Dates of test (from - to):	16 th – 31 st March 2021
No of Units Tested:	1
Product Family Name:	NEO
Model(s):	NEO, NEO DUO
Location for use:	Outdoors
Declared Frequency Range(s):	5150 - 5250 MHz
Type of Modulation:	BPSK, QPSK, 16QAM, 64QAM, 256QAM
EUT Modes of Operation:	10MHz; 20MHz; 40MHz; 80MHz;
Declared Nominal Output Power (dBm):	+26 dBm
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	55V DC
Operating Temperature Range:	-35 – 60 °C
ITU Emission Designator:	10M0W7W, 20M0W7W, 40M0W7W, 80M0W7W
Equipment Dimensions:	3.5 / 13.4 / 12.8 in
Weight:	7.74 lb
Hardware Rev:	Prototype
Software Rev:	Prototype

5.2. Scope Of Test Program

Radwin NEO, NEO DUO

The scope of the test program was to test the Radwin NEO DUO, Dual Carrier 5.x GHz Base Station with Beamforming Antenna configurations in the frequency ranges 5150 - 5250 MHz for compliance against the following specification:

FCC CFR 47 Part 15 Subpart E 15.407

Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5150 to 5250 MHz.

RSS-247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and License-Exempt Local Area Network (LE-LEN) Devices.

As the RADWIN NEO DUO has integrated beamforming antenna this program was completed all radiatively. By observation the 256QAM was the worst-case modulation and was used for test purposes.

System Test and Measurement Configurations

The RADWIN NEO DUO consists of 2 identical radios each with 2 ports driving one cross polarized antenna per radio. Each radio can transmit on all available frequencies, but both radios cannot transmit on the same frequency simultaneously.

The RADWIN NEO consists of 1 radio with 2 antenna ports which drive a cross polarized antenna.

As the unit's RF modules were identical only a single radio of the RADWIN NEO DUO was exercised, and results duplicated where necessary for the 2nd radio.

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT	Dual Carrier 5.x GHz Base Station with Beamforming Antenna	RADWIN	RADWIN NEO DUO	Prototype
Support	POE Power Supply	Sinpro	CPU55A-270-1	--
Support	Laptop	Dell	--	--

5.4. Antenna Details

Type	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	RADWIN	MR0269440	Sector	10.0	-	90	Yes	5150 - 5250
integral	RADWIN	MR0269440BF	Directional	10.0	6.0	30	Yes	5150 – 5250

BF Gain - Beamforming Gain
 Dir BW - Directional BeamWidth
 X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate	Environment	Config
Ethernet PoE IN	>30m	1			Packet Data	1000	End-User	Without Primary Protection.

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power MBit/s	Channel Frequency (MHz)		
		Low	Mid	High
5150 - 5250 MHz				
10MHz	39.00	5,175.00	5,210.00	5,245.00
20MHz	78.00	5,180.00	5,210.00	5240.00
40MHz	180.00	5,190.00	5,210.00	5,230.00
80MHz	390.00	--	5,210.00	--

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

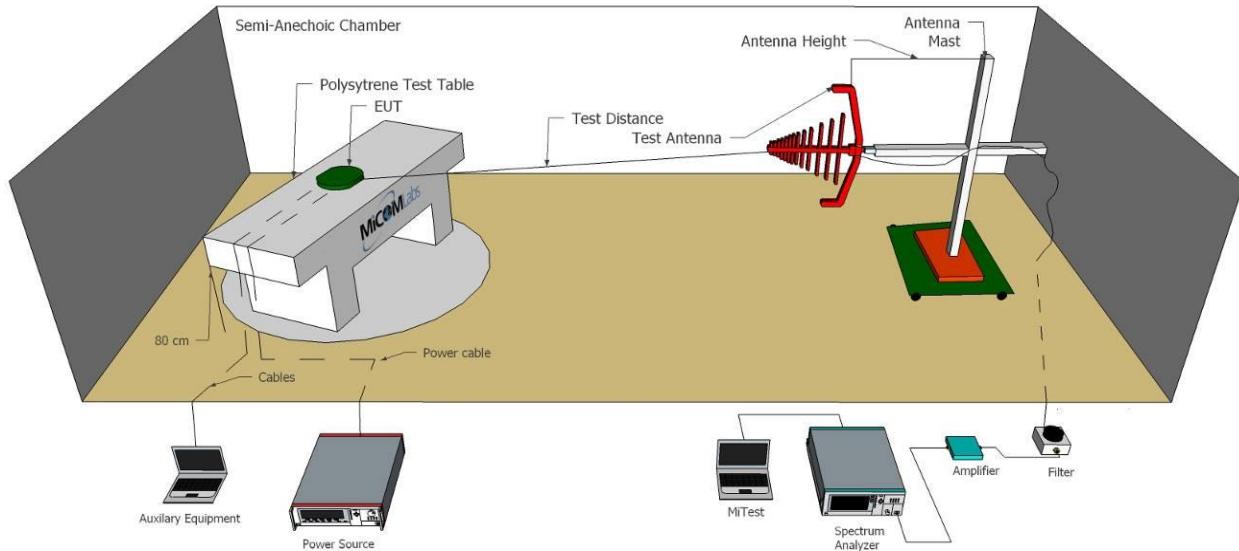
5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

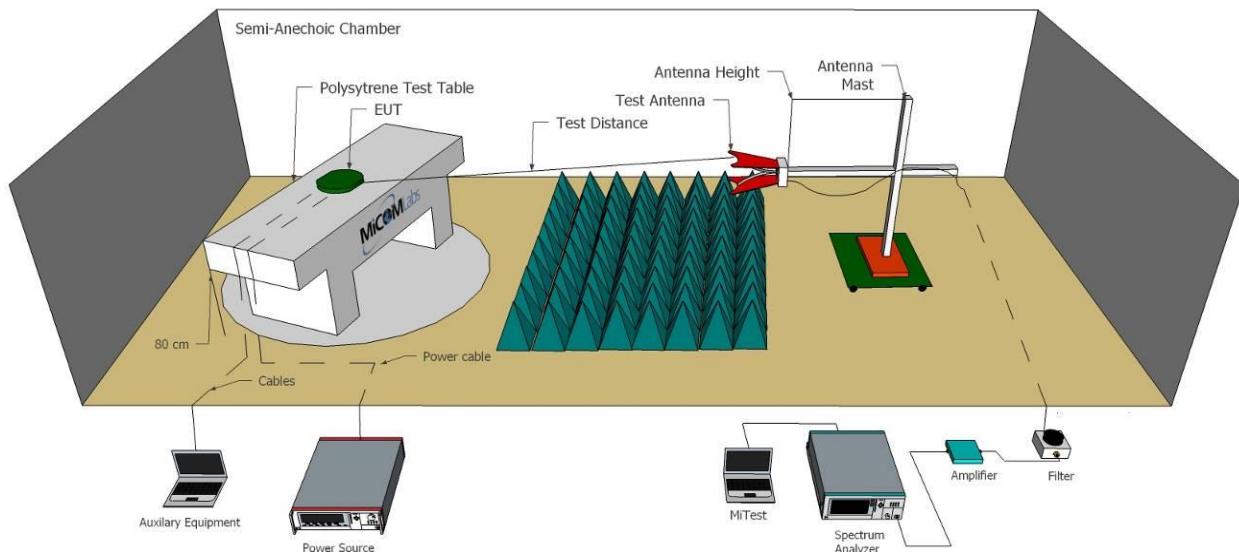
1. NONE

6. TEST SUMMARY

List of Measurements


Test Header	Result	Data Link
Peak Transmit Power	Complies	View Data
26 dB & 99% Bandwidth	Complies	View Data
Power Spectral Density	Complies	View Data
Radiated	Complies	-
TX Spurious & Restricted Band Emissions	Complies	-
RADWIN MR0269440	Complies	View Data
RADWIN MR0269440BF	Complies	View Data
Restricted Edge & Band-Edge Emissions	Complies	-
RADWIN MR0269440	Complies	View Data
RADWIN MR0269440BF	Complies	View Data
Digital Emissions	Complies	View Data
AC Wireline	Complies	View Data

7. TEST EQUIPMENT CONFIGURATION(S)


7.1. Radiated Emissions - 3m Chamber

Test Setup for Radiated Emissions for above and below 1 GHz

Radiated Emissions Below 1GHz Test Setup

Radiated Emissions Above 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	26 Apr 2021
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2021
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	4 May 2021
378	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100107/040	12 Jun 2021
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 May 2021
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 May 2021
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 May 2021
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	4 May 2021
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	4 May 2021
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	4 May 2021
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	4 May 2021
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	4 May 2021
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	4 May 2021
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2021
518	Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	4 May 2021
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	4 May 2021

7.2. ac Wireline

The ac Wireline Conducted Emissions test was performed using the conducted test set-up shown in the diagram below.

Test Measurement Set up

Assets Utilized for ac Wireline Emission Testing

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	30 Aug 2021
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	18 Apr 2021
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2021
295	Conducted Emissions Chamber Maintenance Check	MiCOM	Conducted Emissions Chamber	295	26 May 2021
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	28 Apr 2021
316	Dell desktop computer workstation	Dell	Desktop	WS04	Not Required
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Jun 2021
389	LISN (3 Phase) 9kHz - 30 MHz for support equipment	Rohde & Schwarz	ESH2-Z5	881493/013	Not Required
496	MiTest Conducted Emissions test software.	MiCOM	Conducted Emissions Test Software Version 1.0	496	Not Required
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2021
CCEMC01	Confidence Check.	MiCOM	CCEMC01	None	21 Apr 2021

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy-to-read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by [MiTest](#). [MiTest](#) is an automated test system developed by MiCOM Labs. [MiTest](#) is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "[MiTest](#)" Automated Test System" (Patent Pending)

9. TEST RESULTS

9.1. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power			
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a)(1)	Pressure (mBars):	999 - 1001
Reference Document(s):	KDB 789033 - D02 General UNII Test Procedures New Rules v01		

Test Procedure for Maximum Output Power Measurement

Spectrum Analyzer Method. KDB 789033 defines a methodology using spectrum analyzer. Where power shall be calculated by integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99% occupied bandwidth of the signal. However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with Section 15.407(a). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document. Supporting KDB's referenced below.

KDB 662911 D01 & KDB 662911 D02

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Radiated measurements used for compliance with conducted limits, the following steps are required to ensure that the total emission power is determined for equipment driving cross polarized antennas:

- (1) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna;
- (2) Convert each radiated measurement to transmit power based on the antenna gain;

EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20 \log(D) + 104.8$$

Where:

E = electric field strength in dB μ V/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- (3) Sum the powers across the two polarizations to compare the resultant electric field strength level to the applicable limit.

$$\text{Calculated Power} = A + G + Y + 10 \log(1/x) \text{ dBm}$$

$$A = \text{Total Power} [10 \log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Consolidated Power Results, EIRP Limits

The EUT was tested for Radiated Output Power and the following tables define the worst case compliant results defined for each Antenna

Output Power – Consolidated Summary Table

Antenna Type – Integrated (outdoor use only)

Antenna	Gain	Channel Bandwidth	Channel	Combined Output Power (H+V)	Calc EIRP	Limit	Margin	Power Setting
Model Number	dBi	MHz	MHz	dBm	dBm/EIRP	dBm/EIRP	dB	
MR0269440	10.0	10	5175	25.75	35.75	36.00	-0.25	1.0
			5210	25.68	35.68	36.00	-0.32	1.5
			5245	25.57	35.57	36.00	-0.43	1.0
		20	5180	25.65	35.65	36.00	-0.35	1.5
			5210	25.56	35.56	36.00	-0.44	2.0
			5240	25.75	35.75	36.00	-0.25	2.0
		40	5190	25.62	35.62	36.00	-0.38	1.5
			5210	25.64	35.64	36.00	-0.36	2.0
			5230	25.62	35.62	36.00	-0.38	2.0
		80	5210	25.84	35.84	36.00	-0.16	2.0
MR0269440 BF	16.0	10	5175	19.44	35.44	36.00	-0.56	-4.0
			5210	19.62	35.62	36.00	-0.38	-3.5
			5245	19.81	35.81	36.00	-0.19	-3.5
		20	5180	19.54	35.54	36.00	-0.46	-3.0
			5210	19.55	35.55	36.00	-0.45	-2.5
			5240	19.84	35.84	36.00	-0.16	-2.5
		40	5190	19.68	35.68	36.00	-0.32	-3.0
			5210	19.83	35.83	36.00	-0.17	-2.5
			5230	19.95	35.95	36.00	-0.05	-2.5
		80	5210	19.26	35.26	36.00	-0.74	-3.0

9.1.1. Non-Beamforming

The following tables used the lowest gain antenna to calculate the maximum conducted power from the EUT.

The following table identifies the power referenced to the "antenna ports"

Equipment Configuration for RF Output Power			
Variant:	10MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	39 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm			
5175	18.72	22.44	25.75	26.00	-0.25	1.0
5210	18.61	22.39	25.68	26.00	-0.32	1.5
5245	18.64	22.22	25.57	26.00	-0.43	1.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	20MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	78 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm	dB	Numeric	Numeric
5180	18.53	22.38	25.65	26.00	-0.35	1.5
5210	18.61	22.22	25.56	26.00	-0.44	2.0
5240	18.98	22.33	25.75	26.00	-0.25	2.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	40MHz Bandwidth	Duty Cycle (%):	90
Data Rate:	180 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm			
5190	18.76	22.24	25.62	26.00	-0.38	1.5
5210	18.77	22.26	25.64	26.00	-0.36	2.0
5230	18.85	22.19	25.62	26.00	-0.38	2.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	80MHz Bandwidth	Duty Cycle (%):	85
Data Rate:	390 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm	dBm	dB	Numeric
5210	19.02	22.44	25.84	26.00	-0.16	2.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

9.1.2 Beamforming

Equipment Configuration for RF Output Power

Variant:	10MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	39 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.0
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm	dB	Numeric	Numeric
5175	18.71	21.99	19.44	20.00	-0.56	-4.0
5210	19.03	22.11	19.62	20.00	-0.38	-3.5
5245	19.52	22.15	19.81	20.00	-0.19	-3.5

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-01 MEASURING RF OUTPUT POWER

Uncertainty: ±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	20MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	78 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.0
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm			
5180	18.92	22.05	19.54	20.00	-0.46	-3.0
5210	18.82	22.1	19.55	20.00	-0.45	-2.5
5240	19.56	22.17	19.84	20.00	-0.16	-2.5

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	40MHz Bandwidth	Duty Cycle (%):	90
Data Rate:	180 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.0
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm			
5190	19.2	22.12	19.68	20.00	-0.32	-3.0
5210	19.46	22.21	19.83	20.00	-0.17	-2.5
5230	19.72	22.25	19.95	20.00	-0.05	-2.5

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Equipment Configuration for RF Output Power

Variant:	80MHz Bandwidth	Duty Cycle (%):	85
Data Rate:	390 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.0
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	H	V	dBm	dBm	dB	Numeric
5210	18.82	21.68	19.26	20.00	-0.74	-3.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

9.2. 26 dB & 99% Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth			
Standards:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		
Test Procedure for 26 dB and 99% Bandwidth Measurement The bandwidth at 26 dB and 99 % is measured radiated, in a 3 meter chamber, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported. In this case Vertical a (V) and Horizontal for port b (H). Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document.			

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	10 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	39 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Frequency	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5175.0	11.79	11.47		11.79	11.47	
5210.0	11.54	11.70		11.70	11.54	
5245.0	11.42	11.62		11.62	11.42	

Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5175.0	8.94	8.94		8.94	8.94	
5210.0	8.98	8.98		8.98	8.98	
5245.0	8.90	8.94		8.90	8.94	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	20 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	78 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5180.0	22.28	22.44		22.44	22.28	
5210.0	21.72	22.20		22.20	21.72	
5240.0	21.64	22.28		22.28	21.64	

Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5180.0	17.88	17.80		17.88	17.80	
5210.0	17.88	17.88		17.88	17.88	
5240.0	17.88	17.96		17.96	17.88	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	40 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	180 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5190.0	44.25	43.61		44.25	43.61	
5210.0	44.25	43.93		44.25	43.93	
5230.0	44.41	44.89		44.89	44.41	

Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5190.0	36.71	36.55		36.71	36.55	
5210.0	36.71	36.55		36.71	36.55	
5230.0	36.71	36.55		36.71	36.55	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	80MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	390 MBit/s	Antenna Gain (dBi):	10.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5210.0	87.86	87.21		87.86	87.21	
Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandwidth (MHz)			
	MHz	H	V	Highest	Lowest	
5210.0	76.63	76.63		76.63	76.63	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density			
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001
Reference Document(s):	KDB 789033 - D02 General UNII Test Procedures New Rules v01		

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v02.)

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = $A + 10 \log (1/x)$ dBm

A = Total Power Spectral Density $[10 \log_{10} (10a/10 + 10b/10 + 10c/10 + 10d/10)]$

x = Duty Cycle

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document. Supporting KDB's referenced below.

KDB 662911 D01 & KDB 662911 D02

Radiated measurements used for compliance with conducted limits, the following steps are required to ensure that the total emission power is determined for equipment driving cross polarized antennas:

- (1) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna;
- (2) Convert each radiated measurement to transmit power based on the antenna gain;

EIRP level to an equivalent electric field strength using the following relationship:

$E = EIRP - 20 \log (D) + 104.8$

Where:

E = electric field strength in $\text{dB}\mu\text{V/m}$,

$EIRP$ = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

(3) Sum the powers or PSDs across the two polarizations to compare the resultant electric field strength level to the applicable limit.

Calculated Power = $A + G + Y + 10 \log (1/x)$ dBm

A = Total Power $[10 \log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Power Spectral Density

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band

of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.3.1. Non-Beamforming

Equipment Configuration for Power Spectral Density

Variant:	10 MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	39 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.0 dB)	Limit	Margin
	(dBm/MHz)				
MHz	H	V	dBm/MHz	dBm/MHz	dB
5175.0	4.57	10.06	12.91	13.00	-0.09
5210.0	5.87	9.51	12.84	13.00	-0.16
5245.0	6.21	9.44	12.90	13.00	-0.10

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	20 MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	78 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.0 dB)	Limit	Margin
	(dBm/MHz)				
MHz	H	V	dBm/MHz	dBm/MHz	dB
5180.0	4.27	7.58	11.02	13.00	-1.98
5210.0	5.92	9.01	12.52	13.00	-0.48
5240.0	5.96	8.37	12.11	13.00	-0.89

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	40 MHz Bandwidth	Duty Cycle (%):	90
Data Rate:	180 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.41 dB)	Limit	Margin
	(dBm/MHz)				
MHz	H	V	dBm/MHz	dBm/MHz	dB
5190.0	0.87	4.68	8.37	13.00	-4.63
5210.0	2.14	6.20	9.82	13.00	-3.18
5230.0	3.08	6.59	10.37	13.00	-2.63

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	80 MHz Bandwidth	Duty Cycle (%):	85
Data Rate:	390 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.71 dB)	Limit	Margin
	(dBm/MHz)				
MHz	H	V	dBm/MHz	dBm/MHz	dB
5210.0	<u>-4.12</u>	<u>-0.60</u>	3.48	13.00	-9.52

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

9.3.2. Beamforming

Equipment Configuration for Power Spectral Density

Variant:	10 MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	39 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.00
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.00 dB)	Limit	Margin
	(dBm/MHz)	H	V		
MHz			dBm/MHz	dBm/MHz	dB
5175.0	6.28	9.03	6.65	7.00	-0.35
5210.0	6.33	9.08	6.70	7.00	-0.30
5245.0	6.39	9.33	6.89	7.00	-0.11

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	20 MHz Bandwidth	Duty Cycle (%):	99
Data Rate:	78 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.00
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.00 dB)	Limit	Margin
	(dBm/MHz)	H			
MHz	H	V	dBm/MHz	dBm/MHz	dB
5180.0	4.00	7.93	5.18	7.00	-1.82
5210.0	5.55	9.09	6.45	7.00	-0.55
5240.0	5.61	8.89	6.34	7.00	-0.66

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	40 MHz Bandwidth	Duty Cycle (%):	91
Data Rate:	180 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.00
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.41 dB)	Limit	Margin
	(dBm/MHz)				
MHz	H	V	dBm/MHz	dBm/MHz	dB
5190.0	0.95	4.13	2.02	7.00	-4.98
5210.0	2.61	6.07	3.87	7.00	-3.13
5230.0	3.00	6.25	4.11	7.00	-2.89

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

Equipment Configuration for Power Spectral Density

Variant:	80 MHz Bandwidth	Duty Cycle (%):	85
Data Rate:	390 MBit/s	Antenna Gain (dBi):	10.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	6.00
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density		Summation Peak Marker + DCCF (+0.71 dB)	Limit	Margin	
	MHz	H	V			
5210.0	-5.93		-2.78	-4.59	7.00	-11.59

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF – Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

KDB 789033 - D02 General UNII Test Procedures New Rules v01 was used to calculate the above Power Spectral Density

9.4. Radiated

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions			
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band-Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (b), 15.205, 15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Spurious and Band-Edge Emissions

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Undesirable Measurement were per the Radiated Test Set-up specified in this document.

15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Limits for Restricted Bands (15.205, 15.209)

Peak emission: 74 dBuV/m

Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor
CORR = Correction Factor = $CL - AG + NFL$
CL = Cable Loss
AG = Amplifier Gain
FO = Distance Falloff Factor
NFL = Notch Filter Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dB μ V/m);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu\text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dB μ V/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows:
 Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m
 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

9.4.1. TX Spurious & Restricted Band Emissions

9.4.1.1. RADWIN MR0269440

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5175.00	Data Rate:	39.00 MBit/s
Power Setting:	3.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz

Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail
#1	1100.07	64.16	1.36	-17.46	48.06	Max Peak	Horizontal	98	47	68.2	-20.2	Pass
#2	1100.07	59.62	1.36	-17.46	43.52	Max Avg	Horizontal	98	47	54.0	-10.5	Pass
#3	4810.64	65.21	2.85	-12.42	55.64	Max Peak	Horizontal	197	352	68.2	-12.6	Pass
#4	4810.64	51.72	2.85	-12.42	42.15	Max Avg	Horizontal	197	352	54.0	-11.9	Pass
#5	4838.01	66.16	2.81	-12.55	56.42	Max Peak	Horizontal	188	338	68.2	-11.8	Pass
#6	4838.01	52.44	2.81	-12.55	42.70	Max Avg	Horizontal	188	338	54.0	-11.3	Pass
#7	5178.44	63.46	2.97	-12.12	54.31	Fundamental	Vertical	100	0	--	--	
#8	6221.84	55.83	3.32	-9.62	49.53	Peak (NRB)	Vertical	200	31	--	--	Pass

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5210.00	Data Rate:	39.00 MBit/s
Power Setting:	3.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	4778.36	64.54	2.87	-12.45	54.96	Max Peak	Horizontal	187	335	68.2	-13.3	Pass	
#2	4778.36	50.31	2.87	-12.45	40.73	Max Avg	Horizontal	187	335	54.0	-13.3	Pass	
#3	4807.58	65.10	2.85	-12.43	55.52	Max Peak	Horizontal	196	335	68.2	-12.7	Pass	
#4	4807.58	51.30	2.85	-12.43	41.72	Max Avg	Horizontal	196	335	54.0	-12.3	Pass	
#5	4838.18	65.78	2.81	-12.55	56.04	Max Peak	Horizontal	193	334	68.2	-12.2	Pass	
#6	4838.18	51.61	2.81	-12.55	41.87	Max Avg	Horizontal	193	334	54.0	-12.1	Pass	
#7	5211.71	66.57	2.99	-12.36	57.20	Fundamental	Vertical	100	0	--	--		
#8	6250.62	53.82	3.25	-9.49	47.58	Peak (NRB)	Vertical	200	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5245.00	Data Rate:	39.00 MBit/s
Power Setting:	3.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	4839.11	65.65	2.82	-12.55	55.92	Max Peak	Horizontal	189	356	68.2	-12.3	Pass	
#2	4839.11	51.77	2.82	-12.55	42.04	Max Avg	Horizontal	189	356	54.0	-12.0	Pass	
#3	5242.14	86.17	3.02	-12.03	77.16	Fundamental	Vertical	200	0	--	--		
#4	6247.65	54.90	3.25	-9.51	48.64	Peak (NRB)	Vertical	200	67	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

9.4.1.2. RADWIN MR0269440BF

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440BF	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6	Duty Cycle (%):	99
Channel Frequency (MHz):	5175.00	Data Rate:	39.00 MBit/s
Power Setting:	0.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1100.02	65.56	1.36	-17.46	49.46	Max Peak	Horizontal	154	34	68.2	-18.8	Pass	
#2	1100.02	60.62	1.36	-17.46	44.52	Max Avg	Horizontal	154	34	54.0	-9.5	Pass	
#3	4748.66	64.56	2.84	-12.35	55.05	Max Peak	Horizontal	184	0	68.2	-13.2	Pass	
#4	4748.66	50.96	2.84	-12.35	41.45	Max Avg	Horizontal	184	0	54.0	-12.6	Pass	
#5	4778.32	64.94	2.87	-12.45	55.36	Max Peak	Horizontal	186	1	68.2	-12.9	Pass	
#6	4778.32	51.38	2.87	-12.45	41.80	Max Avg	Horizontal	186	1	54.0	-12.2	Pass	
#7	5176.55	80.57	2.96	-12.14	71.39	Fundamental	Vertical	150	0	--	--		
#8	6249.94	52.90	3.25	-9.50	46.65	Peak (NRB)	Vertical	150	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440BF	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6	Duty Cycle (%):	99
Channel Frequency (MHz):	5210.00	Data Rate:	39.00 MBit/s
Power Setting:	0.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	1100.05	63.75	1.36	-17.46	47.65	Max Peak	Horizontal	194	28	68.2	-20.6	Pass	
#2	1100.05	58.64	1.36	-17.46	42.54	Max Avg	Horizontal	194	28	54.0	-11.5	Pass	
#3	4750.59	63.66	2.82	-12.36	54.12	Max Peak	Horizontal	195	350	68.2	-14.1	Pass	
#4	4750.59	49.08	2.82	-12.36	39.54	Max Avg	Horizontal	195	350	54.0	-14.5	Pass	
#5	4809.28	65.34	2.85	-12.42	55.77	Max Peak	Horizontal	182	0	68.2	-12.5	Pass	
#6	4809.28	51.68	2.85	-12.42	42.11	Max Avg	Horizontal	182	0	54.0	-11.9	Pass	
#7	5209.62	84.43	2.99	-12.37	75.05	Fundamental	Vertical	150	0	--	--		
#8	6250.07	52.25	3.25	-9.49	46.01	Peak (NRB)	Vertical	150	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN MR0269440BF	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6	Duty Cycle (%):	99
Channel Frequency (MHz):	5245.00	Data Rate:	39.00 MBit/s
Power Setting:	0.0	Tested By:	JMH

Test Measurement Results

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	4809.83	65.59	2.85	-12.42	56.02	Max Peak	Horizontal	185	357	68.2	-12.2	Pass	
#2	4809.83	51.52	2.85	-12.42	41.95	Max Avg	Horizontal	185	357	54.0	-12.1	Pass	
#3	4836.91	66.02	2.81	-12.54	56.29	Max Peak	Horizontal	177	0	68.2	-11.9	Pass	
#4	4836.91	51.90	2.81	-12.54	42.17	Max Avg	Horizontal	177	0	54.0	-11.8	Pass	
#5	5243.02	68.44	3.02	-12.03	59.43	Fundamental	Vertical	100	0	--	--		
#6	6250.07	55.51	3.25	-9.49	49.27	Peak (NRB)	Vertical	150	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

9.4.2. Restricted Edge & Band-Edge Emissions

9.4.2.3. RADWIN MR0269440

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5150 - 5250 MHz

RADWIN MR0269440		Band-Edge Freq	Limit 74.0dB μ V/m	Limit 54.0dB μ V/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dB μ V/m	dB μ V/m	
10MHz	5175.00	5150.00	68.58	53.39	7.0
20MHz	5180.00	5150.00	68.67	53.57	6.5
40MHz	5190.00	5150.00	69.17	52.15	6.5
80MHz	5210.00	5150.00	73.39	52.94	4.0

Click on the links to view the data.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5175.00	Data Rate:	39.00 MBit/s
Power Setting:	7.0	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5132.77	16.23	2.98	34.18	53.39	Max Avg	Vertical	189	33	54.0	-0.6	Pass	
#2	5146.99	31.46	2.91	34.21	68.58	Max Peak	Vertical	189	33	74.0	-5.4	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440	Variant:	20MHz
Antenna Gain (dBi):	10.0	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5180.00	Data Rate:	78.00 MBit/s
Power Setting:	6.5	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5014.73	16.57	2.92	34.08	53.57	Max Avg	Vertical	189	33	54.0	-0.4	Pass	
#2	5148.50	31.55	2.91	34.21	68.67	Max Peak	Vertical	189	33	74.0	-5.3	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440	Variant:	40MHz
Antenna Gain (dBi):	10.0	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	90
Channel Frequency (MHz):	5190.00	Data Rate:	180.00 MBit/s
Power Setting:	6.5	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5150.00	15.01	2.93	34.21	52.15	Max Avg	Vertical	189	33	54.0	-1.9	Pass	
#2	5150.00	32.03	2.93	34.21	69.17	Max Peak	Vertical	189	33	74.0	-4.8	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber. 0.4 DCCF added to average measurement.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440	Variant:	80MHz
Antenna Gain (dBi):	10.0	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	85
Channel Frequency (MHz):	5210.00	Data Rate:	390.00 MBit/s
Power Setting:	4.0	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5148.50	36.27	2.91	34.21	73.39	Max Peak	Vertical	189	33	74.0	-0.6	Pass	
#2	5150.00	15.80	2.93	34.21	52.94	Max Avg	Vertical	189	33	54.0	-1.1	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber. 0.71 DCCF added to average measurement.

9.4.2.4. RADWIN MR0269440BF

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5150 - 5250 MHz

RADWIN MR0269440BF		Band-Edge Freq	Limit 74.0dB μ V/m	Limit 54.0dB μ V/m	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dB μ V/m	dB μ V/m	
10MHz	5175.00	5150.00	67.06	53.46	1.0
20MHz	5180.00	5150.00	66.63	53.56	1.0
40MHz	5190.00	5150.00	69.39	53.92	-0.5
80MHz	5210.00	5150.00	72.68	53.39	-3.0

Click on the links to view the data.

Title: Radwin NEO, NEO DUO
To: FCC CFR 47 Part 15 Subpart E 15.407
Serial #: RDWN73-U4 Rev A

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440BF	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6.00	Duty Cycle (%):	99
Channel Frequency (MHz):	5175.00	Data Rate:	39.00 MBit/s
Power Setting:	1.0	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	4961.72	16.34	2.90	34.22	53.46	Max Avg	Vertical	185	1	54.0	-0.5	Pass	
#2	5005.01	30.13	2.91	34.02	67.06	Max Peak	Vertical	185	1	74.0	-6.9	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440BF	Variant:	20MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6.00	Duty Cycle (%):	99
Channel Frequency (MHz):	5180.00	Data Rate:	78.00 MBit/s
Power Setting:	1.0	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	4953.91	29.71	2.91	34.01	66.63	Max Peak	Vertical	185	1	74.0	-7.4	Pass	
#2	5000.50	16.62	2.88	34.06	53.56	Max Avg	Vertical	185	1	54.0	-0.4	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber.

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440BF	Variant:	40MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6.00	Duty Cycle (%):	90
Channel Frequency (MHz):	5190.00	Data Rate:	180.00 MBit/s
Power Setting:	-0.5	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5150.00	16.78	2.93	34.21	53.92	Max Avg	Vertical	185	0	54.0	-0.1	Pass	
#2	5150.00	32.25	2.93	34.21	69.39	Max Peak	Vertical	185	0	74.0	-4.6	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 0.4 DCCF added to average measurement

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN MR0269440BF	Variant:	80MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	6.00	Duty Cycle (%):	85
Channel Frequency (MHz):	5210.00	Data Rate:	390.00 MBit/s
Power Setting:	-3.0	Tested By:	JMH

Test Measurement Results

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	5150.00	16.25	2.93	34.21	53.39	Max Avg	Vertical	185	0	54.0	-0.6	Pass	
#2	5150.00	35.54	2.93	34.21	72.68	Max Peak	Vertical	185	0	74.0	-1.3	Pass	
#3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 0.71 DCCF added to average measurement

9.4.3. Digital Emissions

Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)			
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	20.0 - 24.5
Test Heading:	Digital Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3\text{dBmV/m}$$

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

$$\text{Level (dBmV/m)} = 20 * \text{Log}(\text{level (mV/m)})$$

$$40 \text{ dBmV/m} = 100\text{mV/m}$$

$$48 \text{ dBmV/m} = 250\text{mV/m}$$

Limits for Radiated Digital Emissions (0.03 – 1 GHz) (15.209)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength		Measurement Distance (m)
	µV/m (microvolts/meter)	dBµV/m (dB microvolts/meter)	
0.009-0.490	2400/F(kHz)	--	300
0.490-1.705	24000/F(kHz)	--	30

1.705-30.0	30	29.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

Title: Radwin NEO, NEO DUO
To: FCC CFR 47 Part 15 Subpart E 15.407
Serial #: RDWN73-U4 Rev A

Equipment Configuration for Digital Emissions

Antenna:	RADWIN MR0269440	Variant:	10MHz
Antenna Gain (dBi):	10.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	91
Channel Frequency (MHz):	5230.00	Data Rate:	39.00 MBit/s
Power Setting:	10.5	Tested By:	JMH

Test Measurement Results

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
#1	30.22	47.02	3.54	-8.20	42.36	MaxQP	Vertical	101	25	49.5	-7.1	Pass	
#2	33.07	51.41	3.59	-10.42	44.58	MaxQP	Vertical	98	3	49.5	-4.9	Pass	
#3	34.13	49.53	3.59	-10.92	42.20	MaxQP	Vertical	139	217	49.5	-7.3	Pass	
#4	50.94	57.08	3.73	-20.71	40.10	MaxQP	Vertical	126	107	49.5	-9.4	Pass	
#5	760.00	39.99	6.38	-6.31	40.06	MaxQP	Horizontal	144	23	57.0	-16.9	Pass	
#6	799.99	38.00	6.48	-5.93	38.55	MaxQP	Horizontal	136	40	57.0	-18.5	Pass	

Test Notes: Modem 1 5230MHz HT40 PS 10.5. Modem 2 5210MHz HT40 PS 10.5

9.5. AC Wireline

Scope

This test assesses the ability of the EUT to limit its internal noise from being present on the AC mains power input/output ports.

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Limits

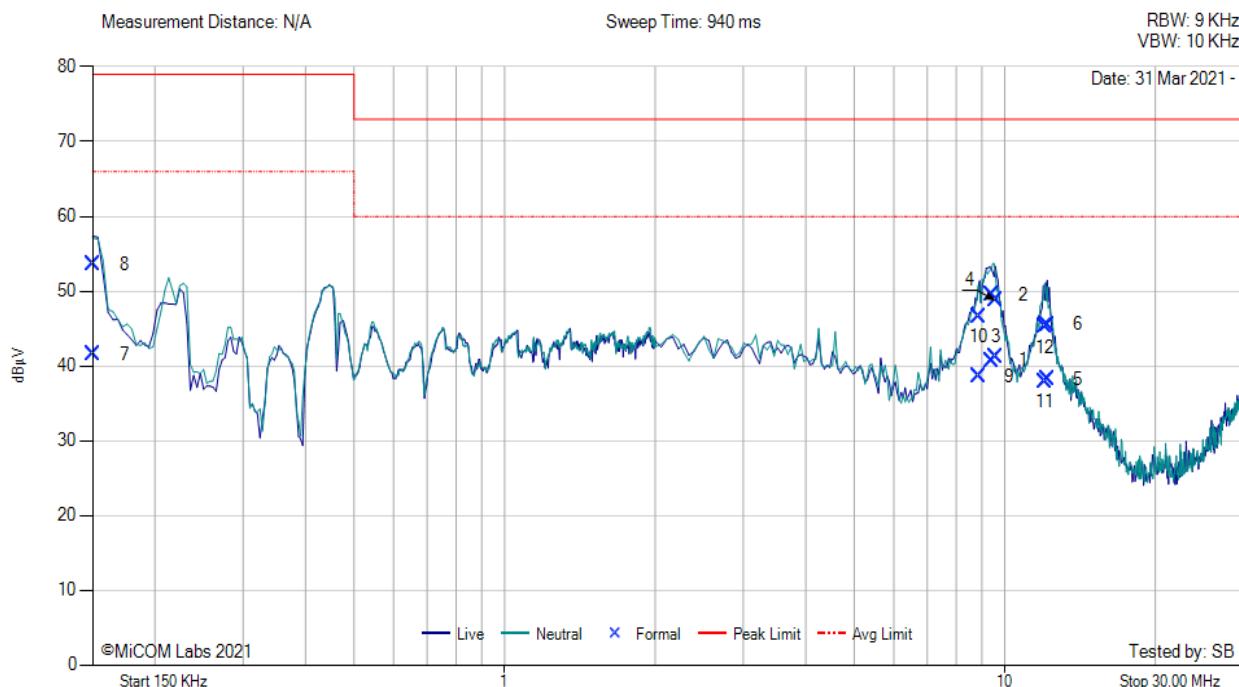
The equipment shall meet the class B limits given in FCC Part 15: 107. Alternatively, for equipment intended to be used in non-residential environments, the class A limits given in FCC Part 15: 107 may be used.

Limits for conducted disturbance at the mains ports of class B ITE

Frequency of emission (MHz)	Quasi-peak dBuV	Average dBuV
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50
Note 1	* Decreases with the logarithm of the frequency	
Note 2	* The lower limit applies at the boundary between frequency ranges	

Limits for conducted disturbance at the mains ports of class A ITE

Frequency of emission (MHz)	Quasi-peak dBuV	Average dBuV
0.15–0.5	79	66
0.5–30	73	60
Note 1	* The lower limit shall apply at the transition frequency.	

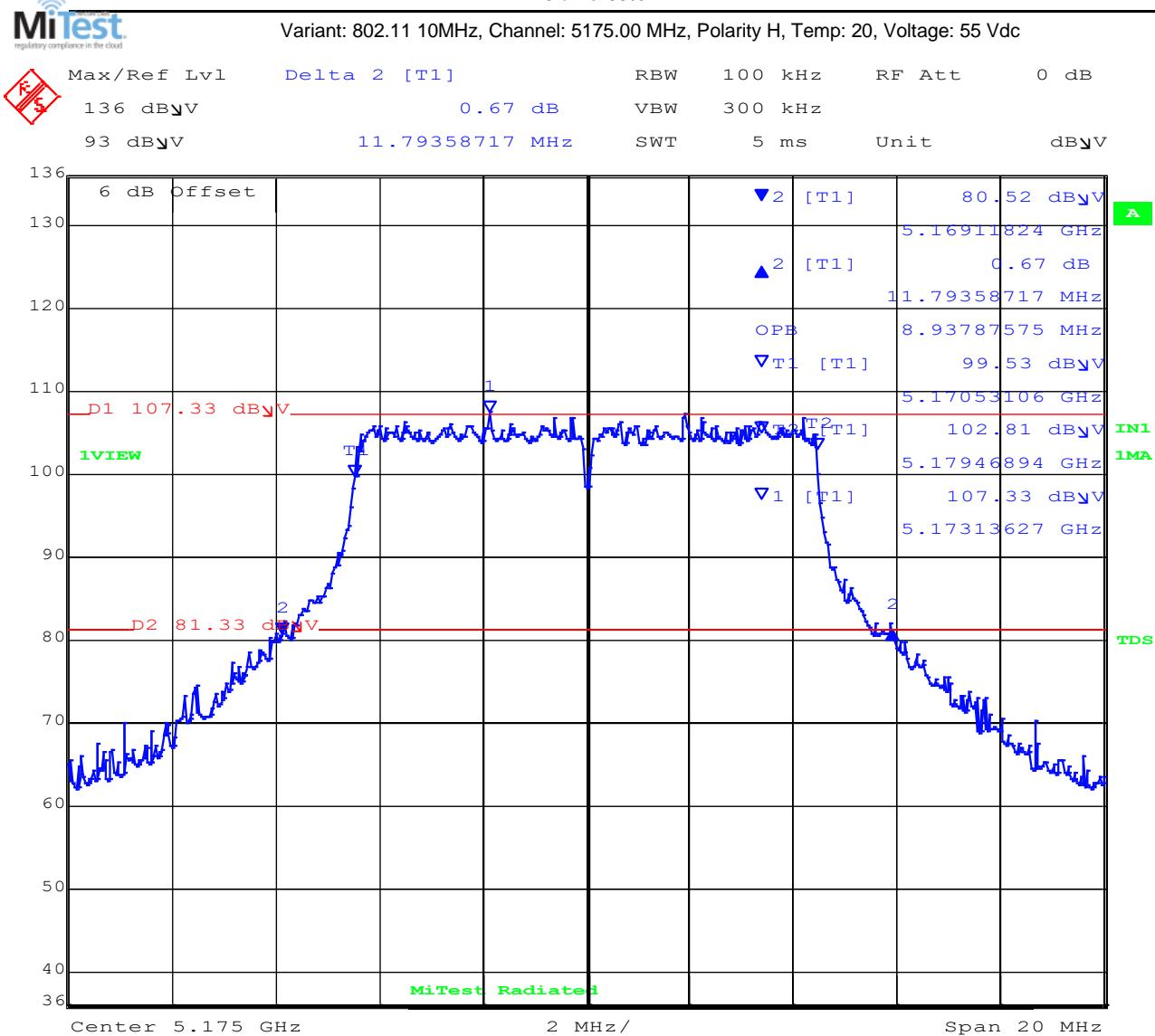

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz – 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	± 2.64 dB

Method	
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	

Model:	RADWIN Neo	Configuration tested:	PoE Powered
Input power:	120VAC/60Hz	Standard:	FCC 15B

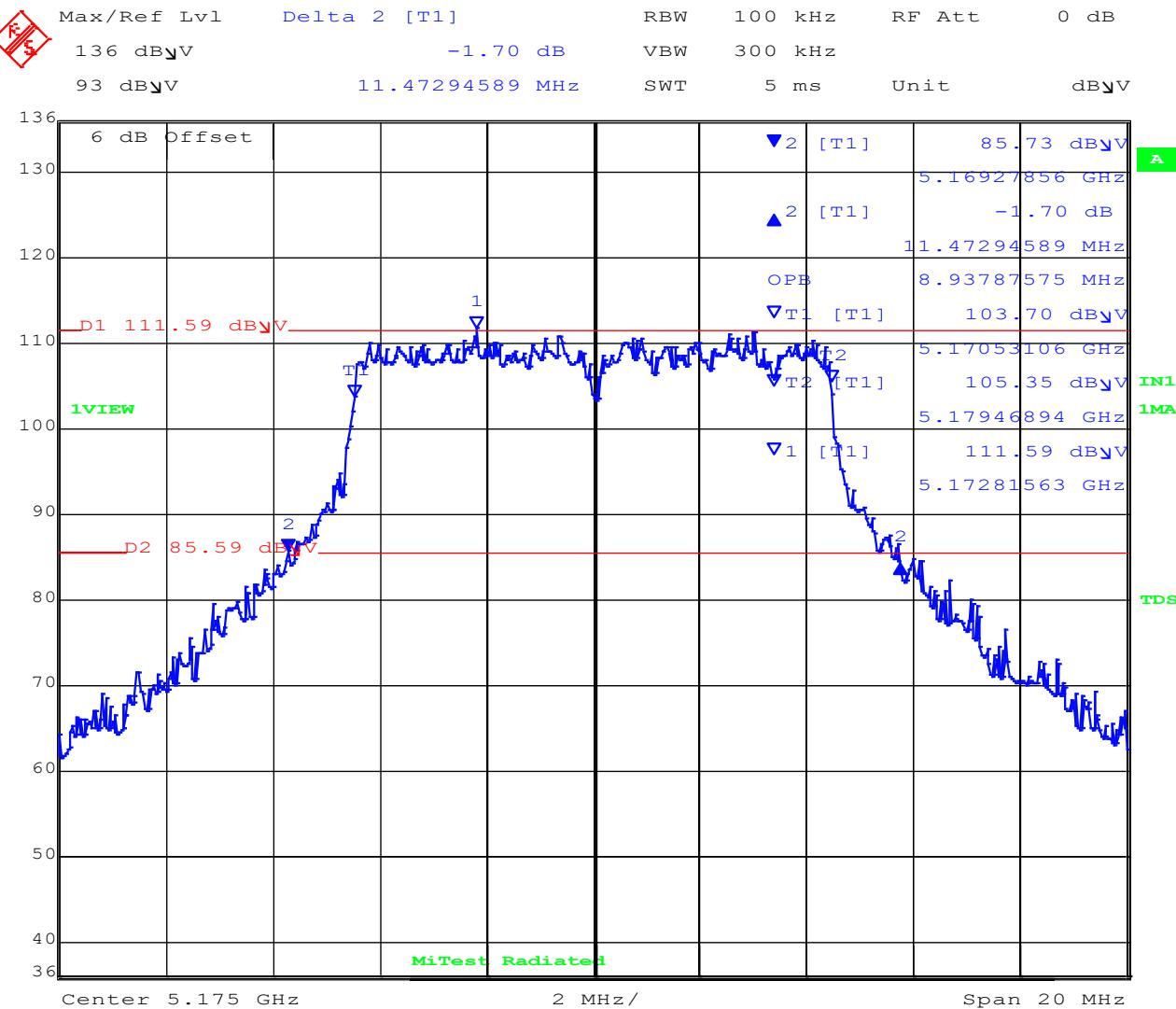

Num	Frequency MHz	Raw dB μ V	Cable Loss dB	Factor dB	Total Correction dB μ V	Corrected Value dB μ V	Measurement Type	Line	Limit dB μ V/m	Margin dB	Pass /Fail
1	9.446	30.04	0.44	10.22	10.66	40.70	Max Avg	Neutral	60.0	-19.3	Pass
2	9.446	38.81	0.44	10.22	10.66	49.47	Max Qp	Neutral	73.0	-23.5	Pass
3	9.589	30.52	0.45	10.21	10.66	41.18	Max Avg	Live	60.0	-18.8	Pass
4	9.589	38.08	0.45	10.21	10.66	48.74	Max Qp	Live	73.0	-24.3	Pass
5	12.179	27.40	0.45	10.35	10.80	38.20	Max Avg	Live	60.0	-21.8	Pass
6	12.179	34.72	0.45	10.35	10.80	45.52	Max Qp	Live	73.0	-27.5	Pass
7	0.151	31.58	0.05	9.92	9.97	41.55	Max Avg	Live	66.0	-24.5	Pass
8	0.151	43.66	0.05	9.92	9.97	53.63	Max Qp	Live	79.0	-25.4	Pass
9	8.883	27.92	0.44	10.21	10.65	38.57	Max Avg	Live	60.0	-21.4	Pass
10	8.883	35.97	0.44	10.21	10.65	46.62	Max Qp	Live	73.0	-26.4	Pass
11	12.032	27.17	0.45	10.36	10.81	37.98	Max Avg	Neutral	60.0	-22.0	Pass
12	12.032	34.50	0.45	10.36	10.81	45.31	Max Qp	Neutral	73.0	-27.7	Pass

Test Notes: POE Injector 120VAC, Model Number: CPU55A-270-1 Rev.A. Output 55VDC .5A. EUT transmitting Max Power 99% Duty Cycle

A. APPENDIX - GRAPHICAL IMAGES

A.1. 26 dB & 99% Bandwidth

26 dB & 99% BANDWIDTH

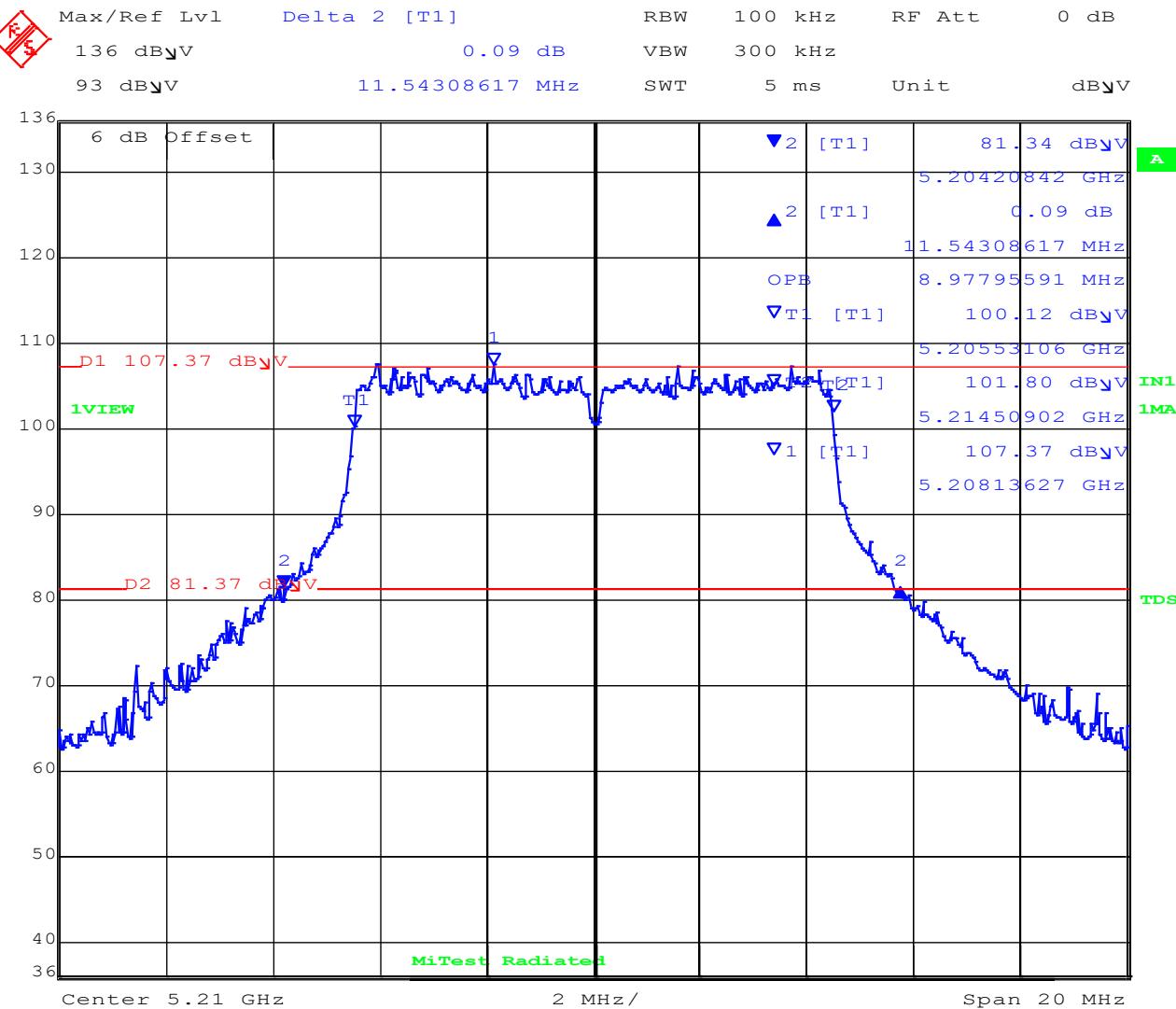

Analyzer Setup	Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD	Measured 26 dB Bandwidth: 11.79 MHz Measured 99% Bandwidth: 8.94 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 10MHz, Channel: 5175.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 25.MAR.2021 17:57:23


Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 11.47 MHz Measured 99% Bandwidth: 8.94 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 10MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

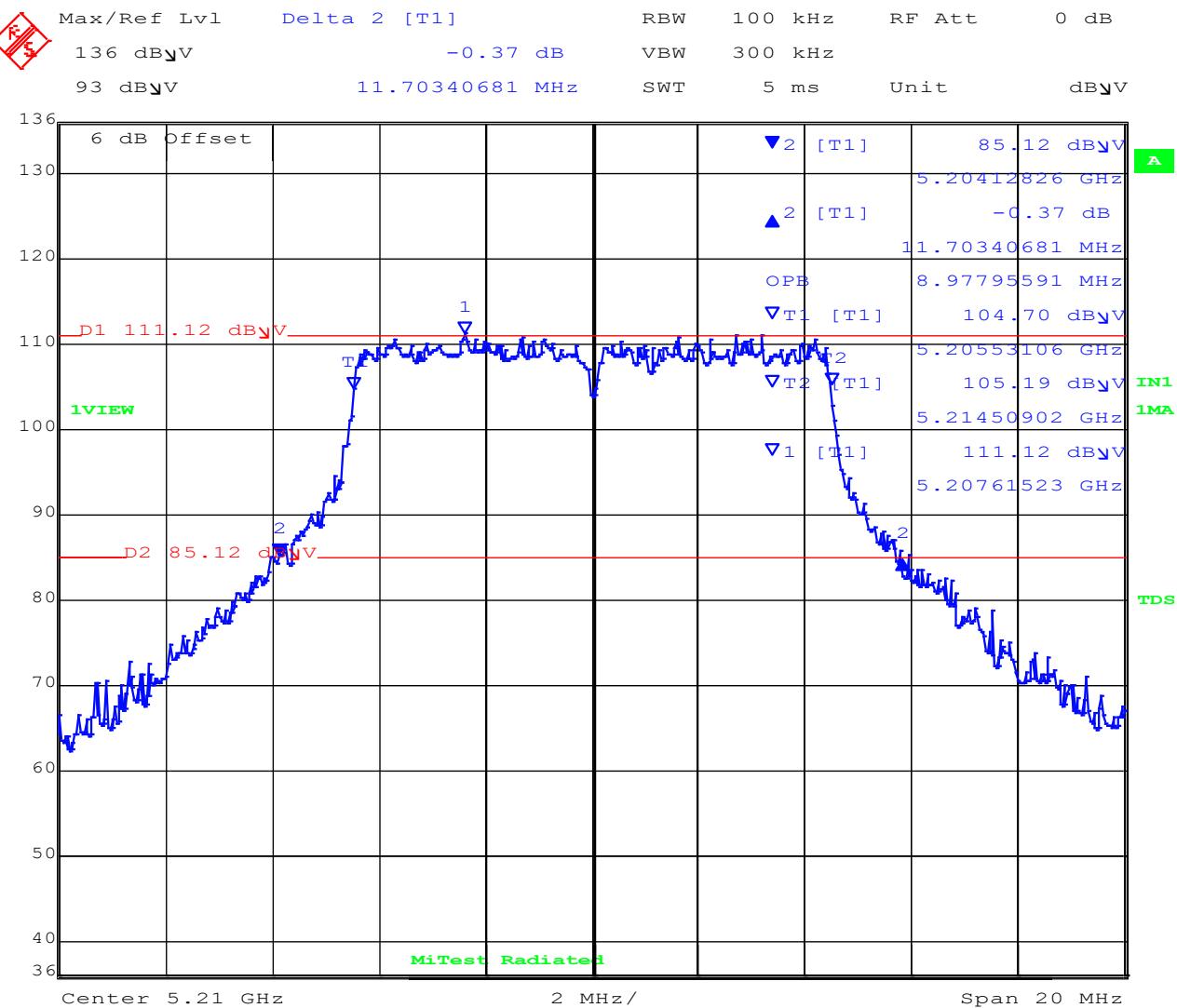
Date: 25.MAR.2021 18:03:55

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 11.54 MHz Measured 99% Bandwidth: 8.98 MHz

[back to matrix](#)

Issue Date: 12th April 2021

Page: 76 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

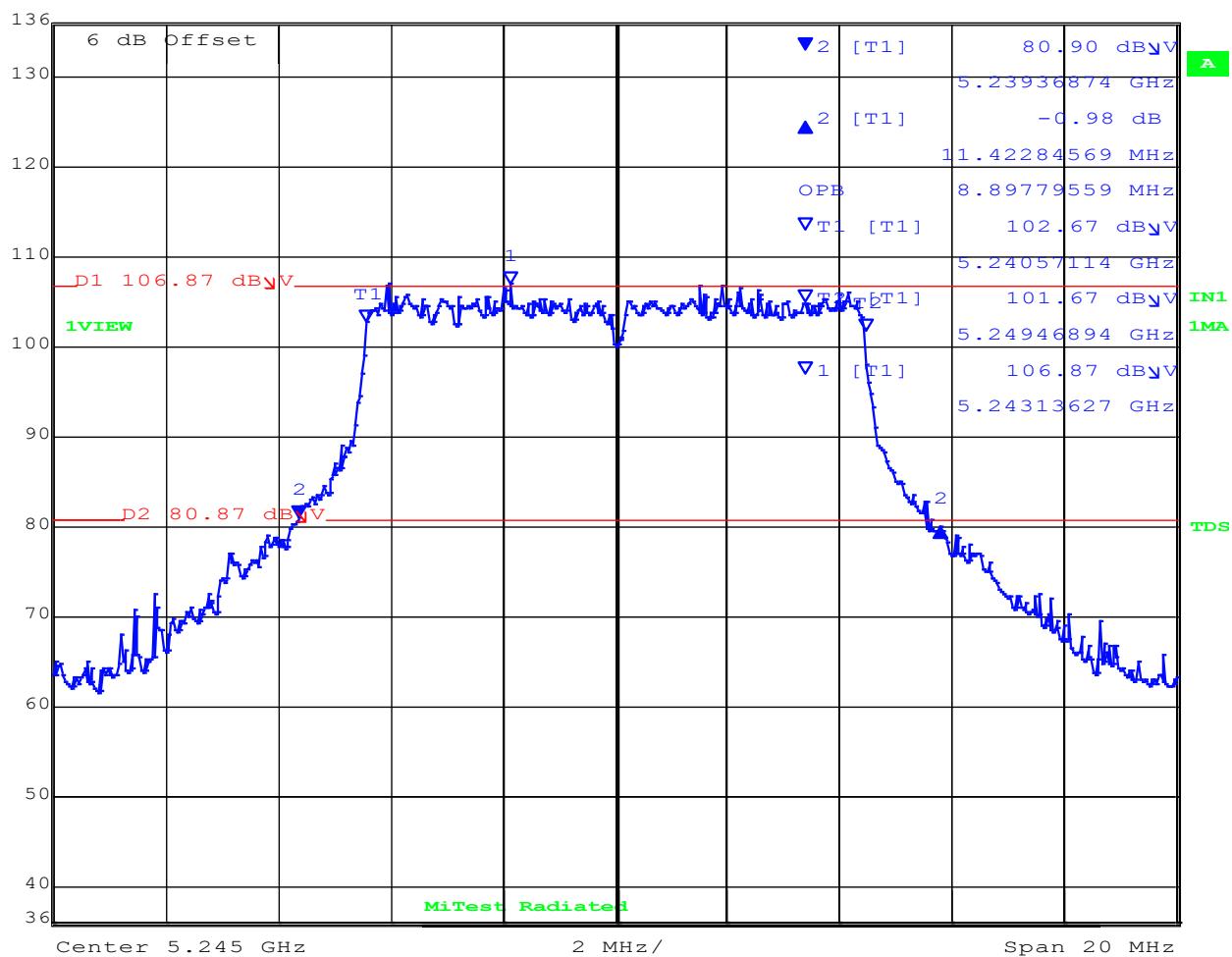
MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 10MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 25.MAR.2021 18:06:18

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 11.70 MHz Measured 99% Bandwidth: 8.98 MHz


[back to matrix](#)

26 dB & 99% BANDWIDTH

MiTest
regulatory compliance in the cloud

Variant: 802.11 10MHz, Channel: 5245.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl	Delta 2 [T1]	RBW	100 kHz	RF Att	0 dB
136 dB _V	-0.98 dB	VBW	300 kHz		
93 dB _V	11.42284569 MHz	SWT	5 ms	Unit	dB _V

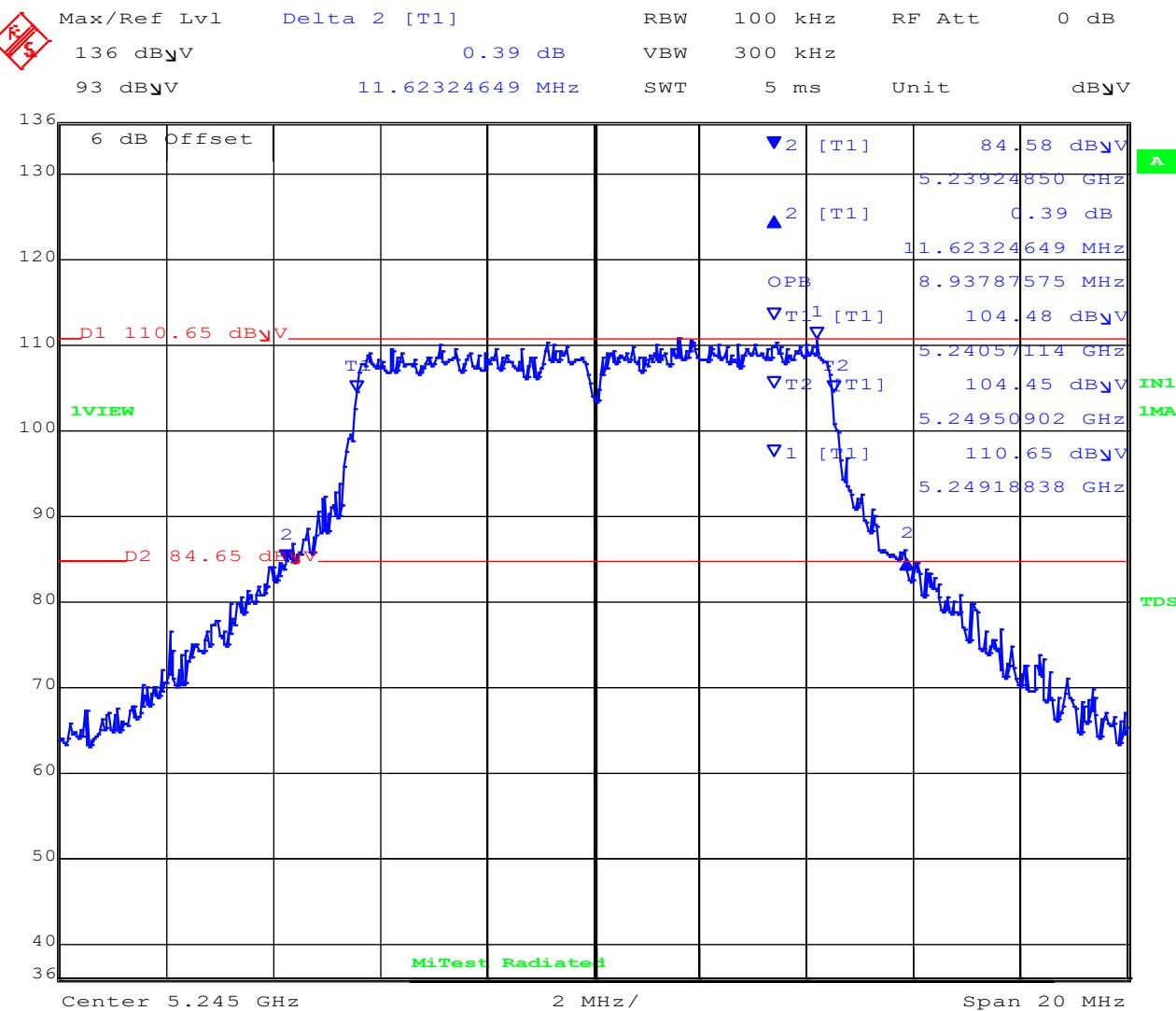
Date: 25.MAR.2021 18:13:28

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 11.42 MHz Measured 99% Bandwidth: 8.98 MHz

[back to matrix](#)

Issue Date: 12th April 2021

Page: 78 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 10MHz, Channel: 5245.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

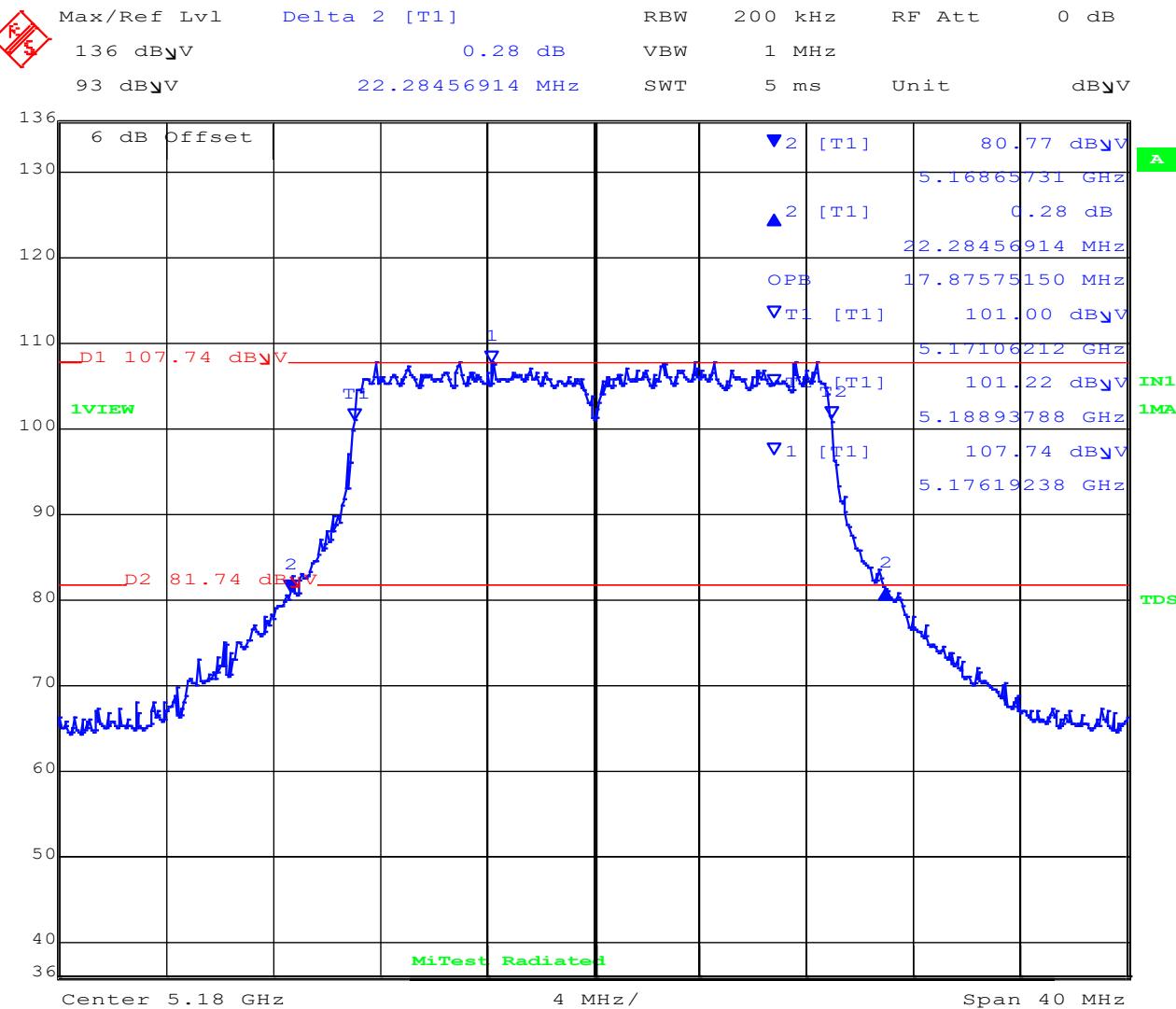
Date: 25.MAR.2021 18:09:42

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 11.62 MHz Measured 99% Bandwidth: 8.94 MHz

[back to matrix](#)

Issue Date: 12th April 2021

Page: 79 of 149

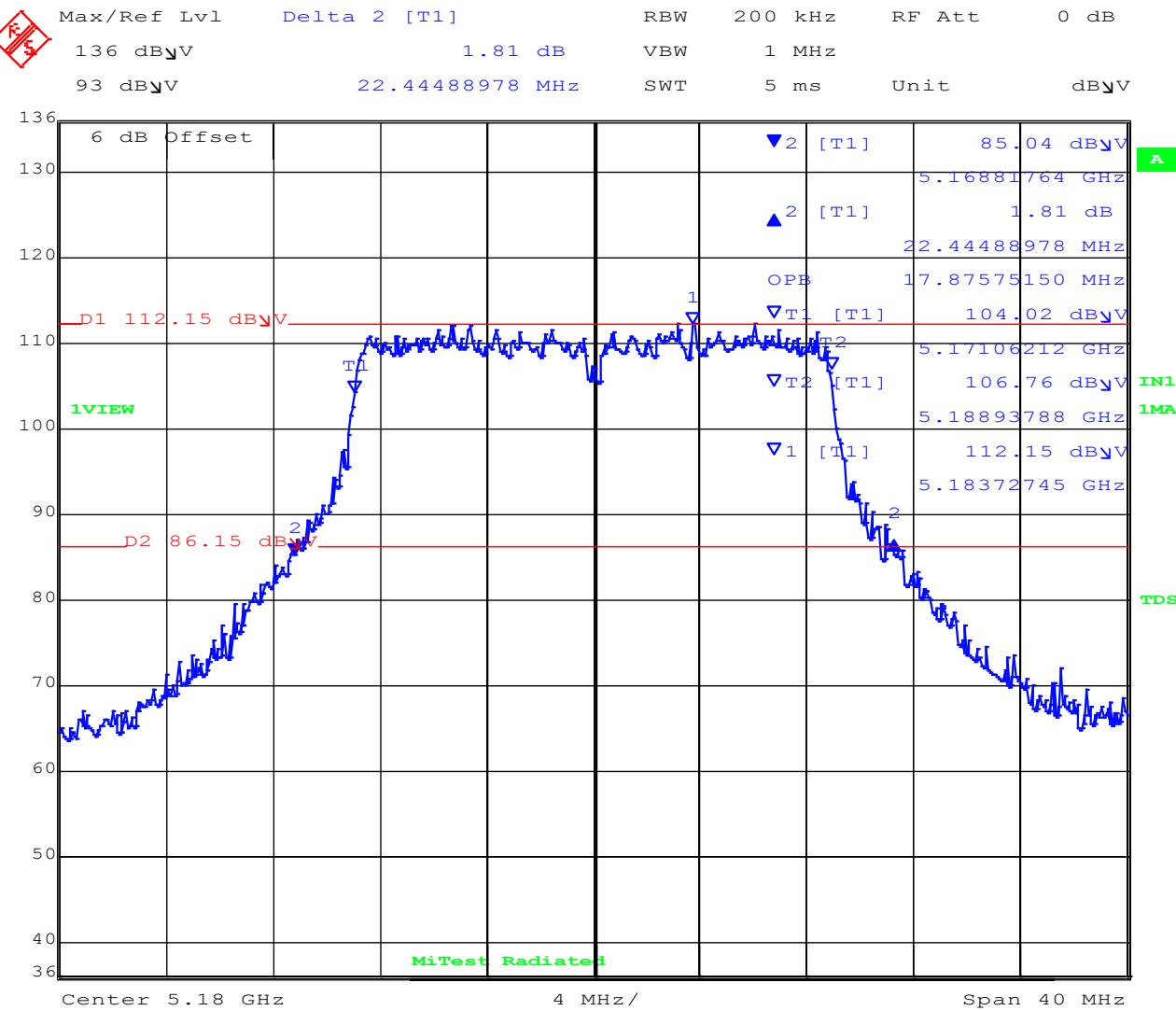

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 20MHz, Channel: 5180.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Date: 25.MAR.2021 17:50:43

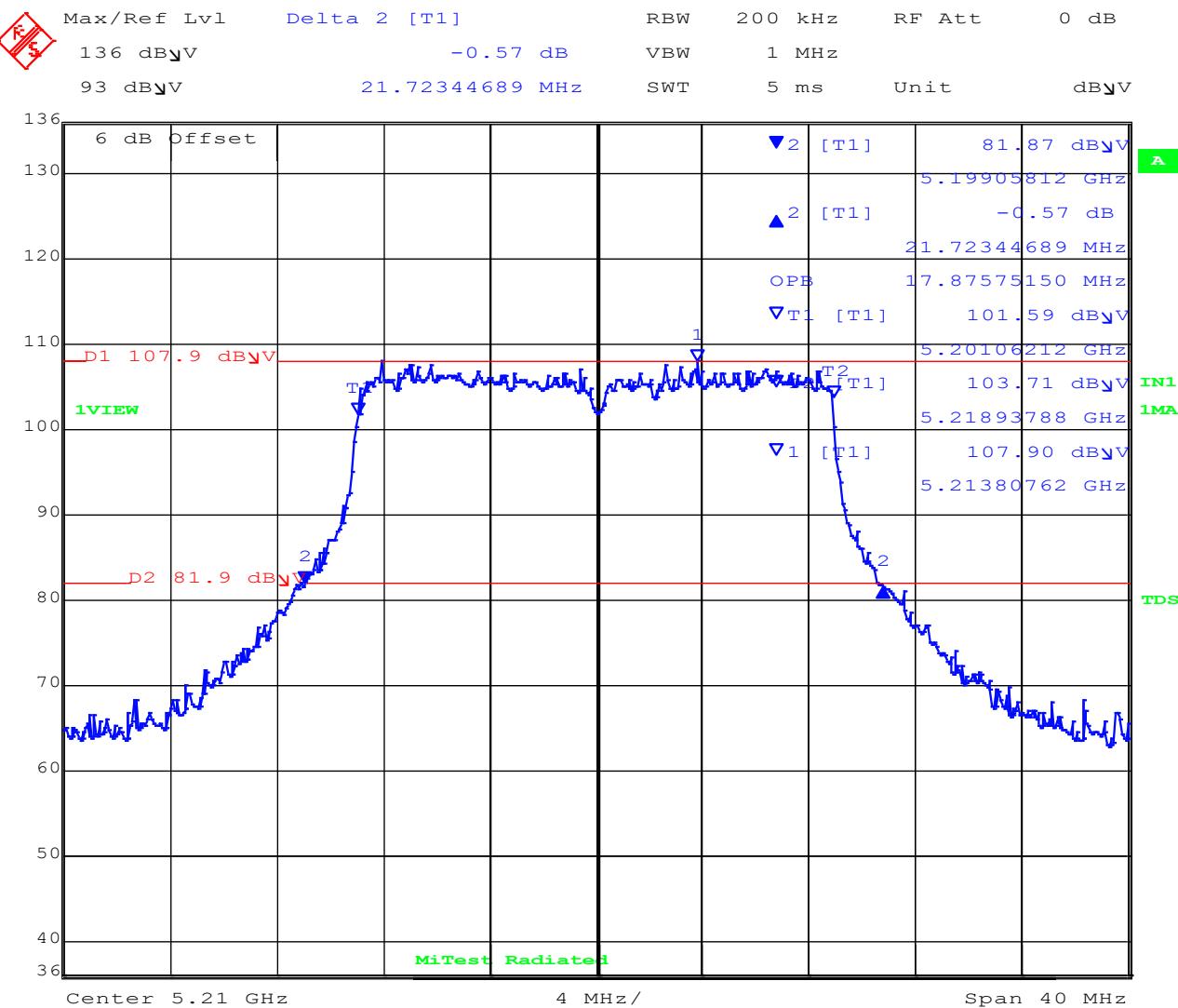

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 22.28 MHz Measured 99% Bandwidth: 17.88 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 20MHz, Channel: 5180.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

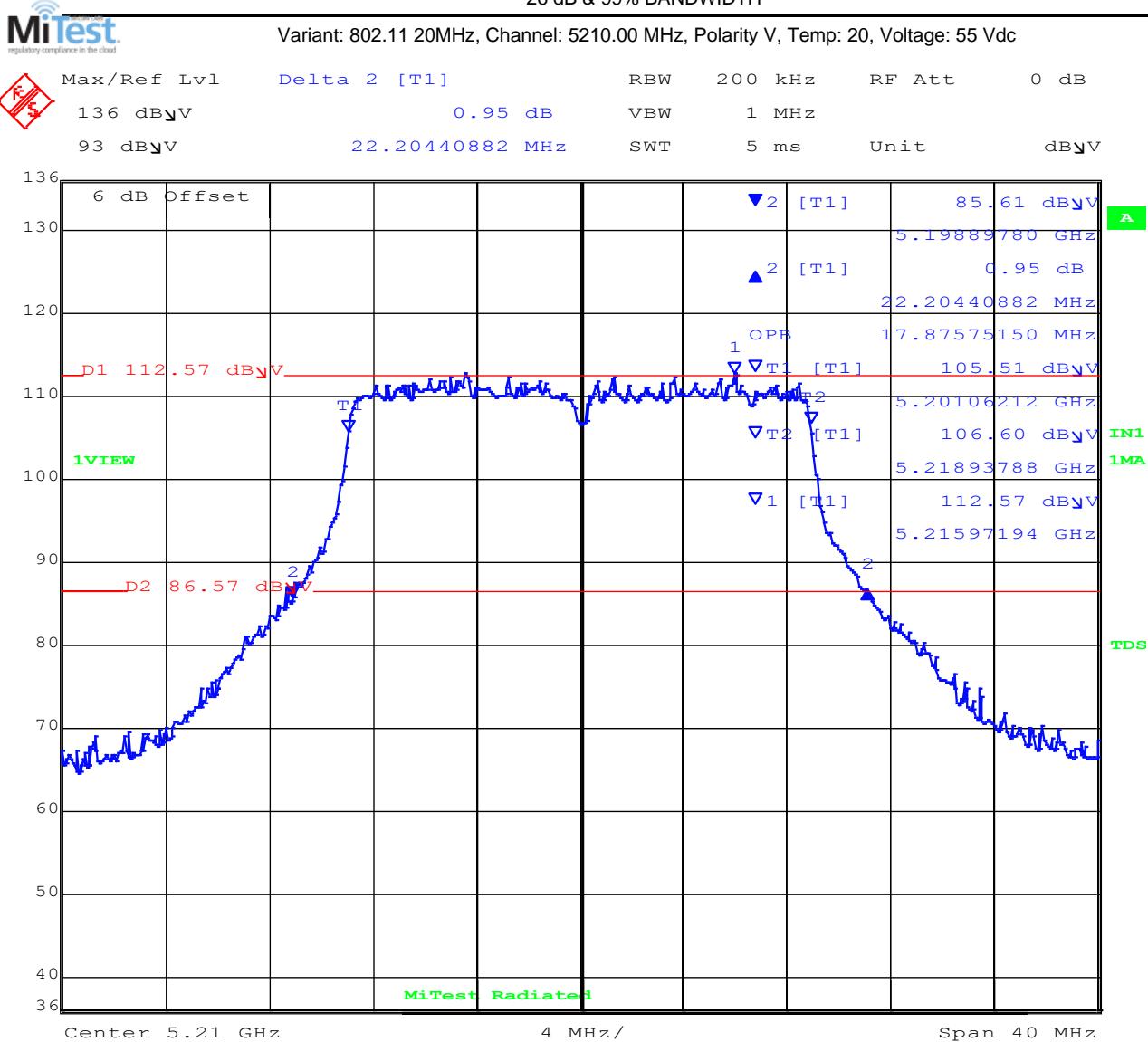
Date: 25.MAR.2021 17:53:16


Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 22.44 MHz Measured 99% Bandwidth: 17.88 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 20MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc



Date: 25.MAR.2021 17:47:00

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 21.72 MHz Measured 99% Bandwidth: 17.88 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

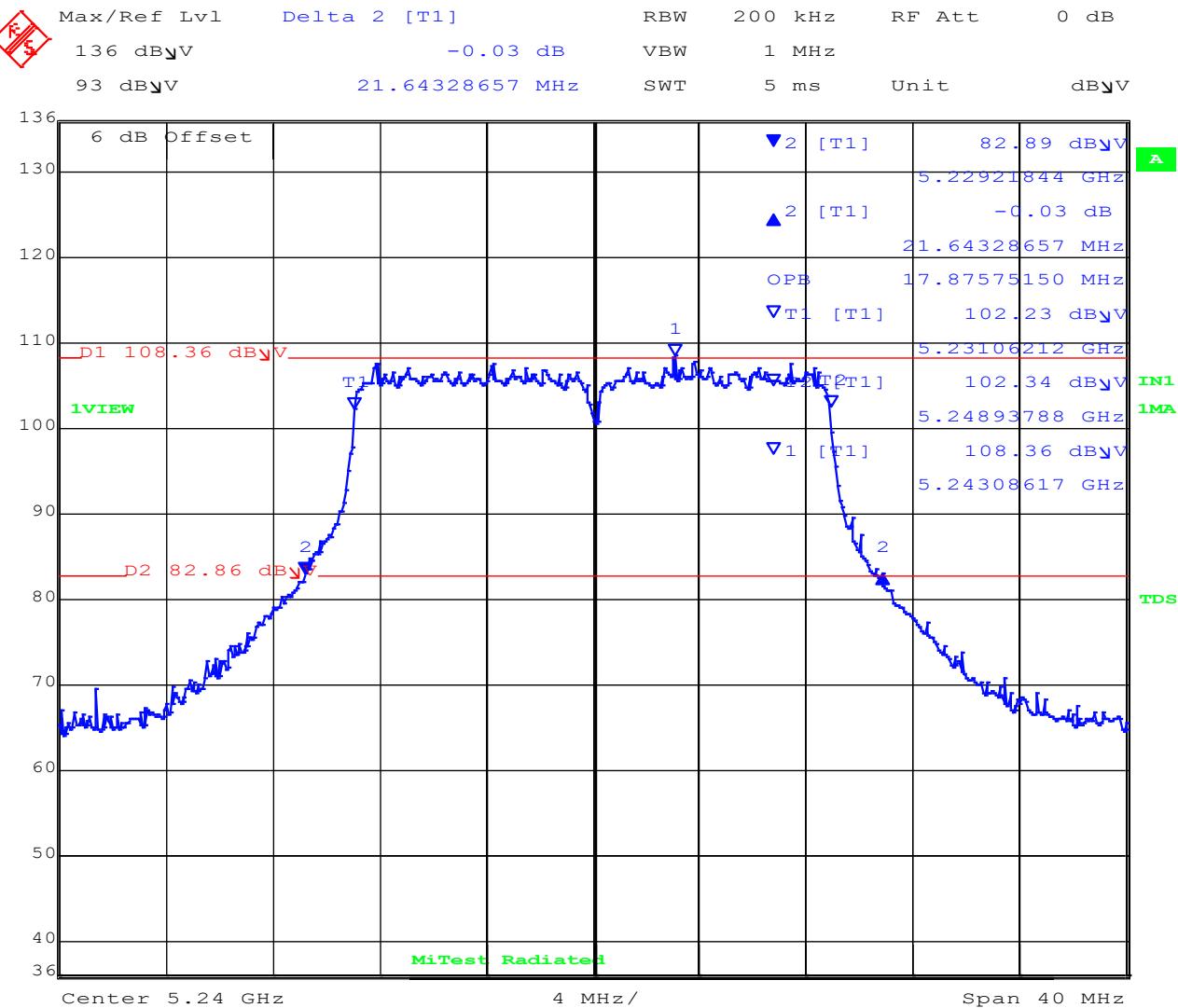
Date: 25.MAR.2021 17:44:40

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 22.20 MHz Measured 99% Bandwidth: 17.88 MHz

[back to matrix](#)

Issue Date: 12th April 2021

Page: 83 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 20MHz, Channel: 5240.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

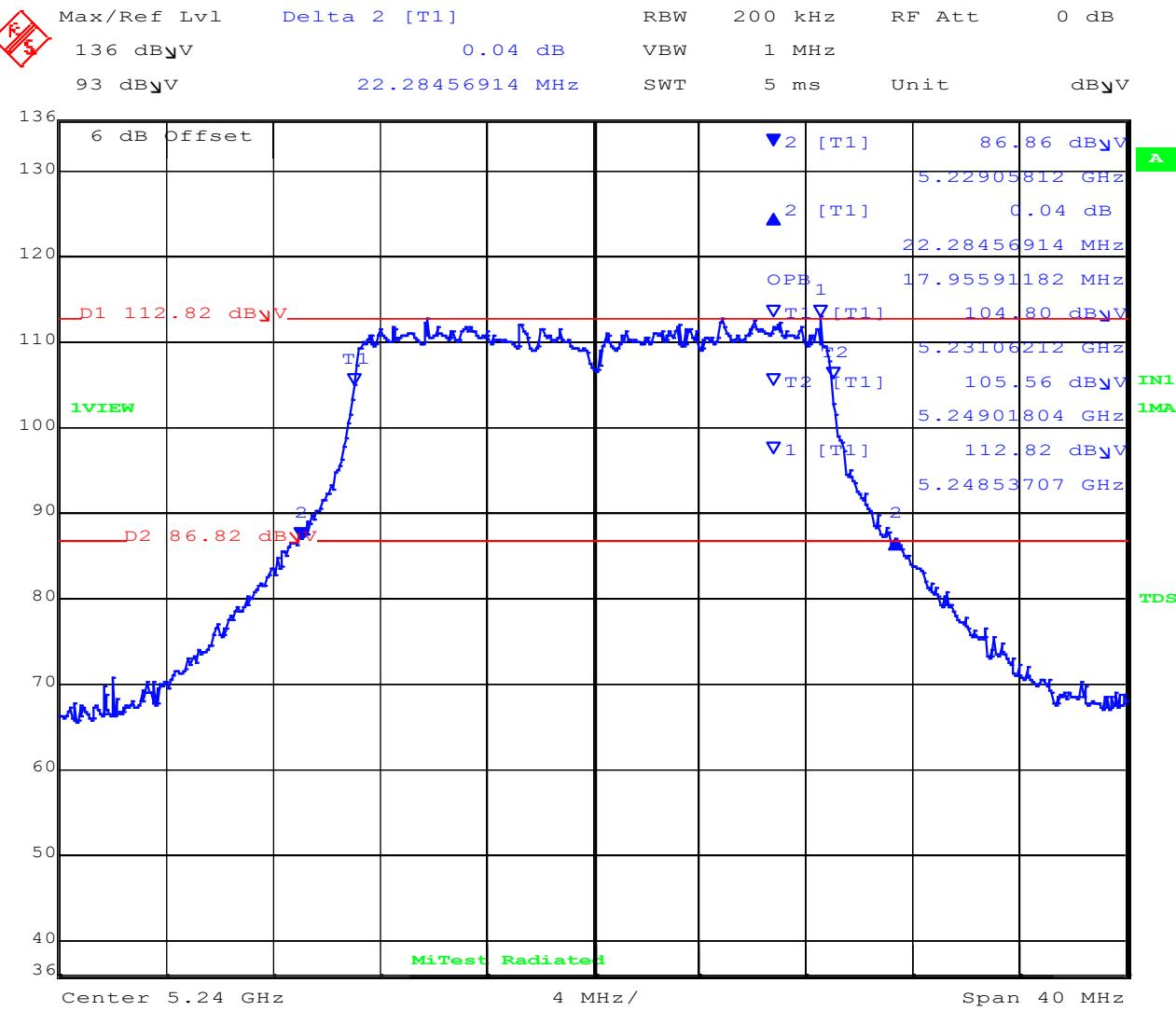
Date: 25.MAR.2021 17:37:01

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 21.64MHz Measured 99% Bandwidth: 17.88 MHz

[back to matrix](#)

Issue Date: 12th April 2021

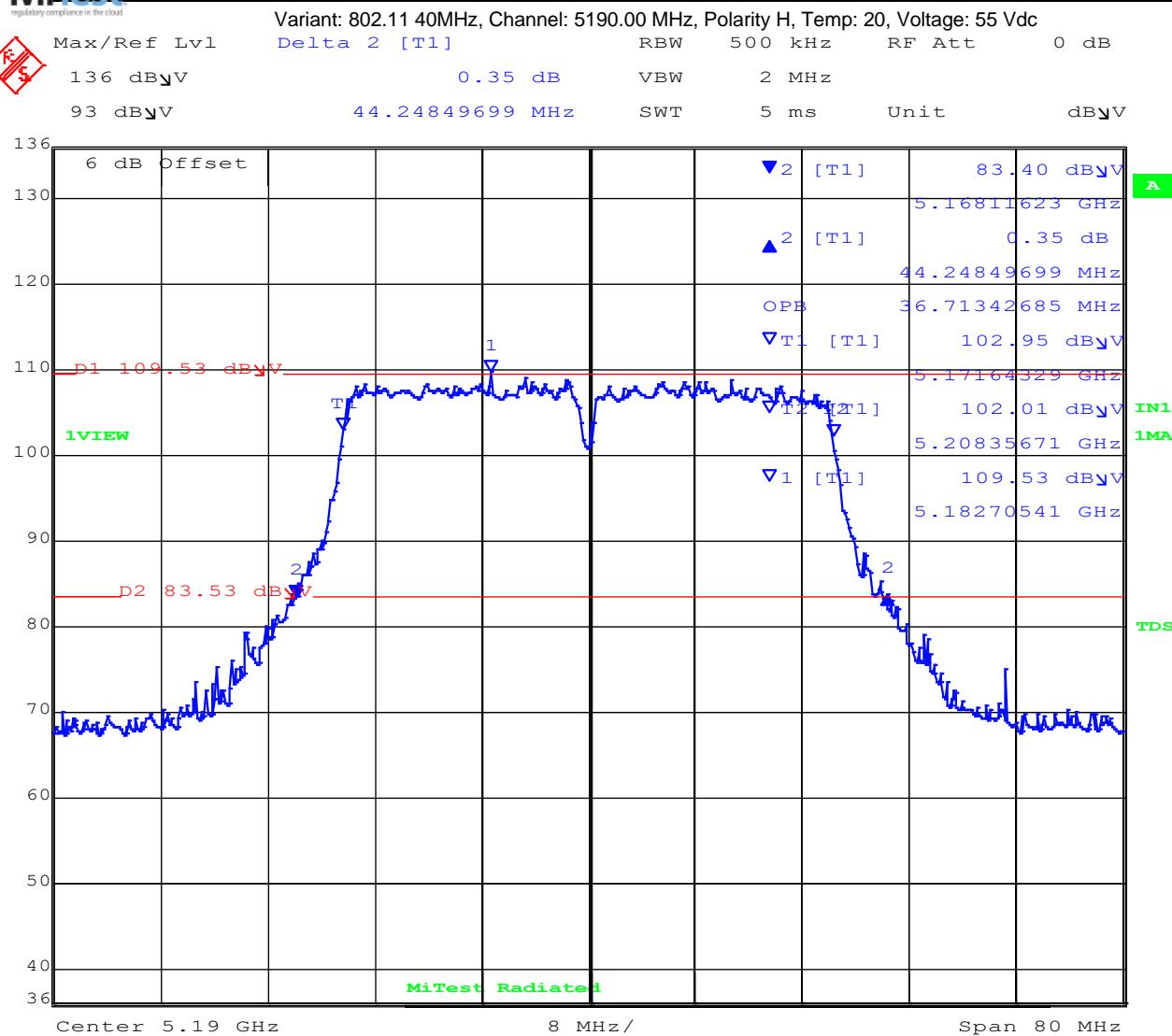
Page: 84 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

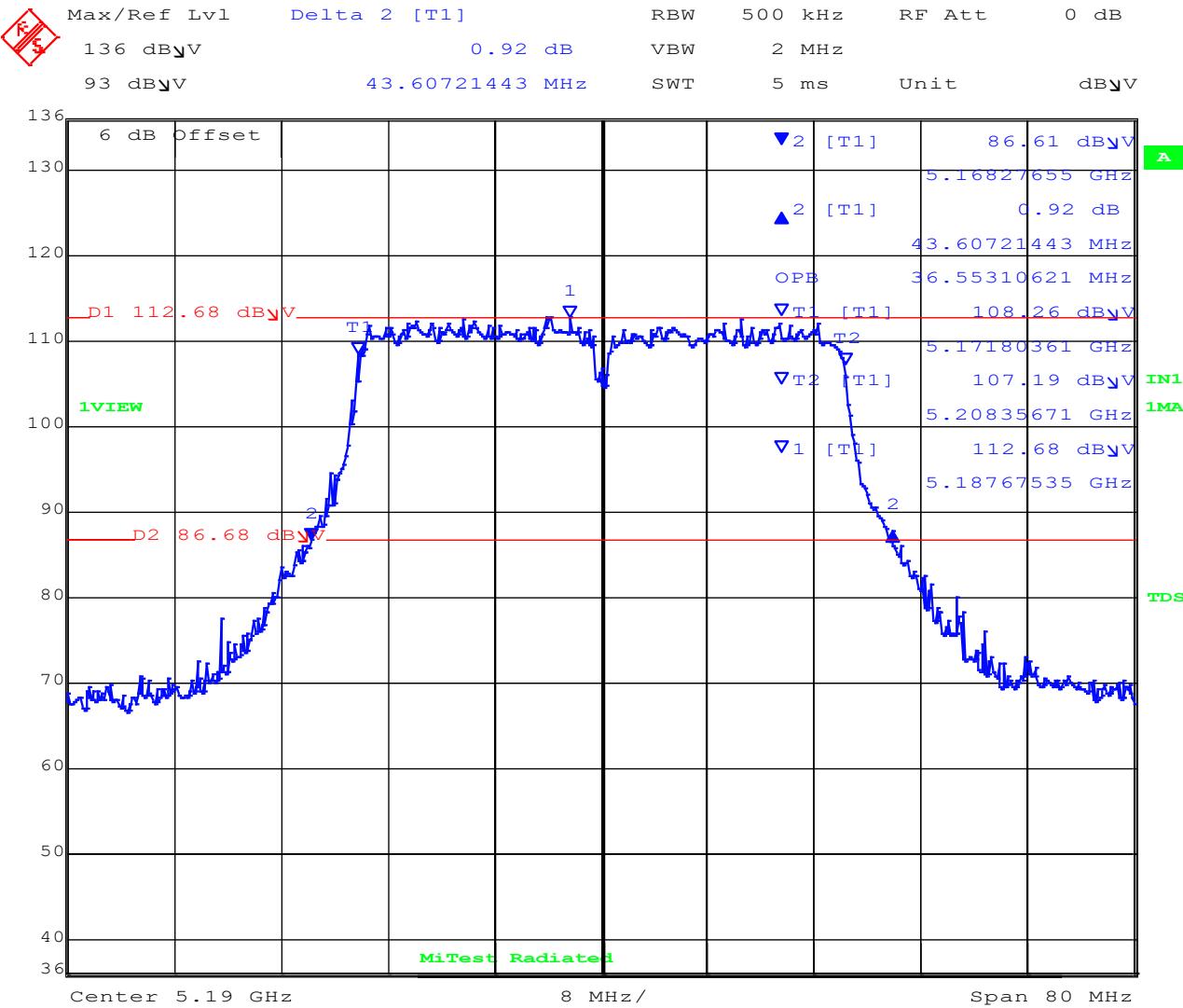
Variant: 802.11 20MHz, Channel: 5240.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc


Date: 25.MAR.2021 17:33:43

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 22.28 MHz Measured 99% Bandwidth: 17.96 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH


Date: 25.MAR.2021 15:54:51

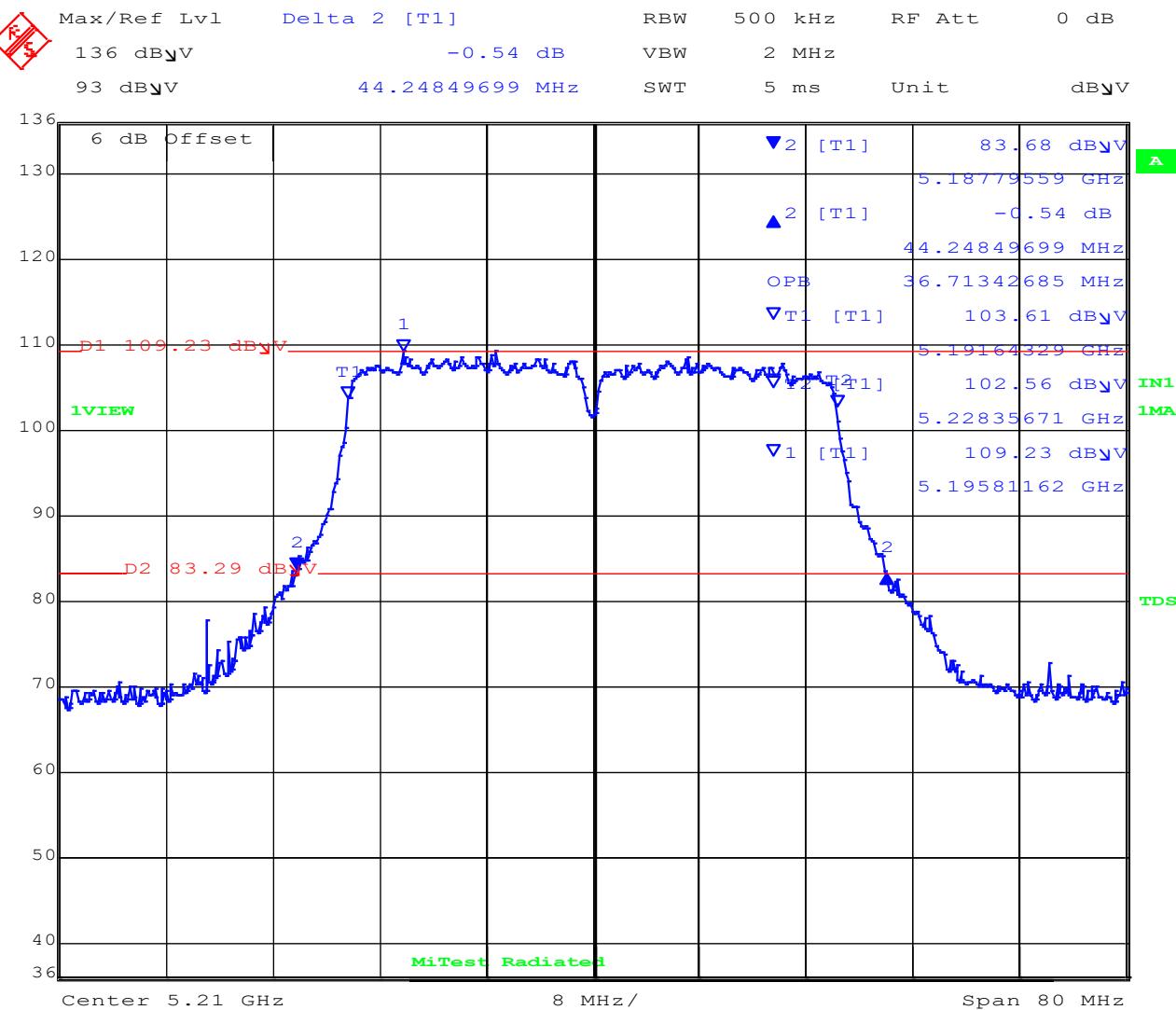
Analyzer Setup	Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD	Measured 26 dB Bandwidth: 44.25 MHz Measured 99% Bandwidth: 36.71 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 40MHz, Channel: 5190.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

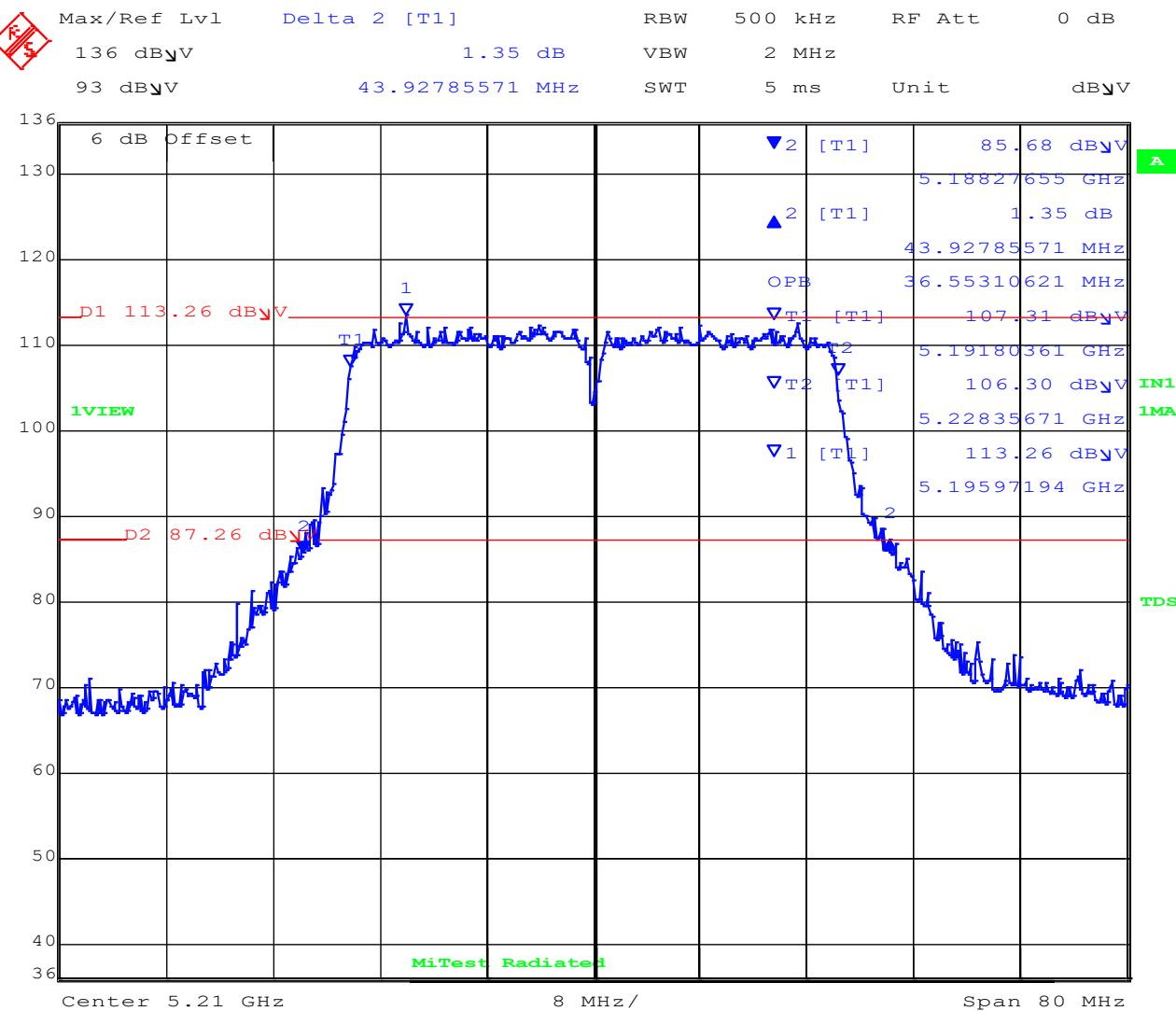
Date: 25.MAR.2021 16:01:25


Analyzer Setup	Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD	Measured 26 dB Bandwidth: 43.61 MHz Measured 99% Bandwidth: 36.55 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 40MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

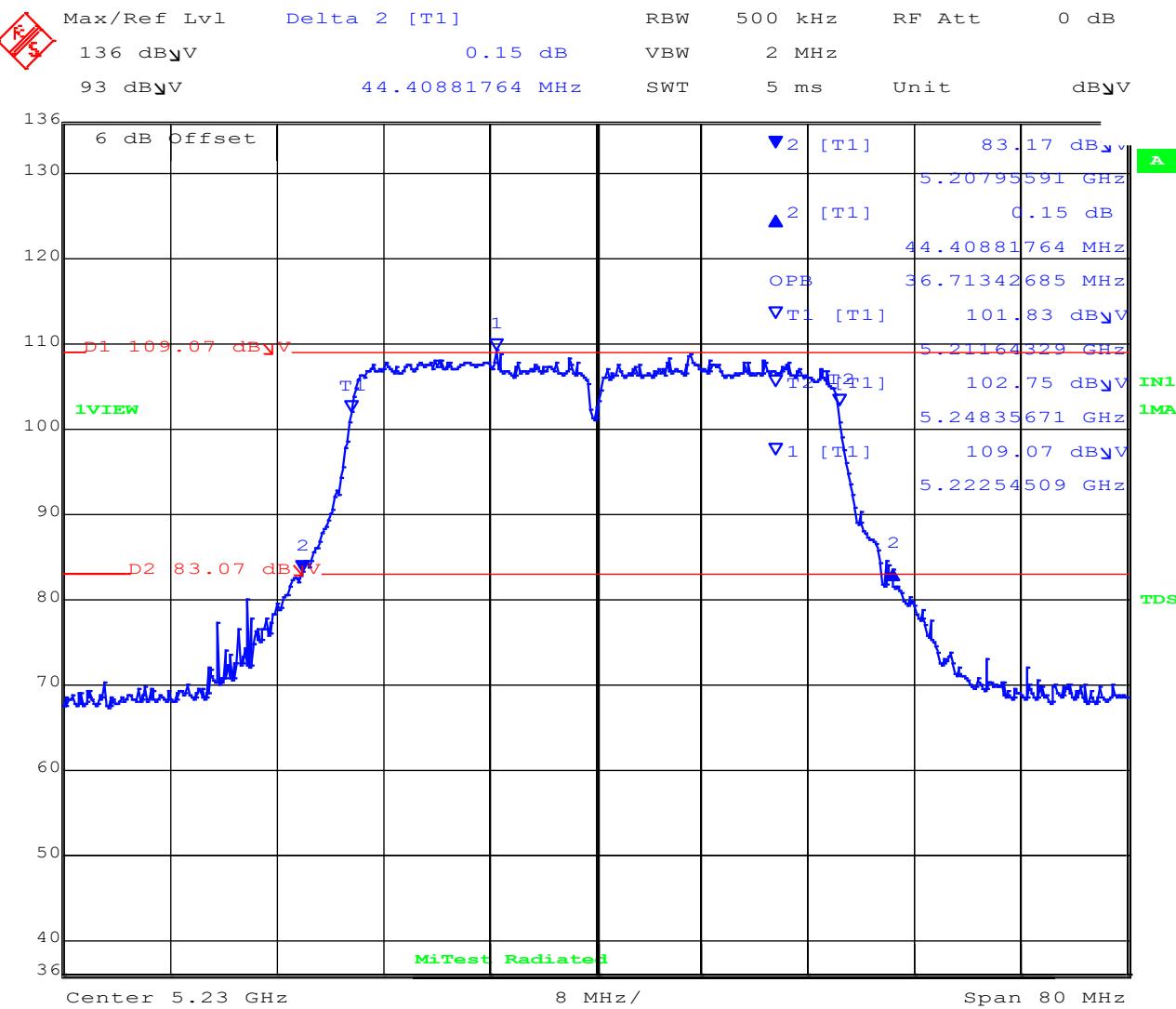

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 44.25 MHz Measured 99% Bandwidth: 36.71 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 40MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 25.MAR.2021 15:46:28


Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 43.93 MHz Measured 99% Bandwidth: 36.55 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH

Variant: 802.11 40MHz, Channel: 5230.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

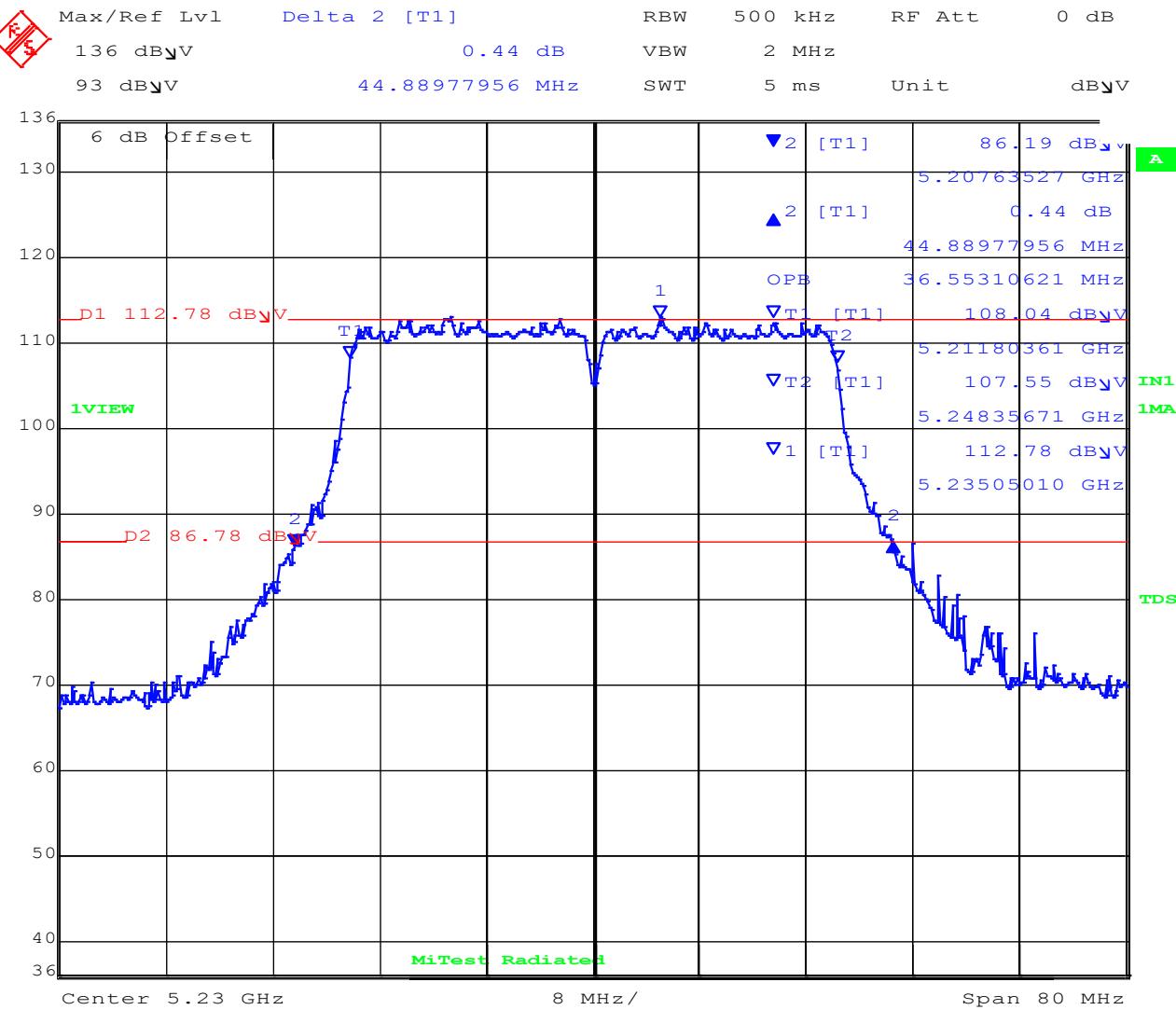
Date: 25.MAR.2021 15:52:25

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 44.41 MHz Measured 99% Bandwidth: 36.71 MHz

[back to matrix](#)

Issue Date: 12th April 2021

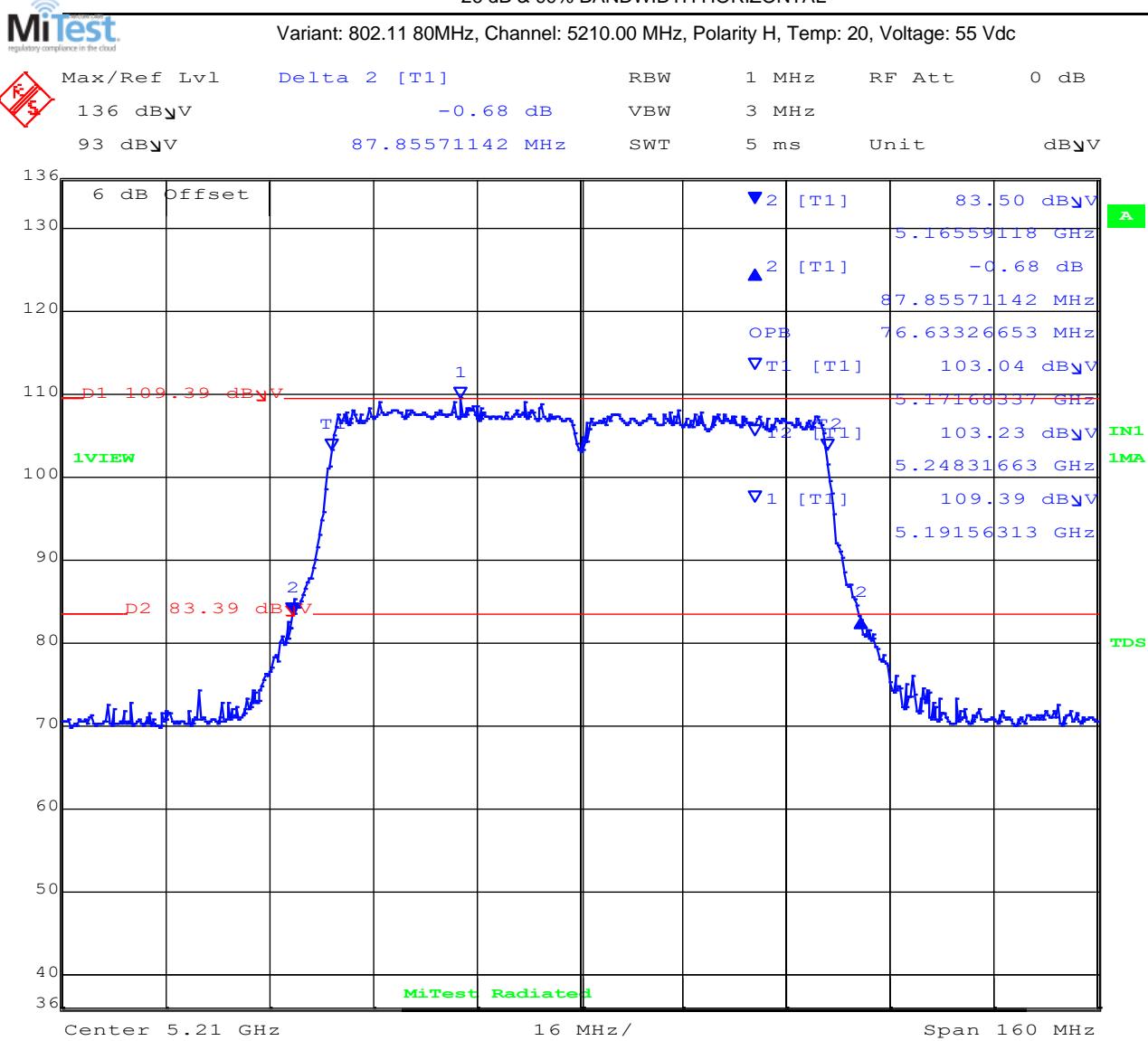
Page: 90 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 40MHz, Channel: 5230.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc



Date: 25.MAR.2021 15:50:25

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 44.89 MHz Measured 99% Bandwidth: 36.55 MHz

[back to matrix](#)

26 dB & 99% BANDWIDTH HORIZONTAL

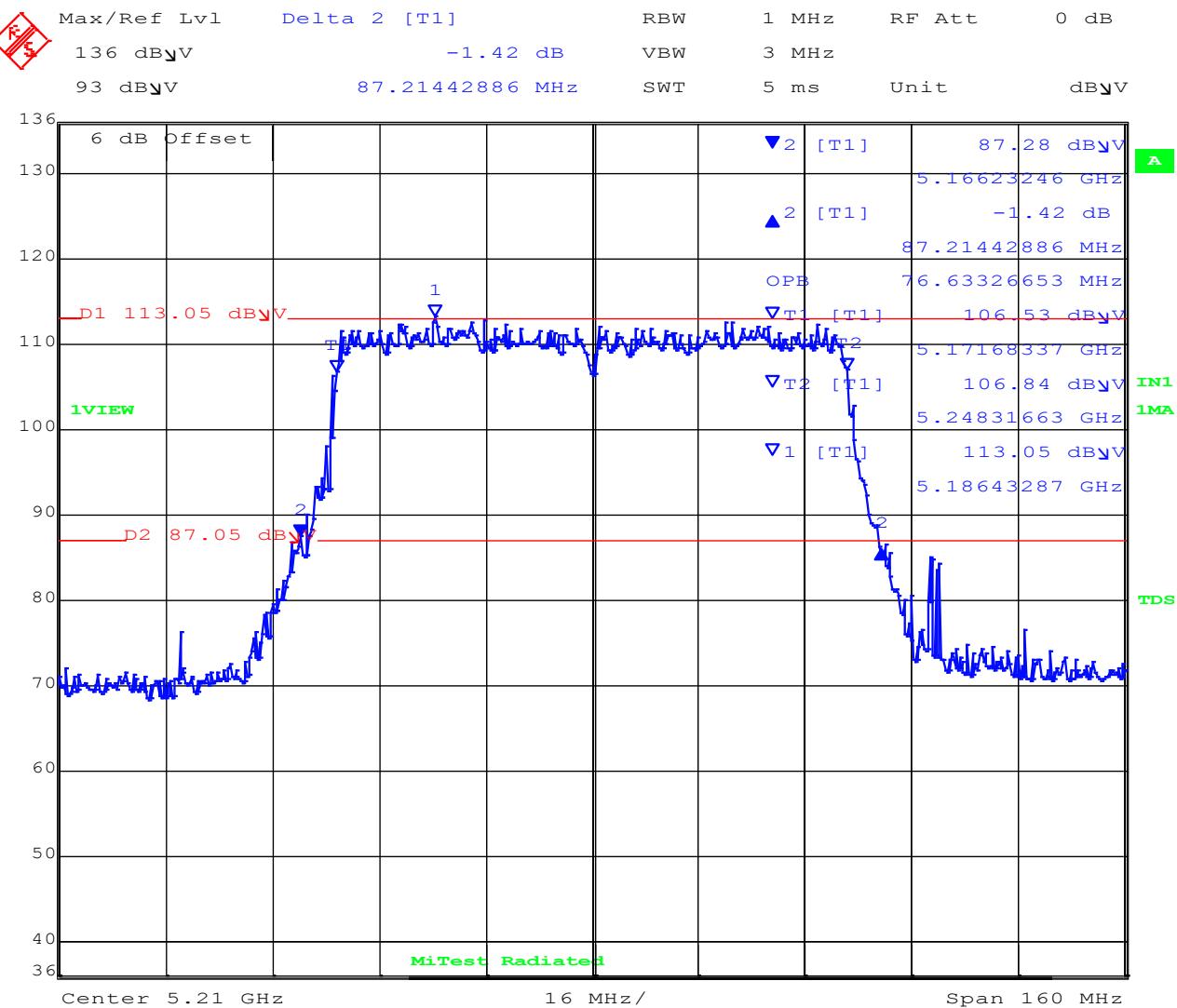
Date: 25.MAR.2021 15:32:03

Analyzer Setup		Test Results
Detector = MAX PEAK RF Atten (dB) = 0 Trace Mode = MAX HOLD		Measured 26 dB Bandwidth: 87.86 MHz Measured 99% Bandwidth: 76.63 MHz

[back to matrix](#)

Issue Date: 12th April 2021

Page: 92 of 149

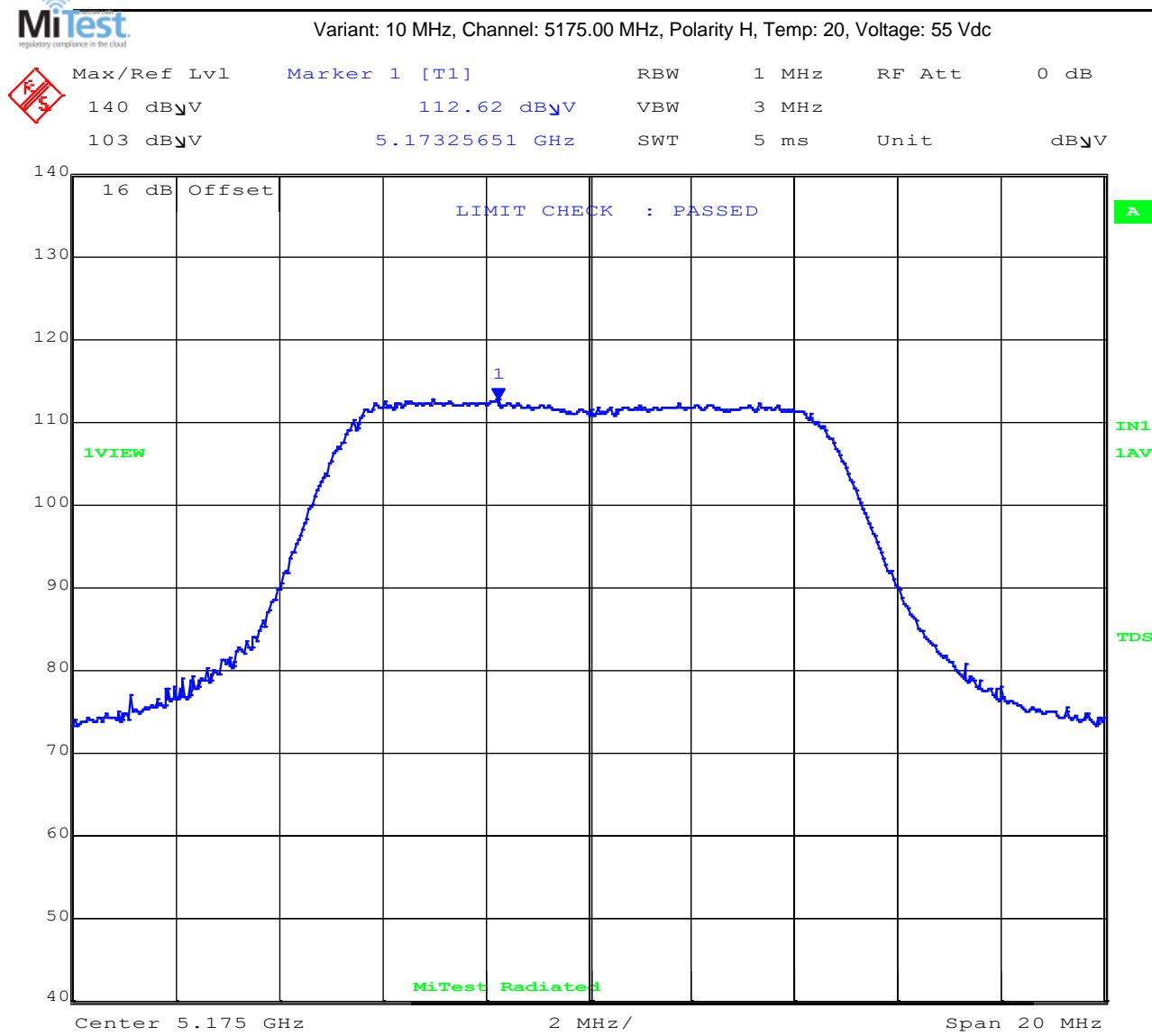

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

26 dB & 99% BANDWIDTH

Variant: 802.11 80MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 25.MAR.2021 15:29:44

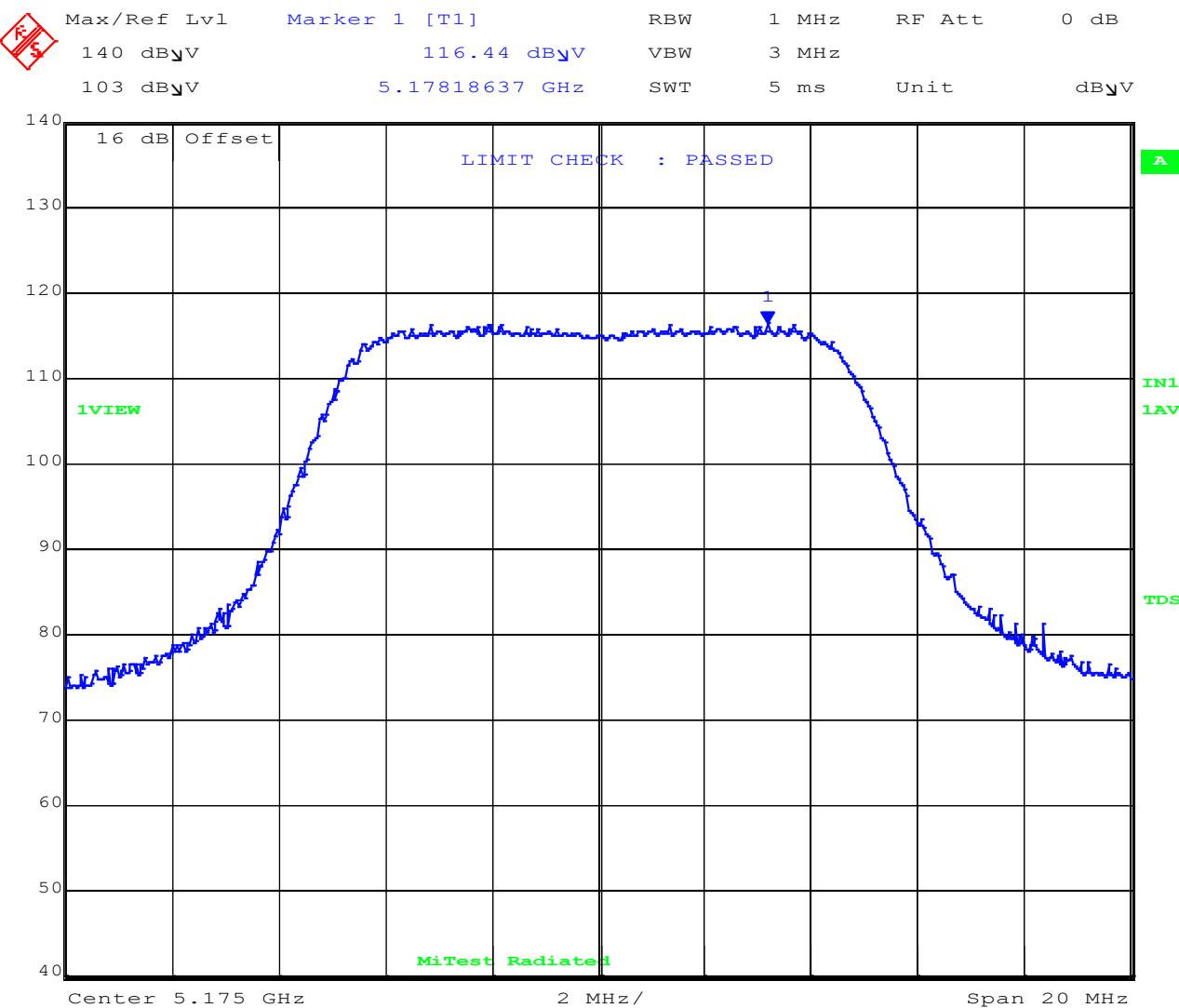

Analyzer Setup	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 0 Trace Mode = MAX HOLD	Measured 26 dB Bandwidth: 87.21 MHz Measured 99% Bandwidth: 76.63 MHz

[back to matrix](#)

A.2. Power Spectral Density

A.1.1 Non-Beamforming

POWER SPECTRAL DENSITY


Date: 18.MAR.2021 10:48:20

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5173.26 MHz : 112.62 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5175.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

Date: 18.MAR.2021 10:46:32

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 517.19 MHz :116.44 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl

140 dB_uV

103 dB_uV

Marker 1 [T1]

112.87 dB_uV

5.20821643 GHz

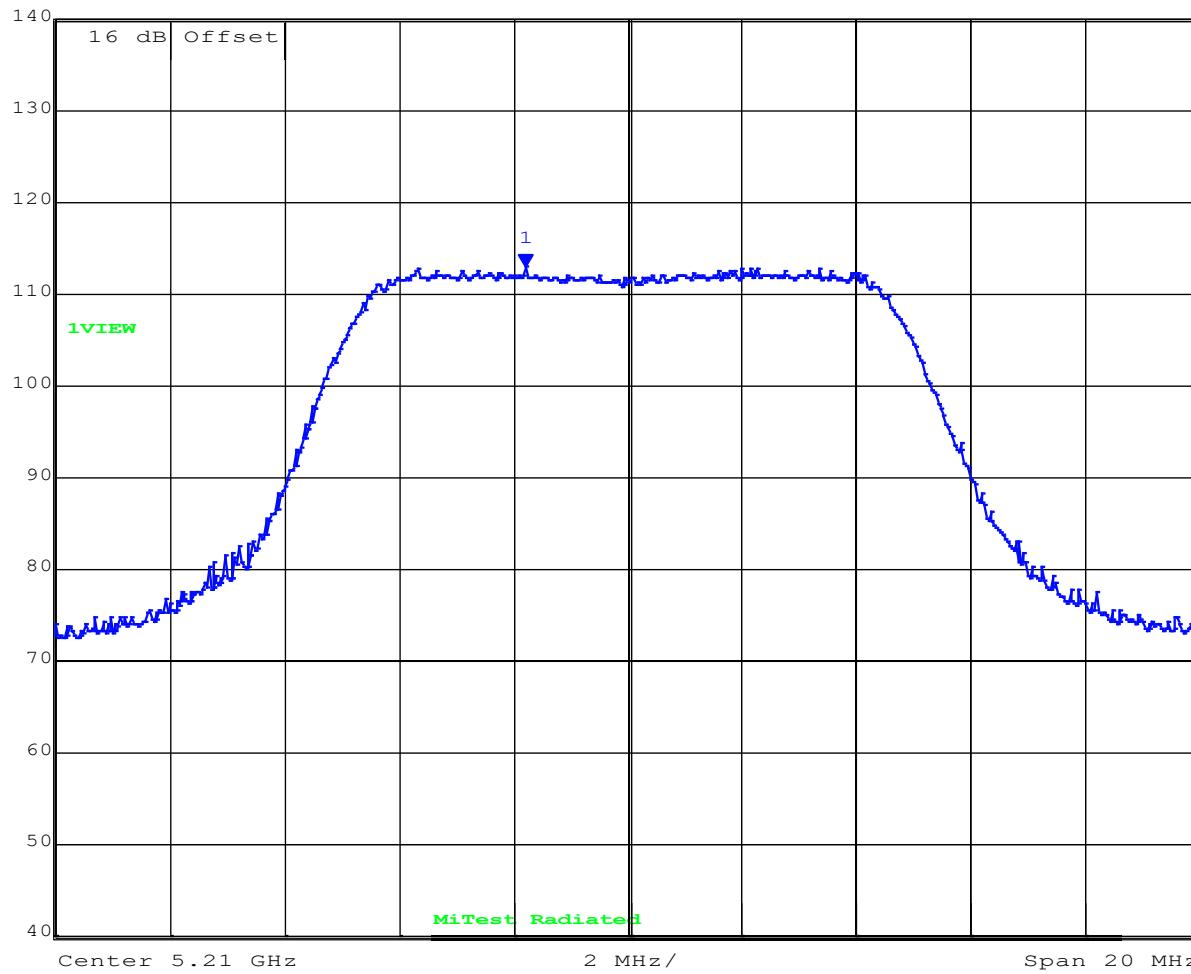
RBW

1 MHz

RF Att

0 dB

VBW


3 MHz

SWT

5 ms

Unit

dB_uV

Date: 18.MAR.2021 10:53:42

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5208.22 MHz : 112.87 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 96 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl

140 dB_uV

103 dB_uV

Marker 1 [T1]

116.51 dB_uV

5.20745491 GHz

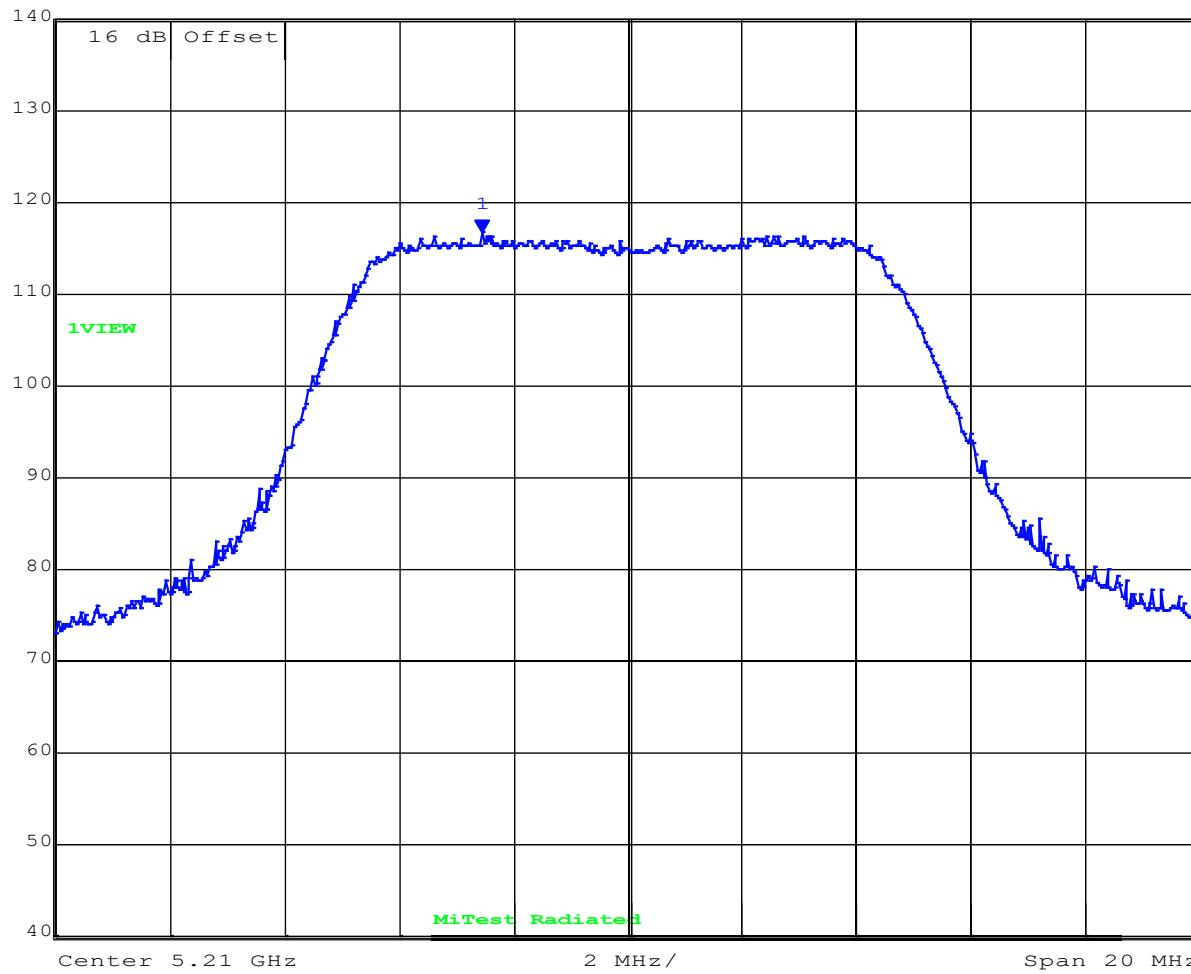
RBW

1 MHz

RF Att

0 dB

VBW


3 MHz

SWT

5 ms

Unit

dB_uV

Date: 18.MAR.2021 10:54:53

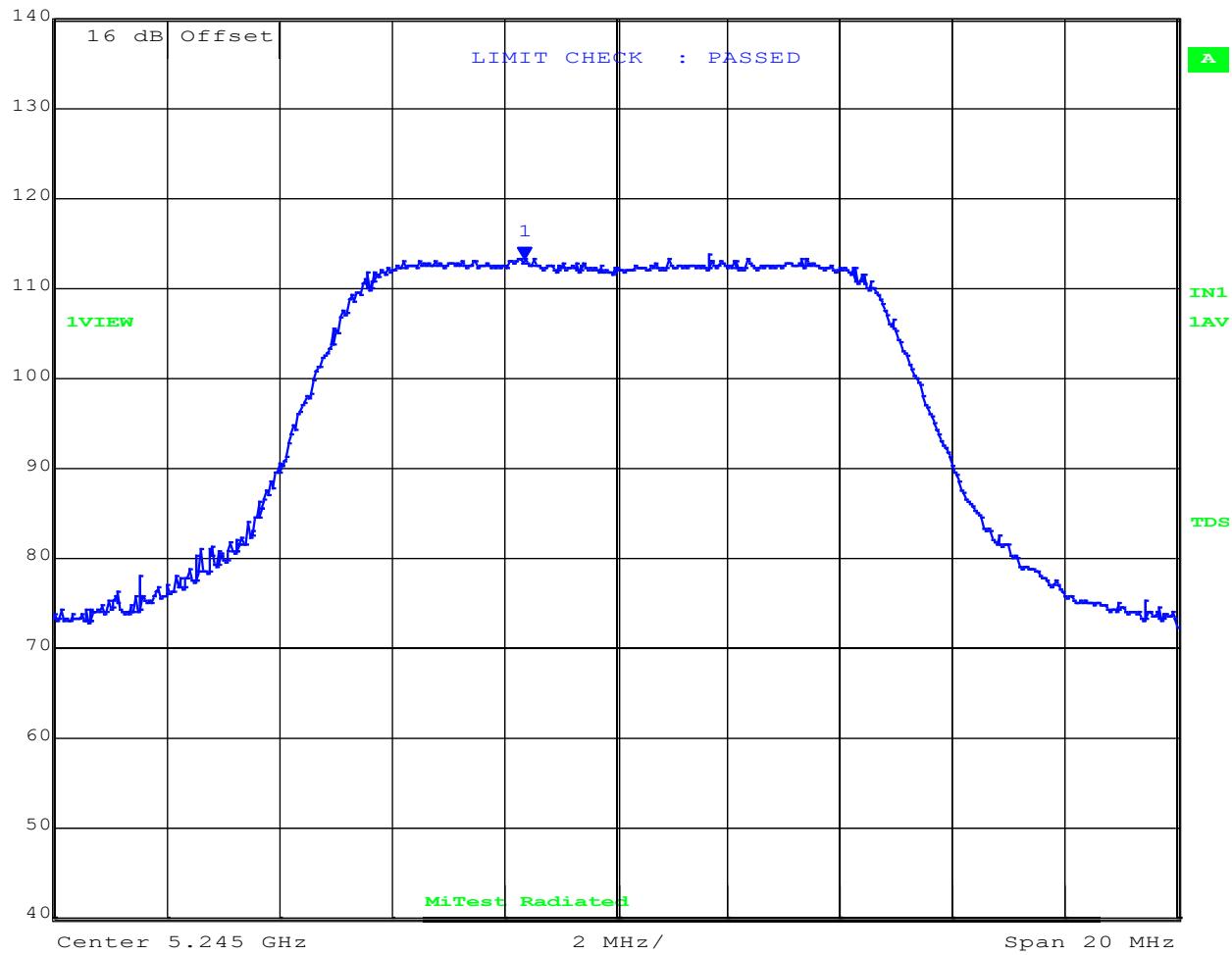
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5207.45 MHz : 116.51 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 97 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

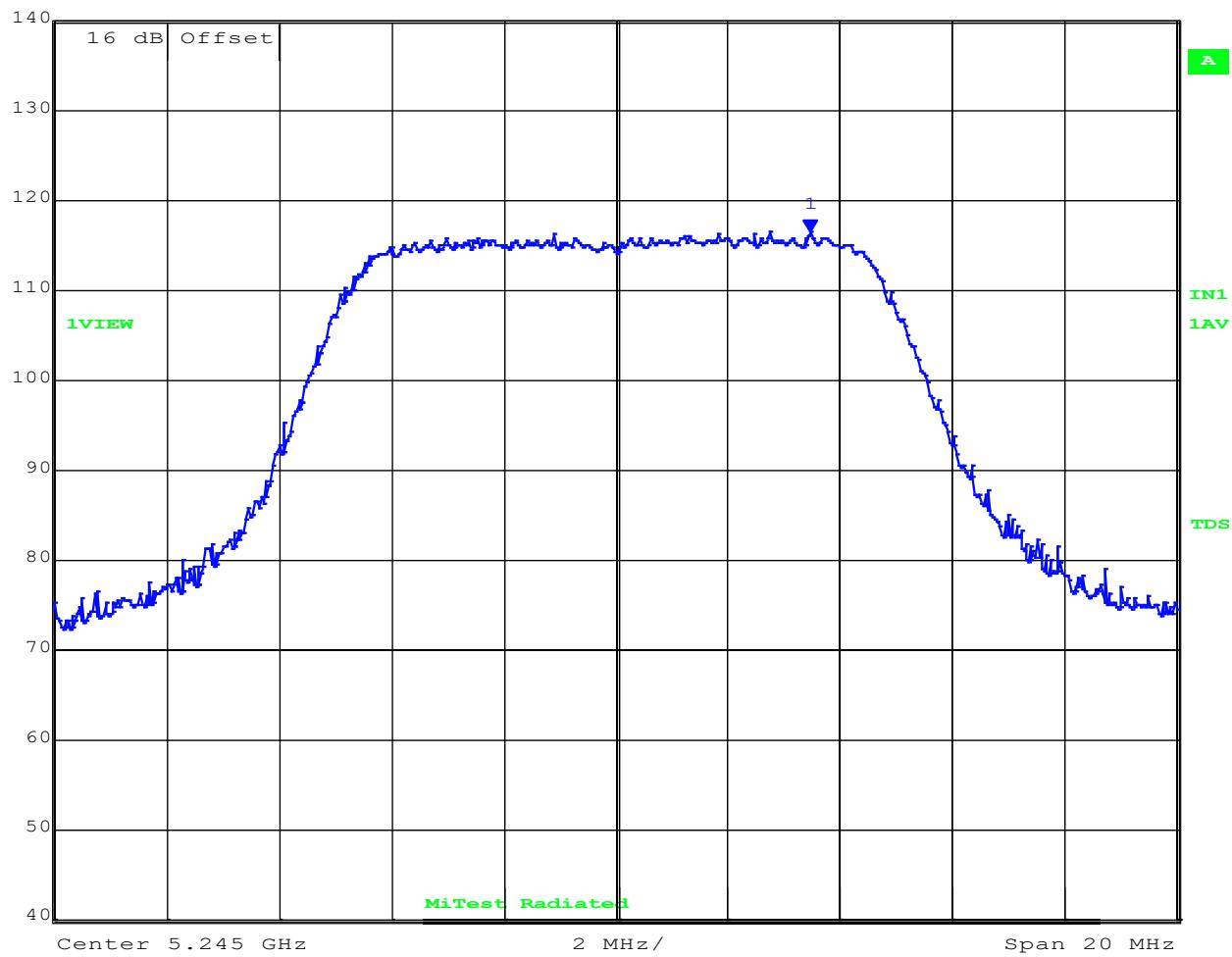
POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5245.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

	Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
	140 dB _u V	113.21 dB _u V	VBW	3 MHz		
	103 dB _u V	5.24337675 GHz	SWT	5 ms	Unit	dB _u V

Date: 18.MAR.2021 10:58:52

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5243.38 MHz : 113.21 dB _u V/m	Limit: ≤ 13.00 dBm, Pass


[back to matrix](#)

POWER SPECTRAL DENSITY

 MiTest
regulatory compliance in the cloud

Variant: 10 MHz, Channel: 5245.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
140 dB _V	116.44 dB _V	VBW	3 MHz		
103 dB _V	5.24846693 GHz	SWT	5 ms	Unit	dB _V

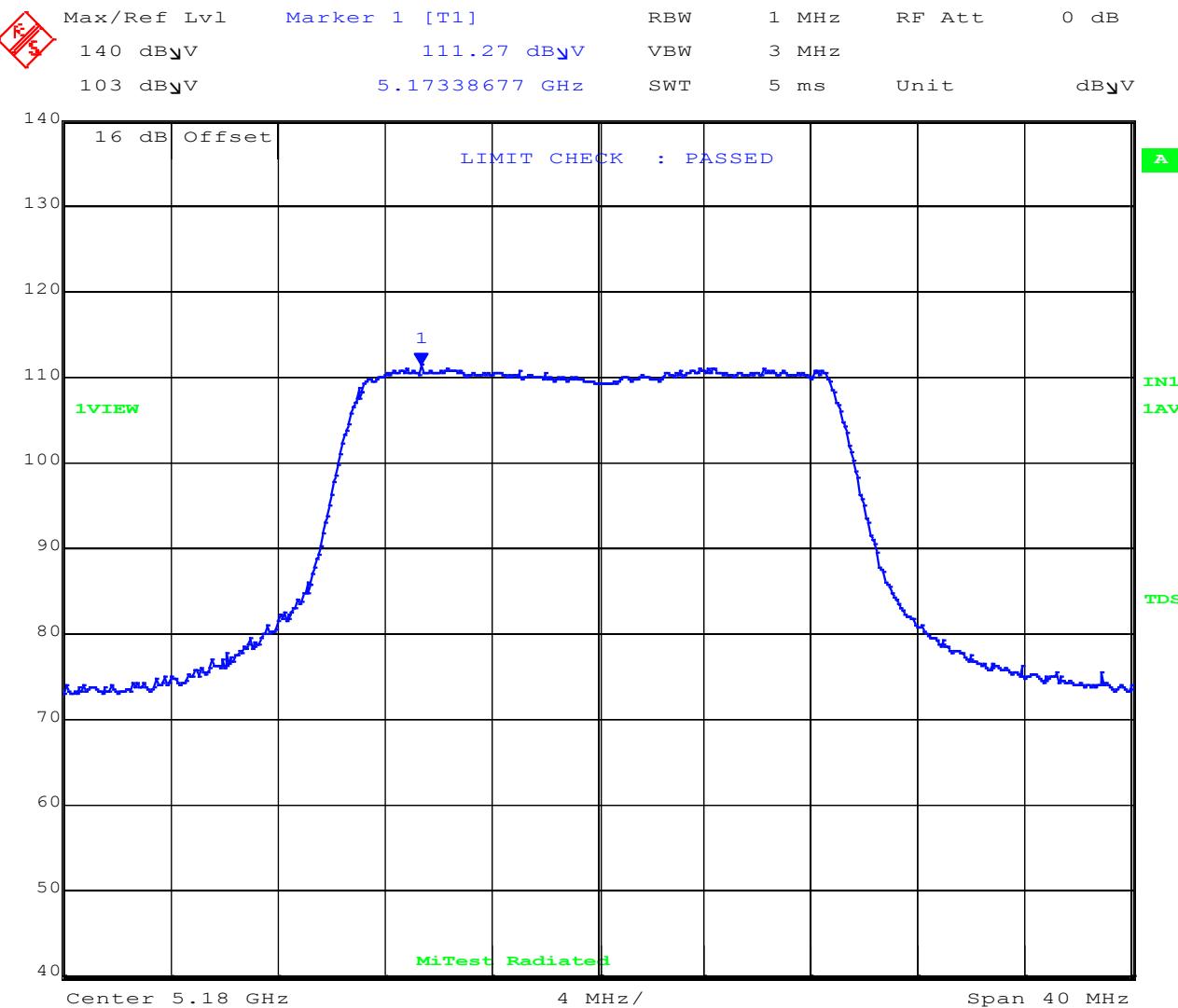
Date: 18.MAR.2021 10:56:29

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5248.46 MHz : 116.44 dBuV/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 99 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

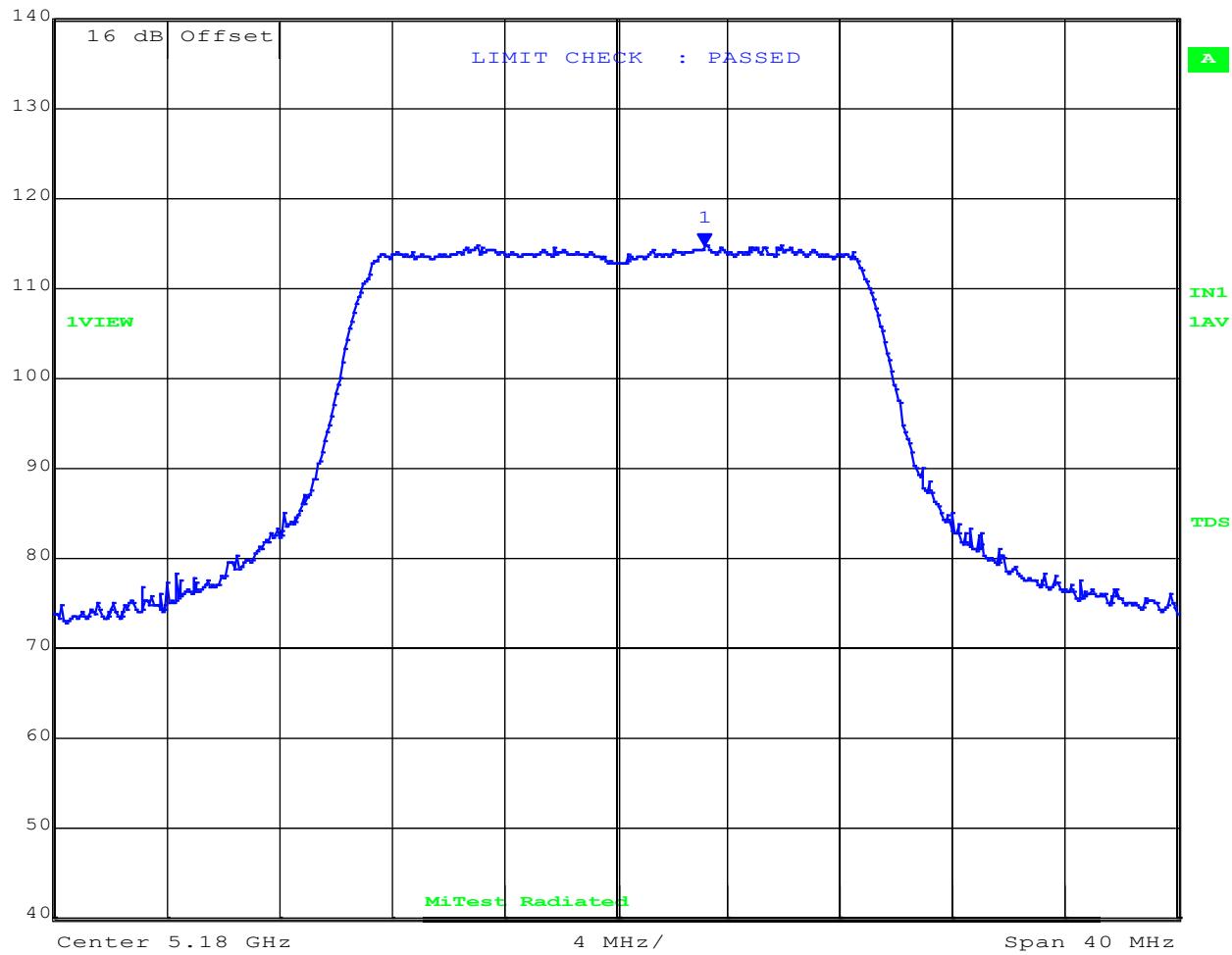
MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5180.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Date: 18.MAR.2021 11:22:21

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5173.39 MHz : 111.27 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

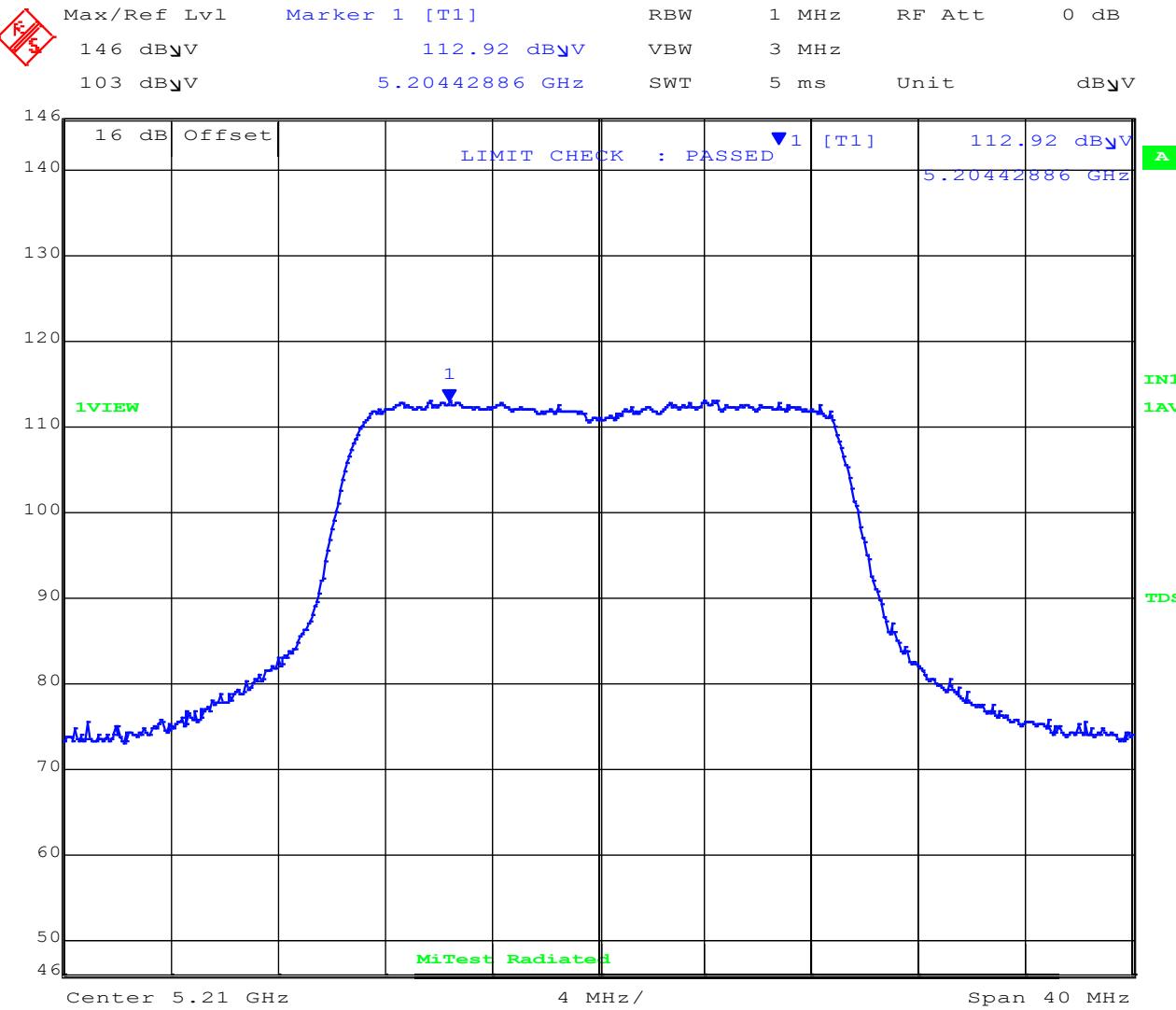

[back to matrix](#)

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5180.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

	Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
	140 dB _V	114.58 dB _V	VBW	3 MHz		
	103 dB _V	5.18316633 GHz	SWT	5 ms	Unit	dB _V

Date: 18.MAR.2021 11:12:07


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5183.17 MHz : 114.58 dB _V /m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

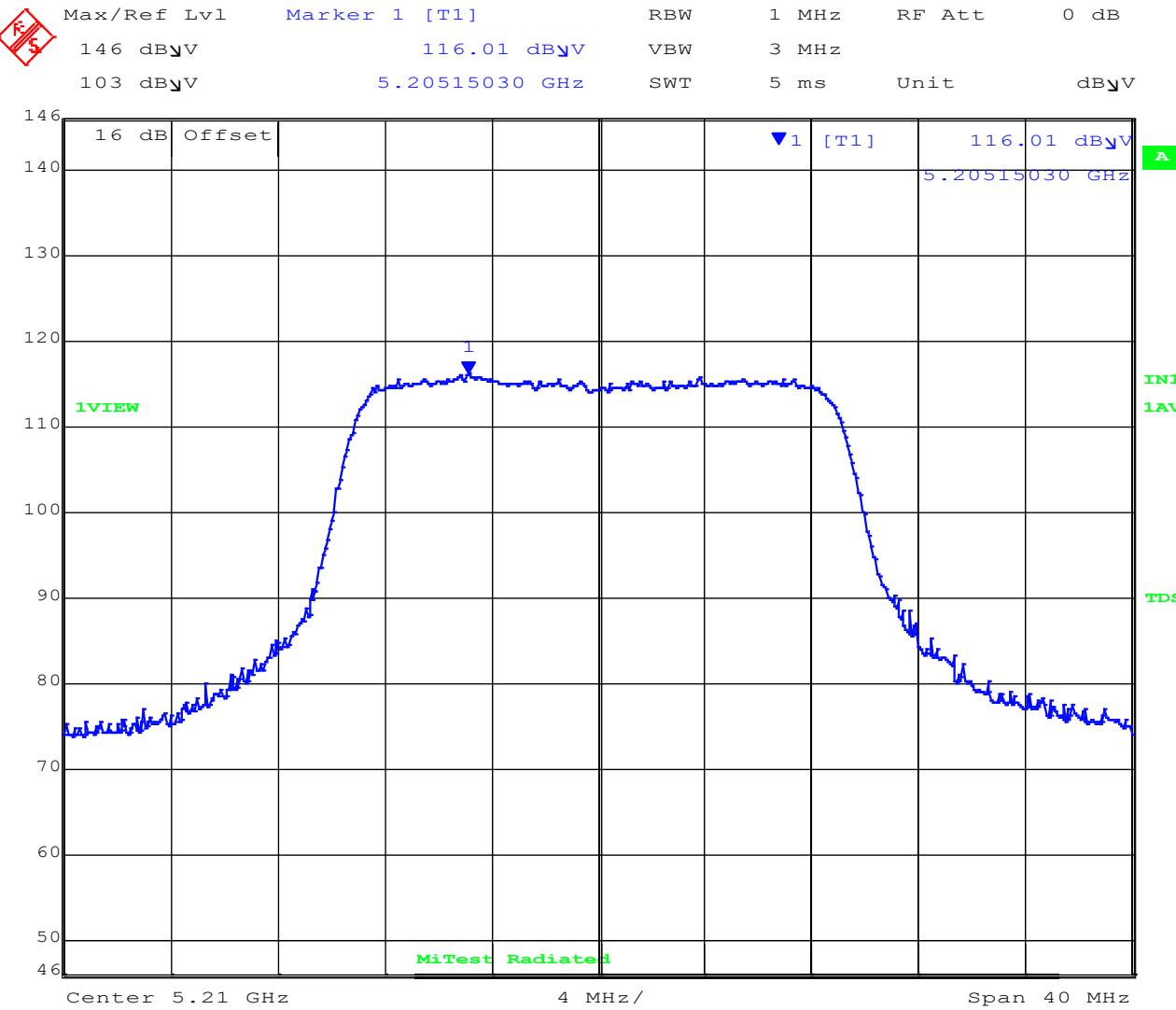
Date: 24.MAR.2021 10:28:59

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5204.29 MHz : 112.92 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 102 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

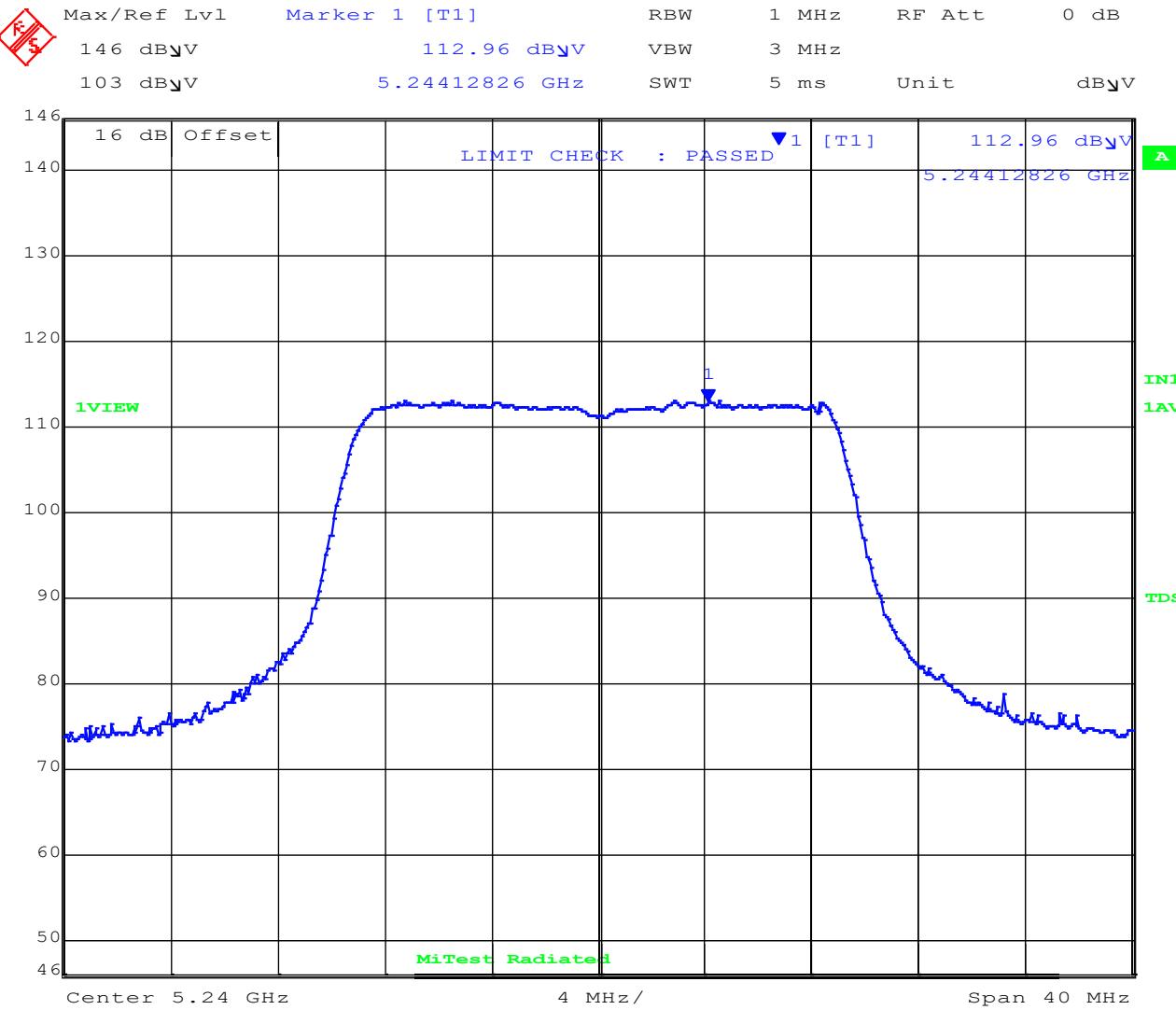
Date: 24.MAR.2021 10:28:01

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5205.15 MHz : 116.01 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 103 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5240.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

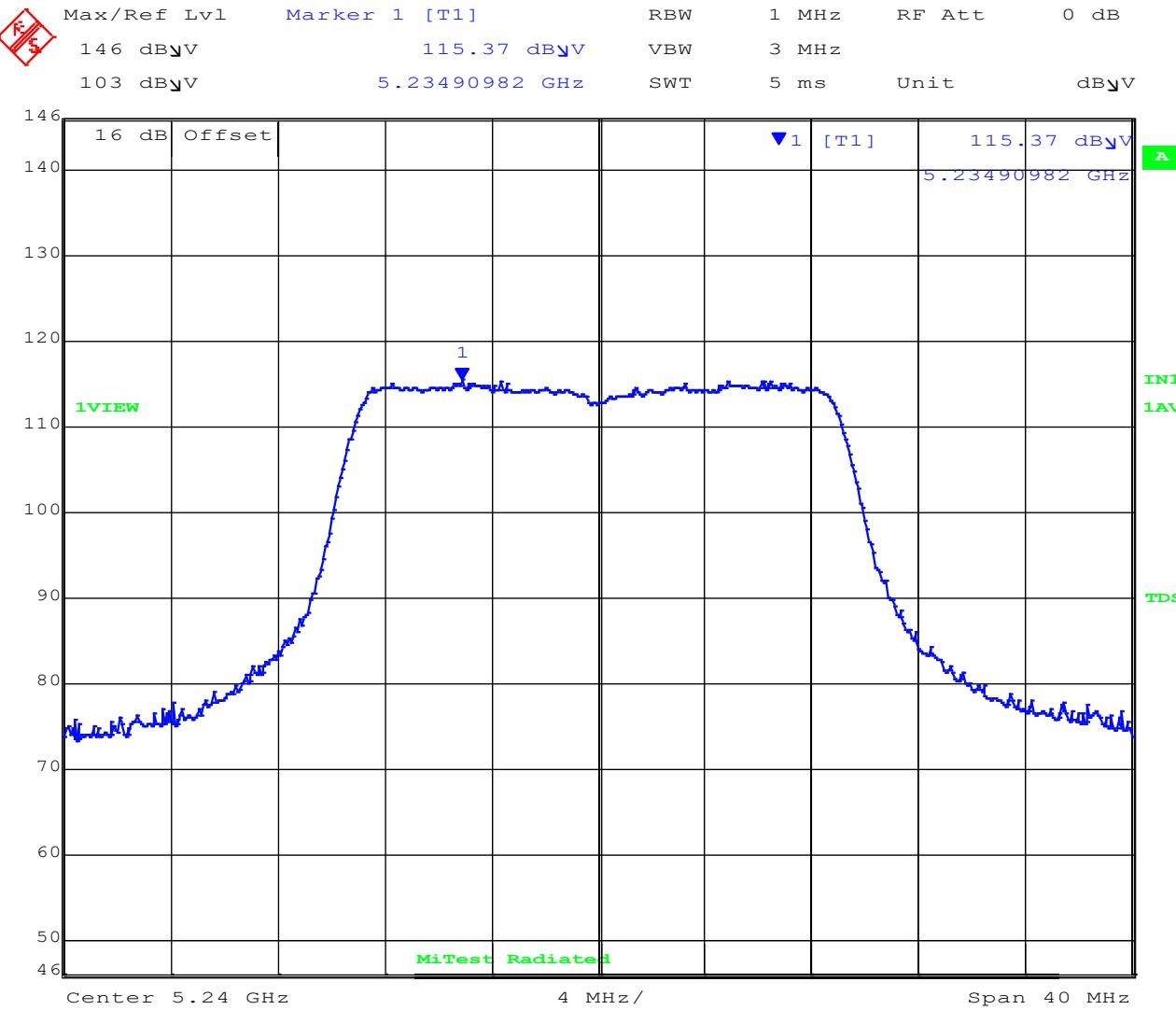
Date: 24.MAR.2021 10:31:15

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5244.13 MHz : 112.96 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 104 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5240.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

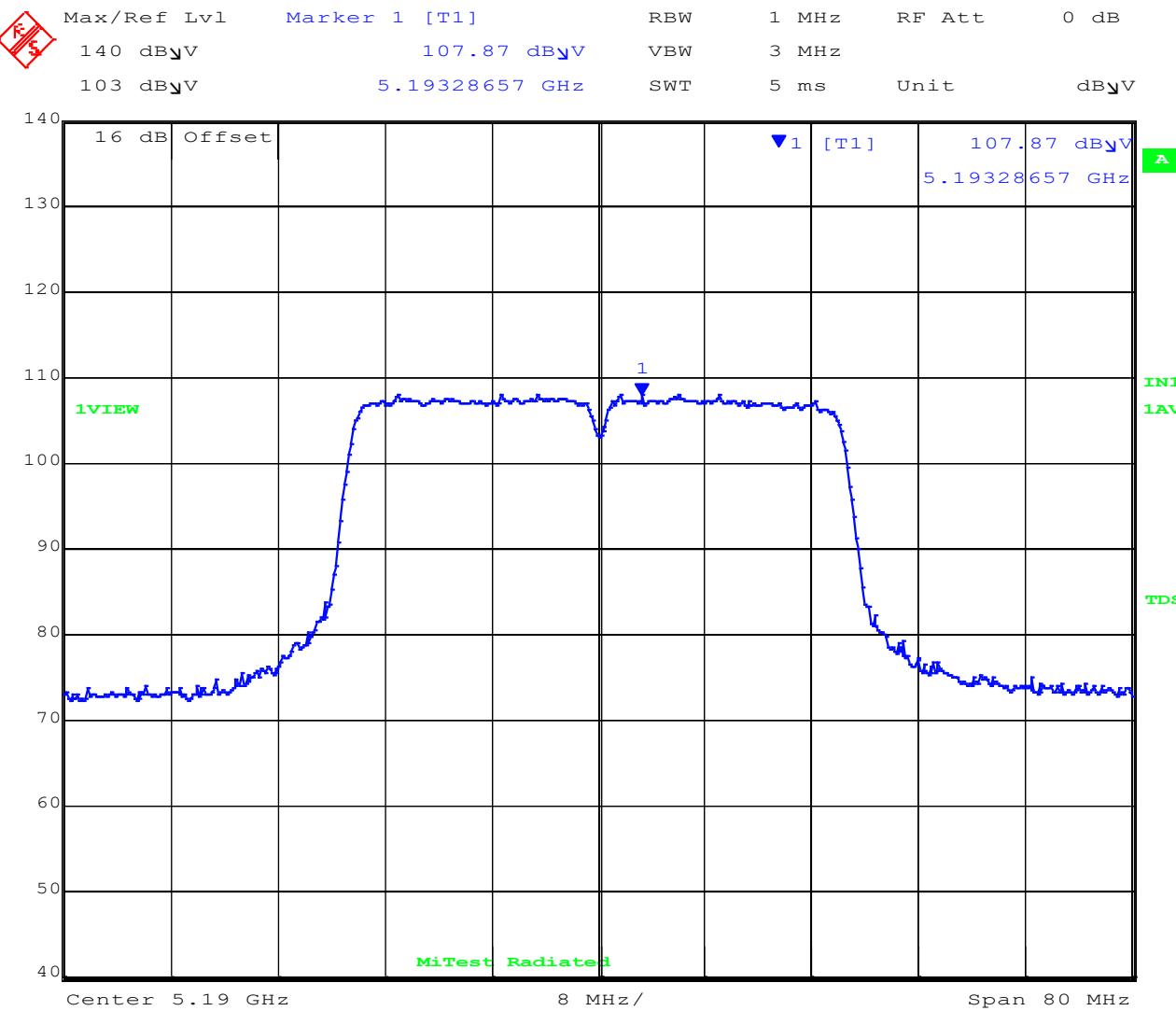
Date: 24.MAR.2021 10:32:20

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5234.91 MHz : 115.37 dBuV/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 105 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5190.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

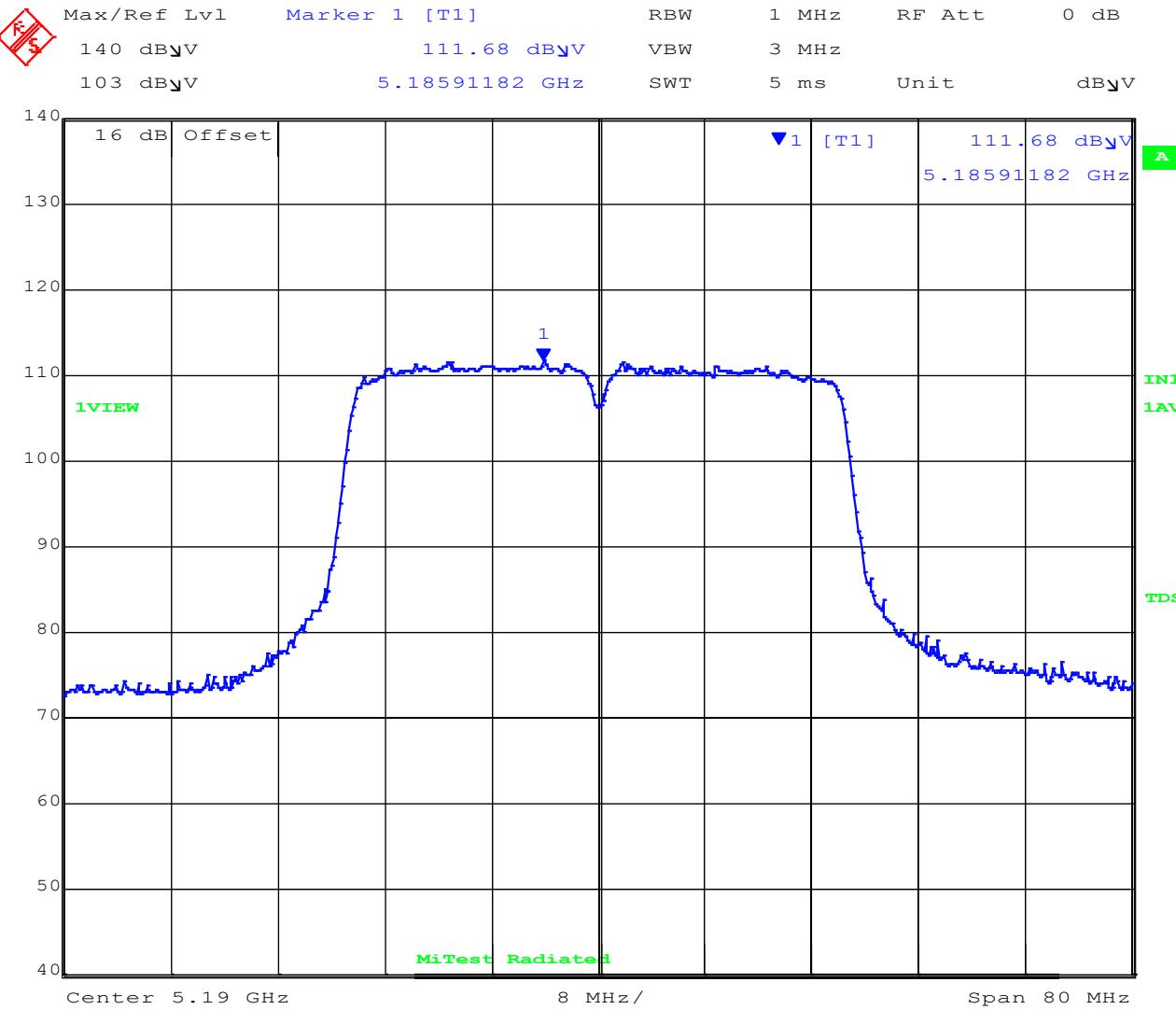
Date: 18.MAR.2021 11:54:36

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5193.29 MHz : 107.87 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 106 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5190.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

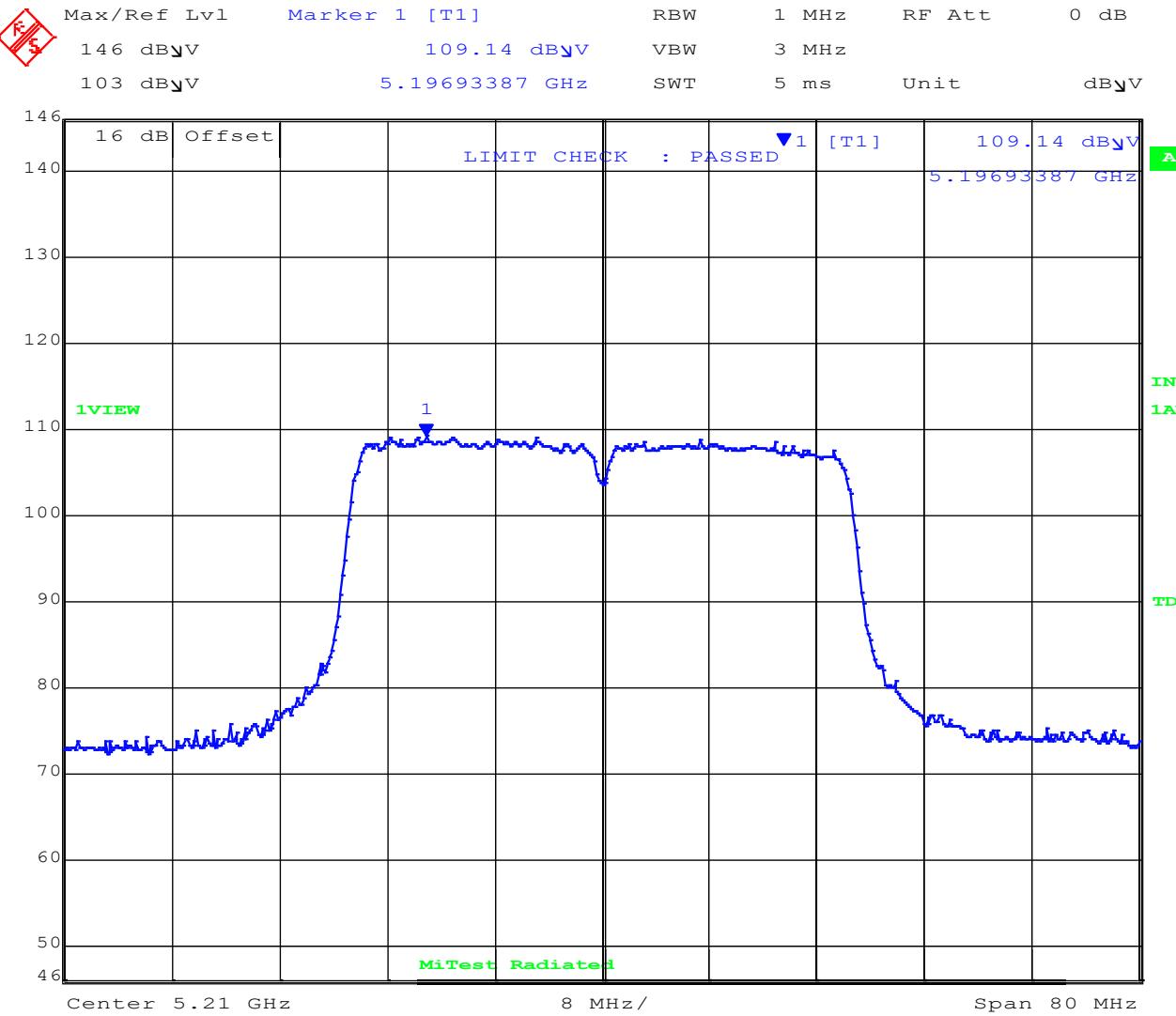
Date: 18.MAR.2021 11:52:34

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5185.91 MHz : 111.68 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 107 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

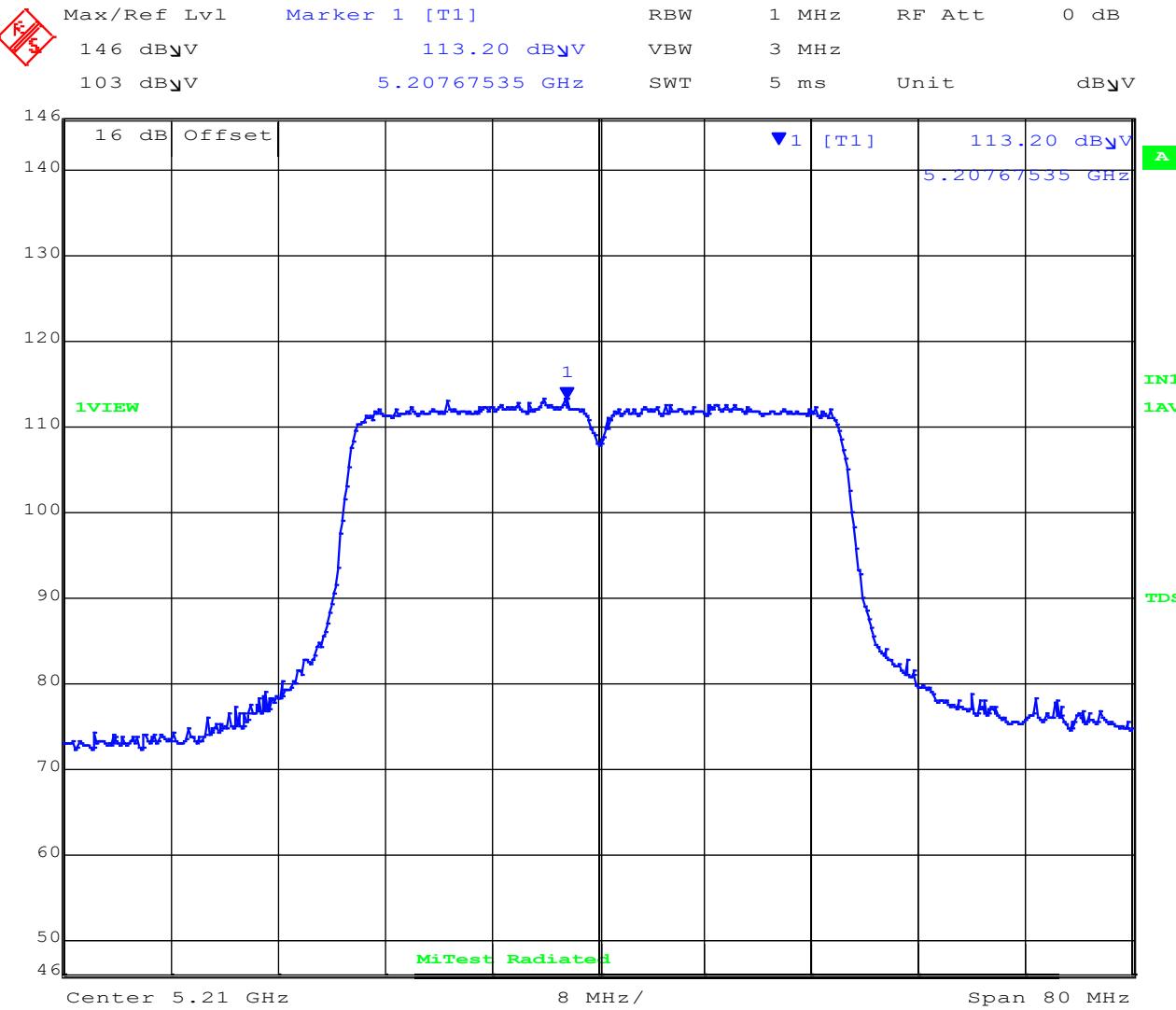
Date: 24.MAR.2021 10:19:44

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5196.93 MHz : 109.14 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 108 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 24.MAR.2021 10:20:44

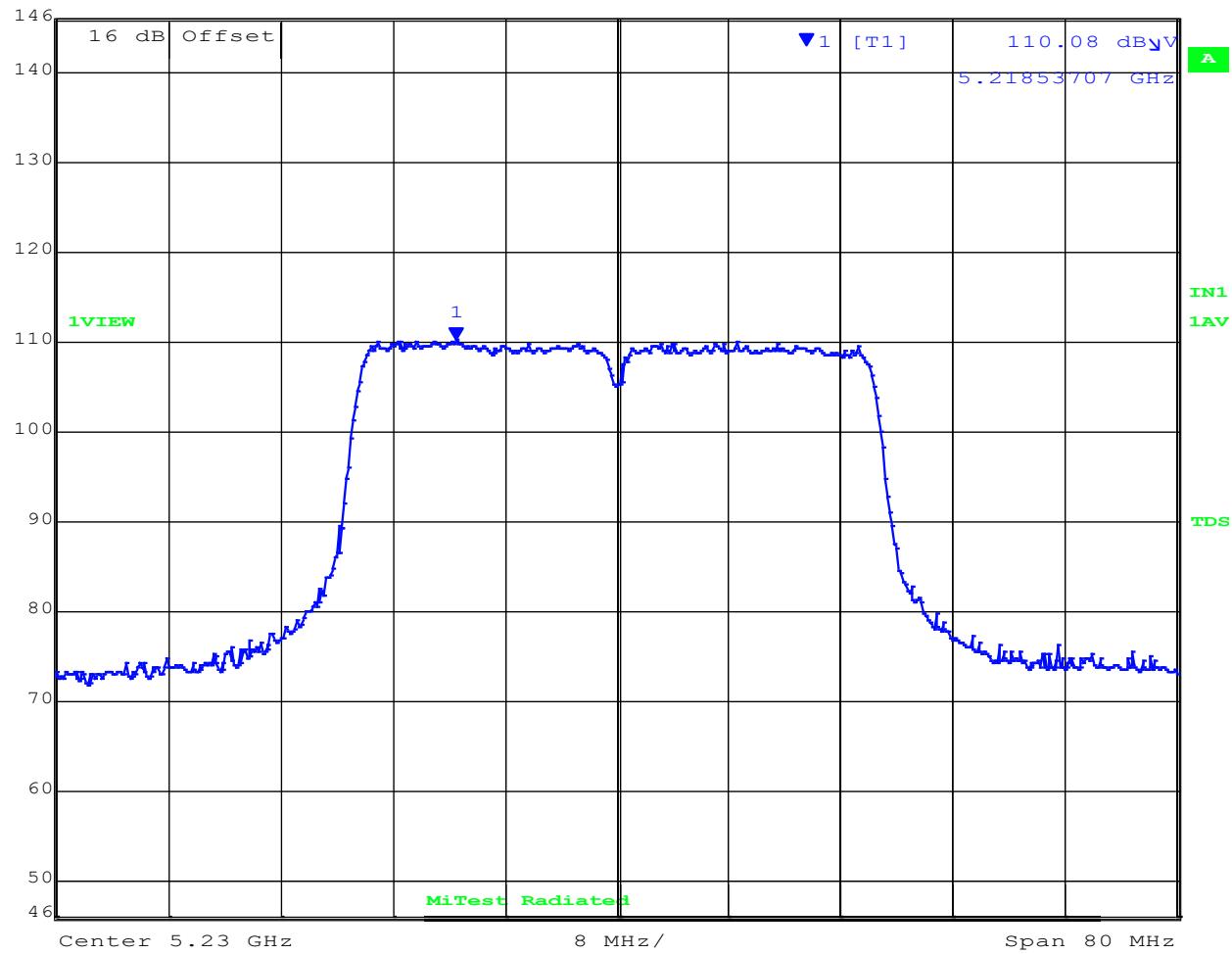
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5207.68 MHz : 113.20 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 109 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5230.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
146 dB _u V	110.08 dB _u V	VBW	3 MHz		
103 dB _u V	5.21853707 GHz	SWT	5 ms	Unit	dB _u V

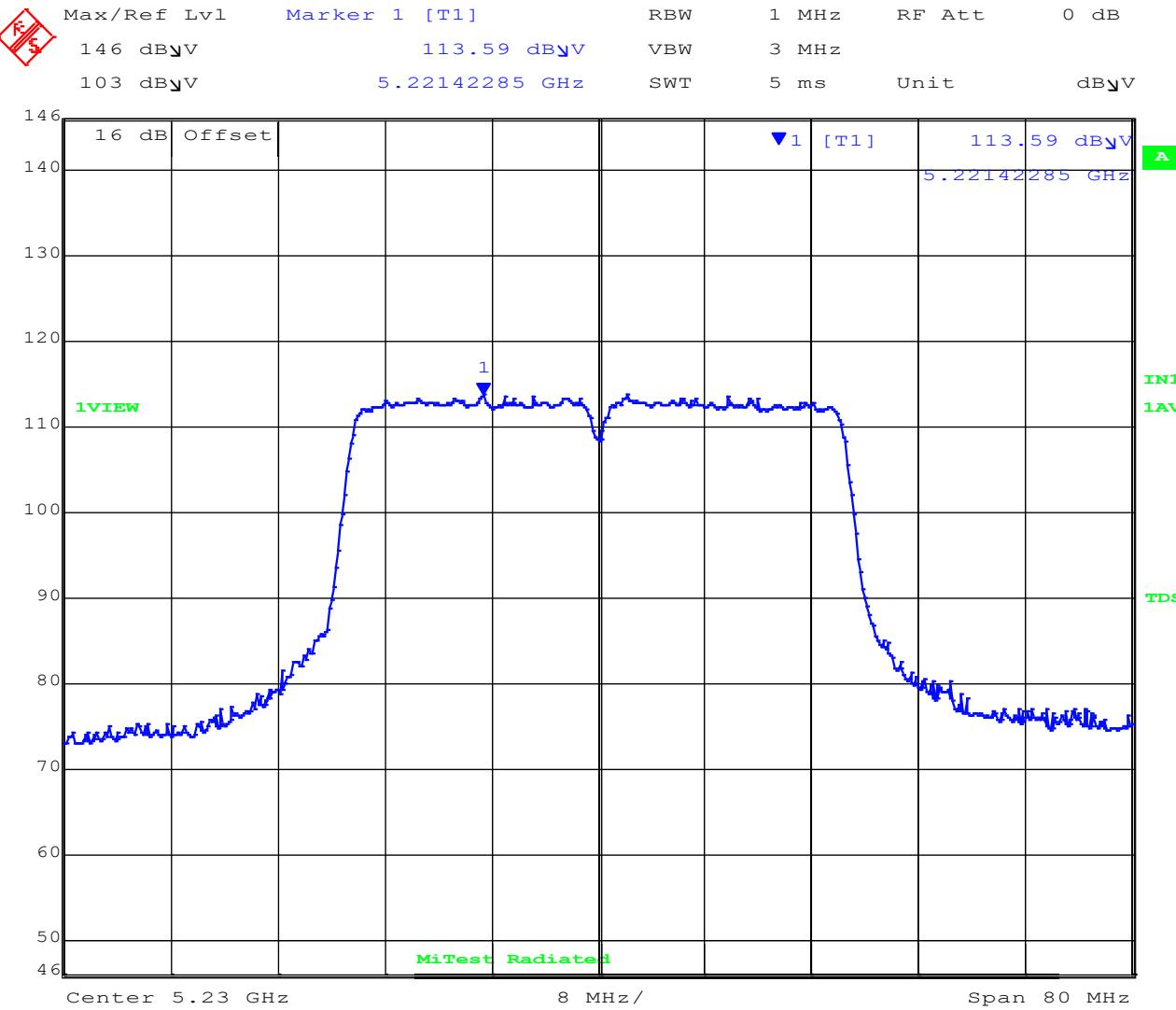
Date: 24.MAR.2021 10:17:31

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5218.54 MHz : 110.08 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 110 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5230.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 24.MAR.2021 10:16:24

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5221.42 MHz : 113.59 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 111 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 80 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

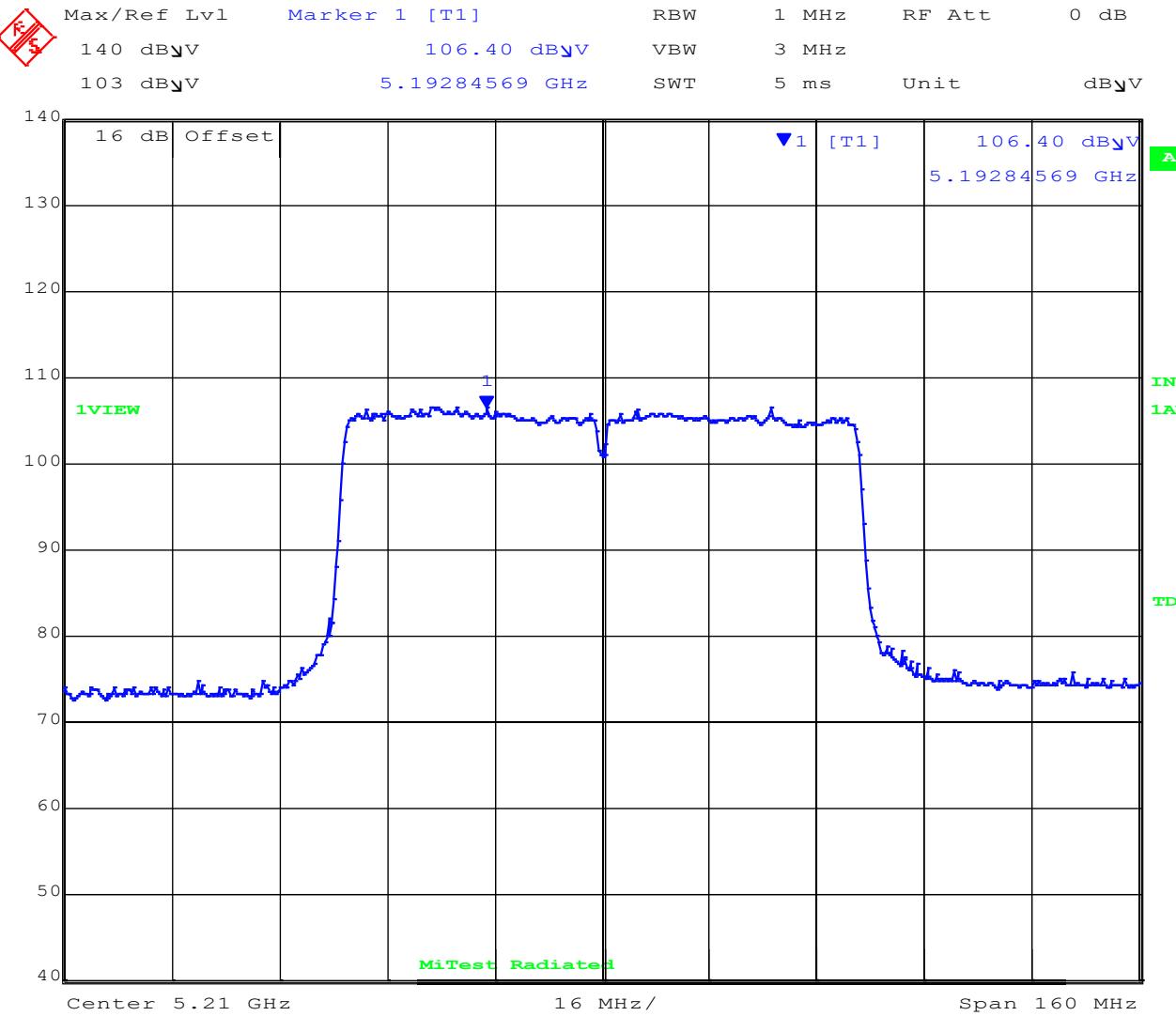
Date: 18.MAR.2021 12:30:26

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5193.81 MHz : 102.88 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 112 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

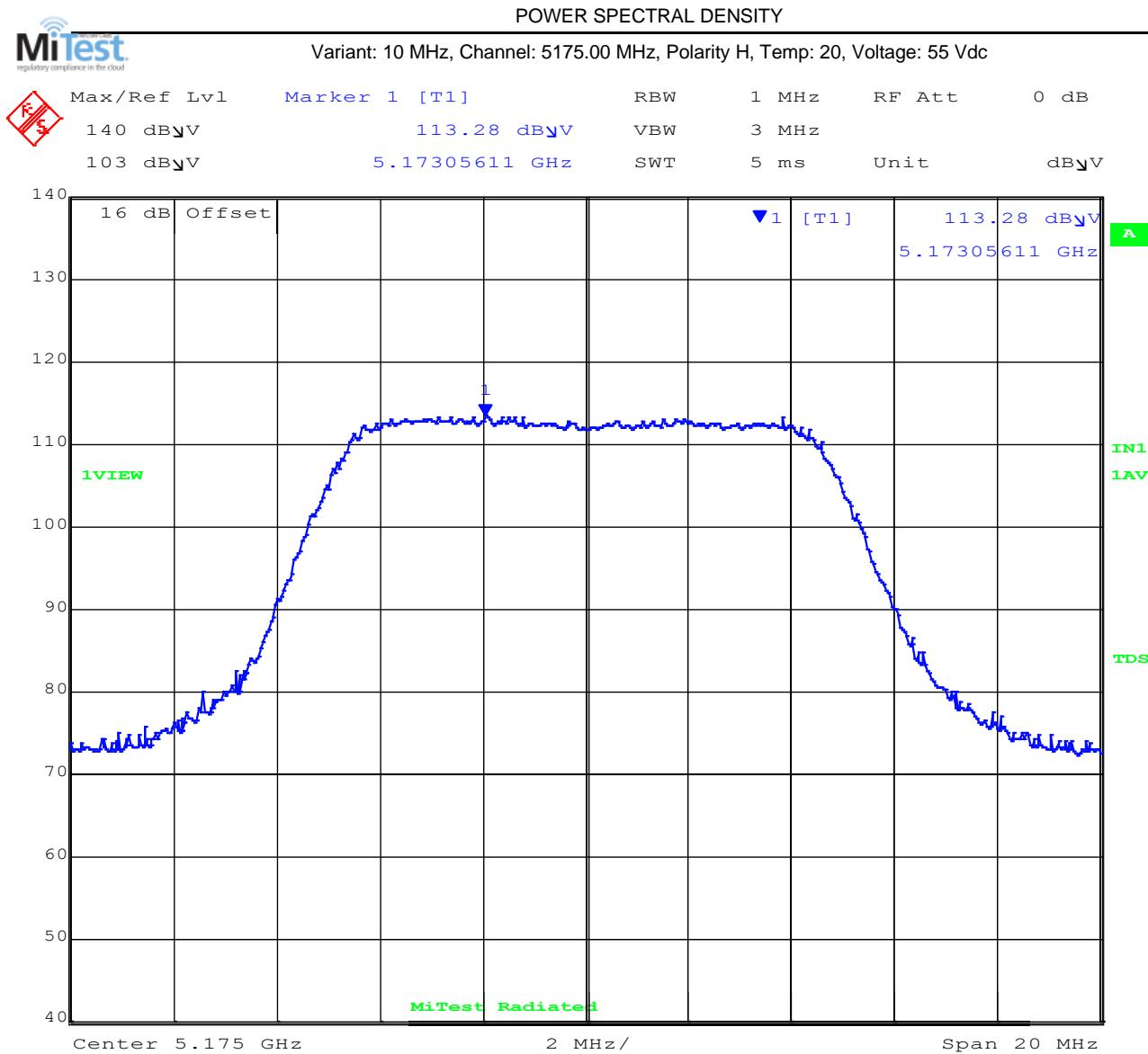
POWER SPECTRAL DENSITY

Variant: 80 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 18.MAR.2021 12:29:15

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5192.85 MHz : 106.40 dB _u V/m	Limit: ≤ 13.00 dBm, Pass

[back to matrix](#)


Issue Date: 12th April 2021

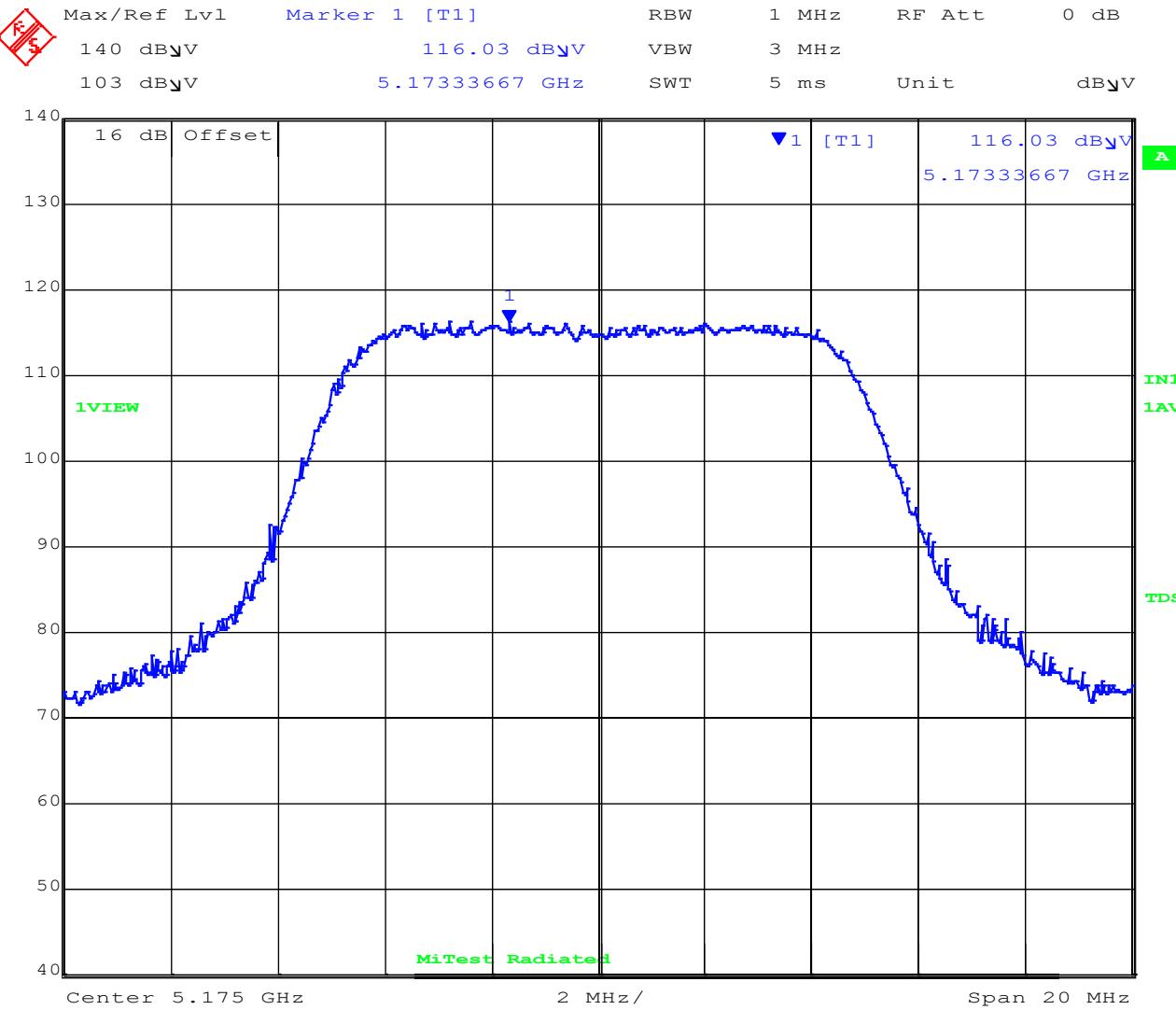
Page: 113 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

A.1.1 Beamforming

Date: 19.MAR.2021 15:16:48


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5173.05 MHz : 113.28 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

POWER SPECTRAL DENSITY

MiTest
regulatory compliance in the cloud

Variant: 10 MHz, Channel: 5175.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

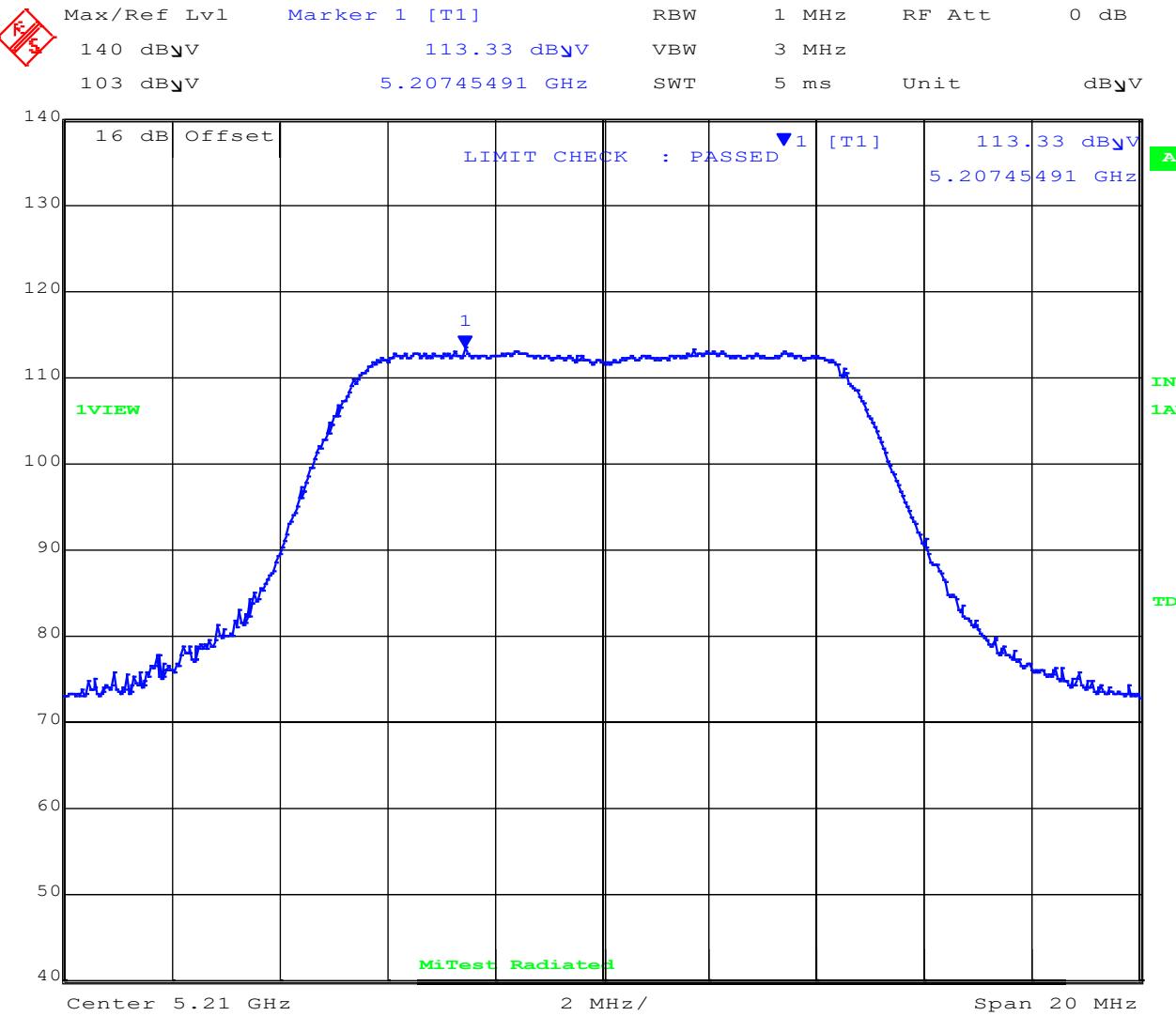
Date: 19.MAR.2021 15:18:08

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5173.33 MHz :116.03 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 115 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Date: 19.MAR.2021 15:22:22

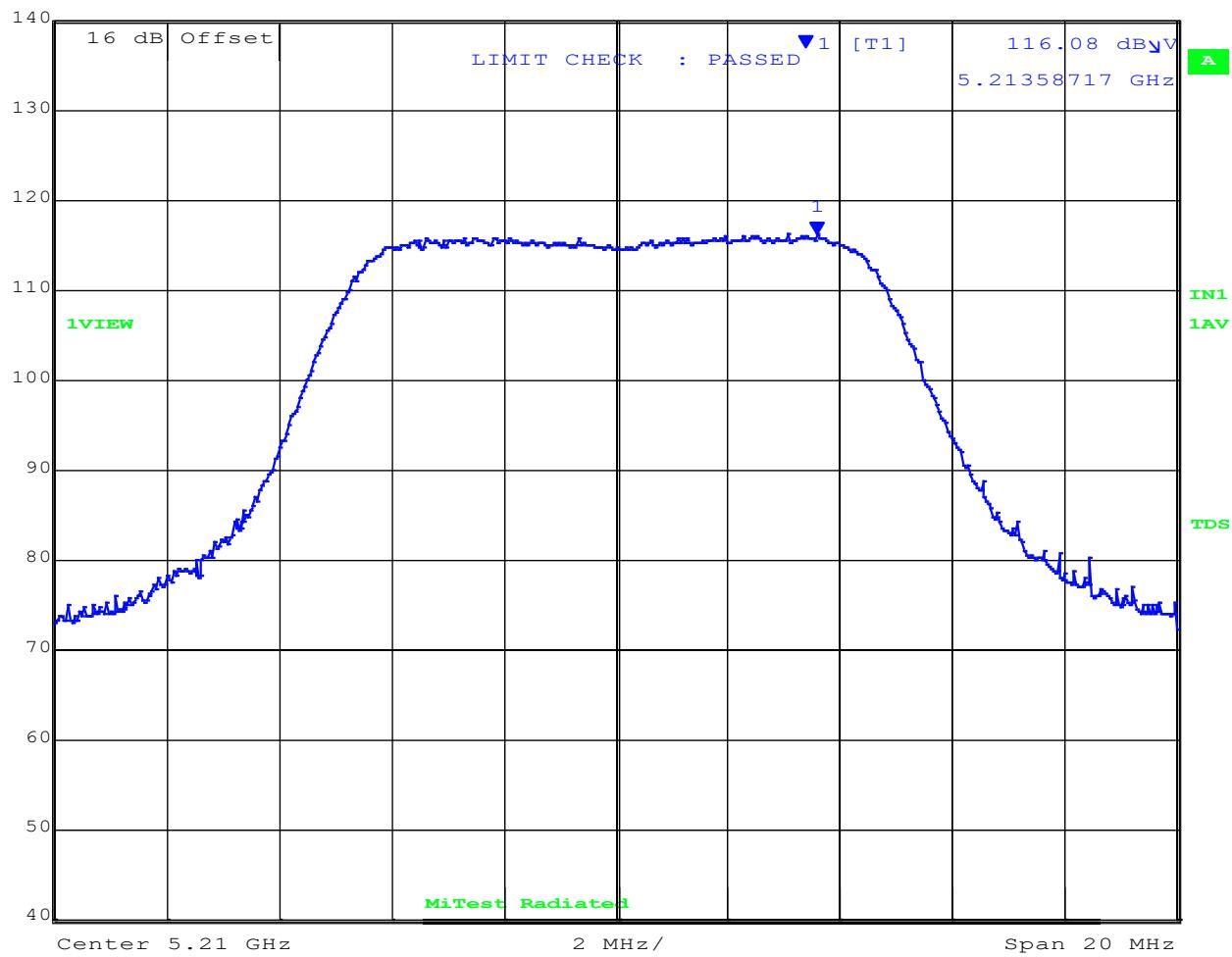
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5207.45 : 113.33 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 116 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

 MiTest

Variant: 10 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
140 dB _V	116.08 dB _V	VBW	3 MHz		
103 dB _V	5.21358717 GHz	SWT	5 ms	Unit	dB _V

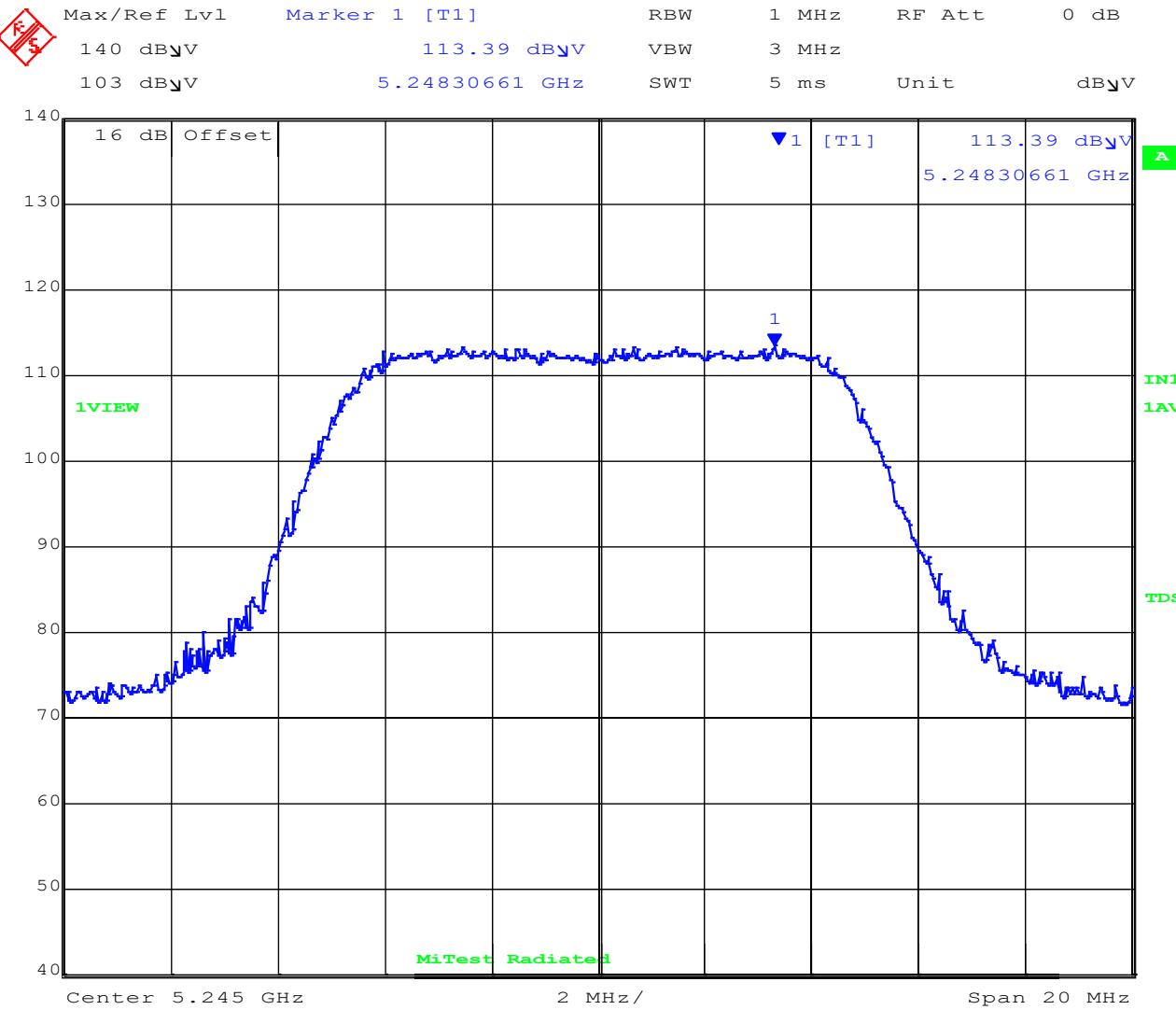
Date: 19.MAR.2021 15:20:40

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5213.59 MHz : 116.08 dBuV/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 117 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5245.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

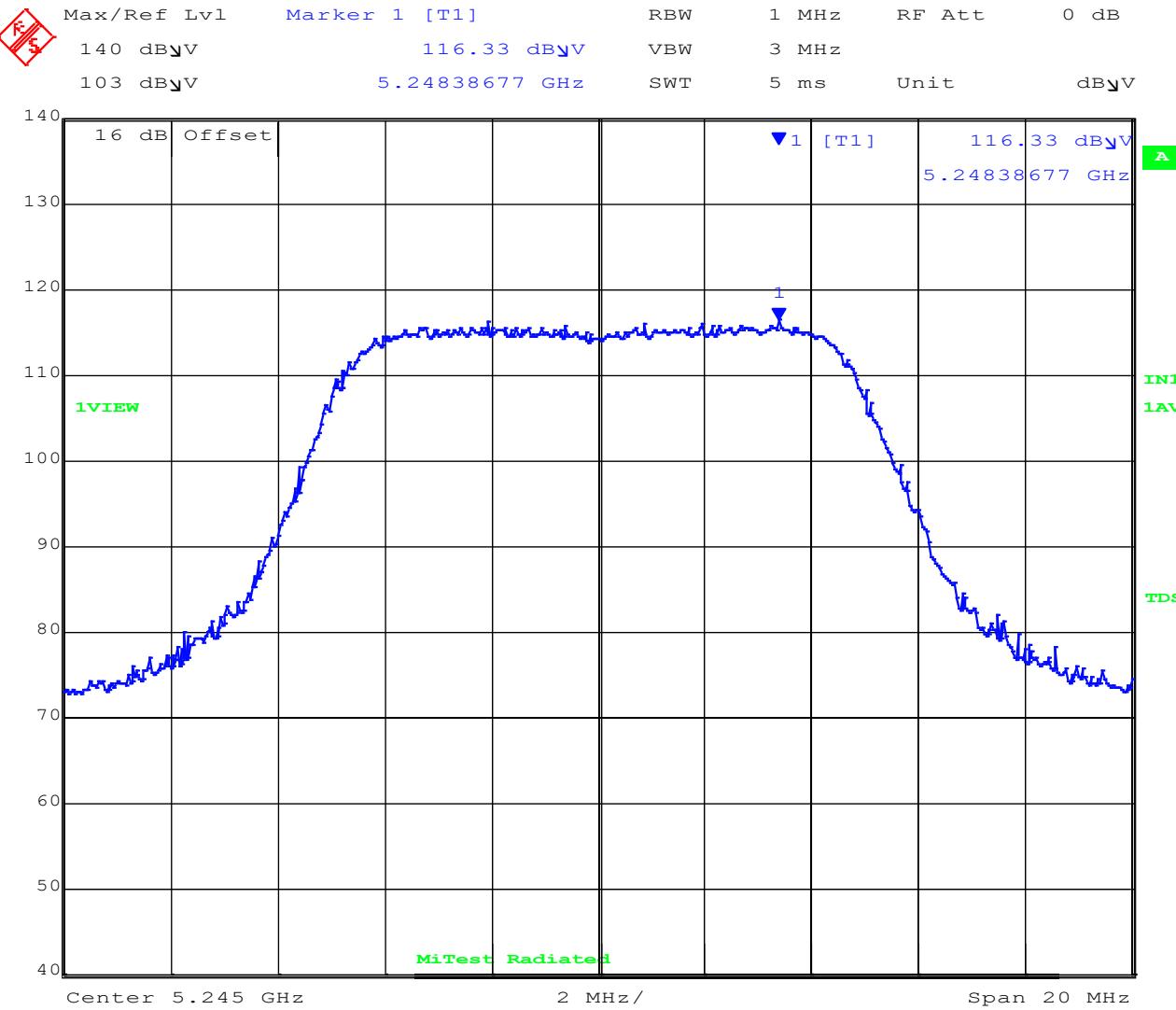
Date: 19.MAR.2021 15:23:44

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5248.31 MHz : 113.39 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 118 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 5245.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

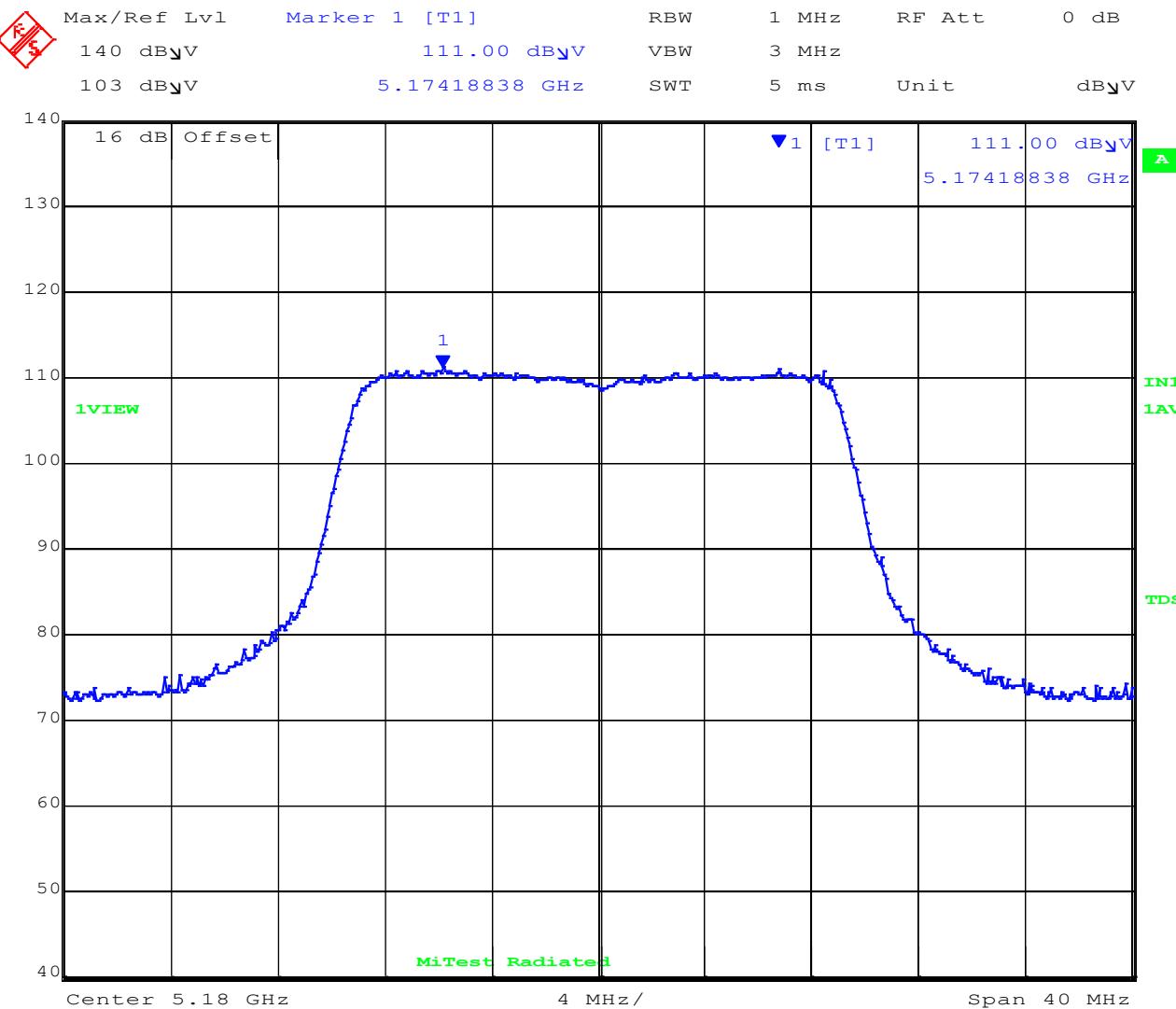
Date: 19.MAR.2021 15:26:35

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5248.39 MHz : 116.33 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 119 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5180.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

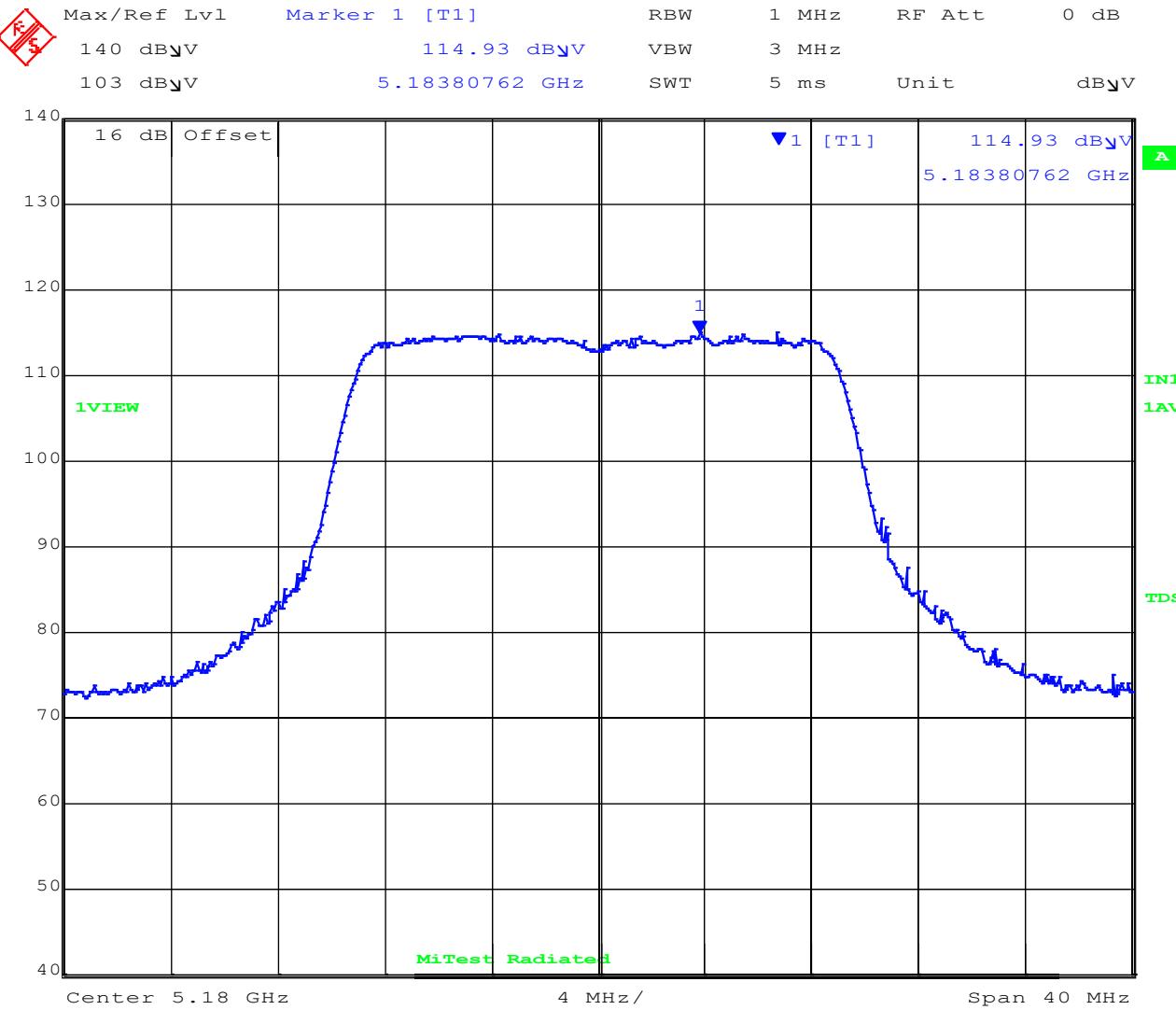
Date: 19.MAR.2021 15:41:38

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5174.19 MHz : 111.00 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 120 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5180.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

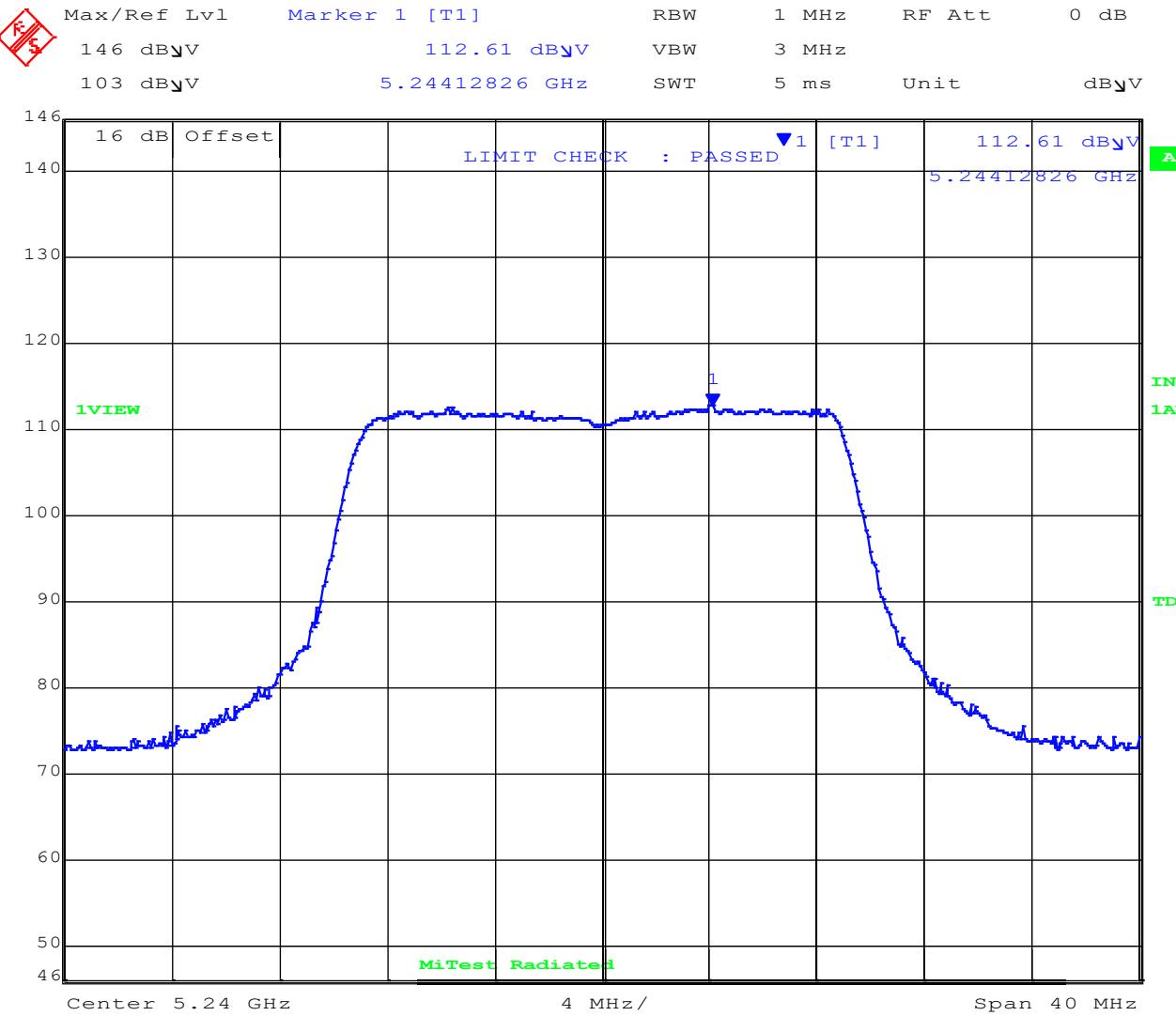
Date: 19.MAR.2021 15:42:39

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5183.81 MHz : 114.93 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 121 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Date: 23.MAR.2021 16:44:46

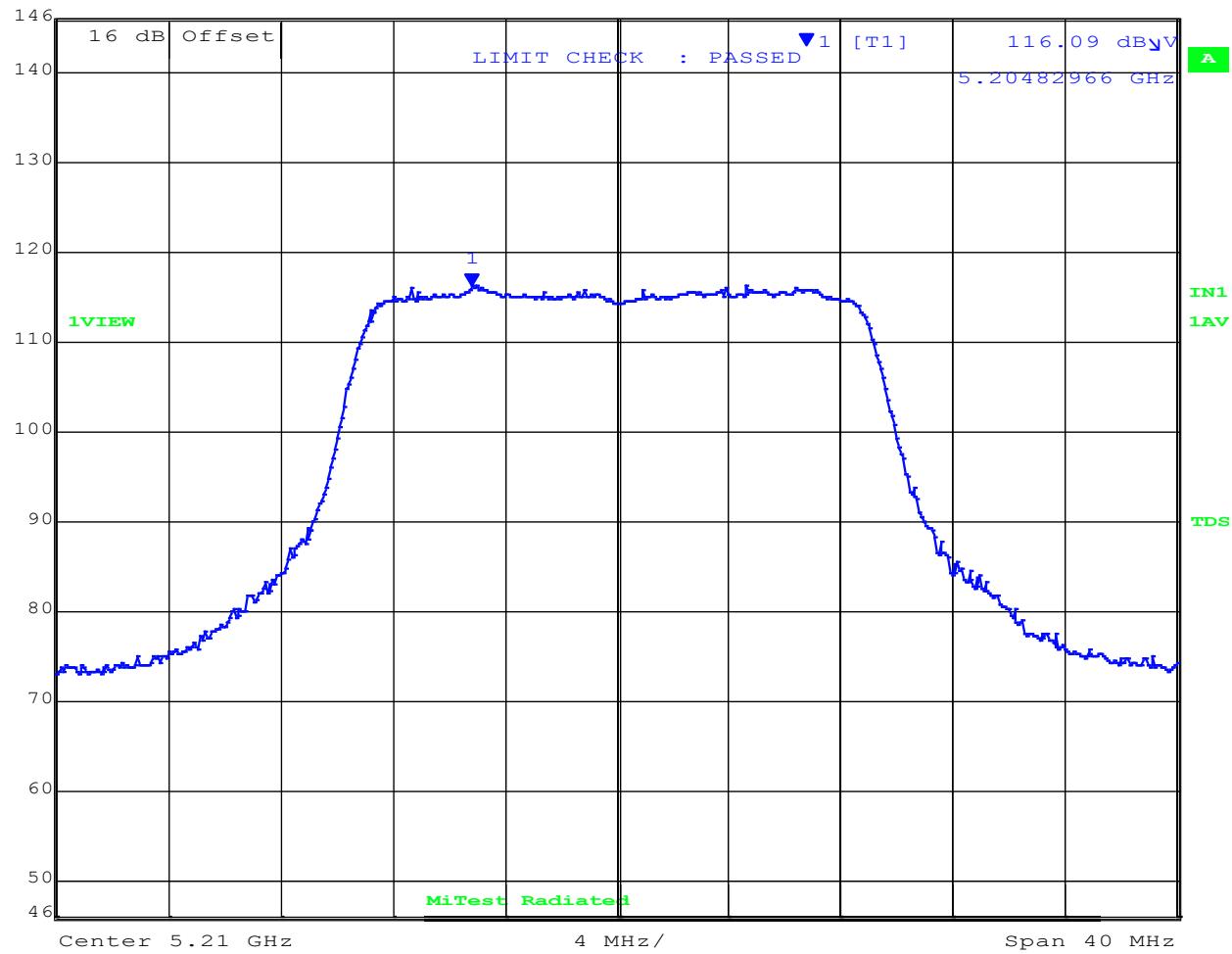
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5244.13 MHz : 112.61 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 122 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

	Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
	146 dB _V	116.09 dB _V	VBW	3 MHz		
	103 dB _V	5.20482966 GHz	SWT	5 ms	Unit	dB _V

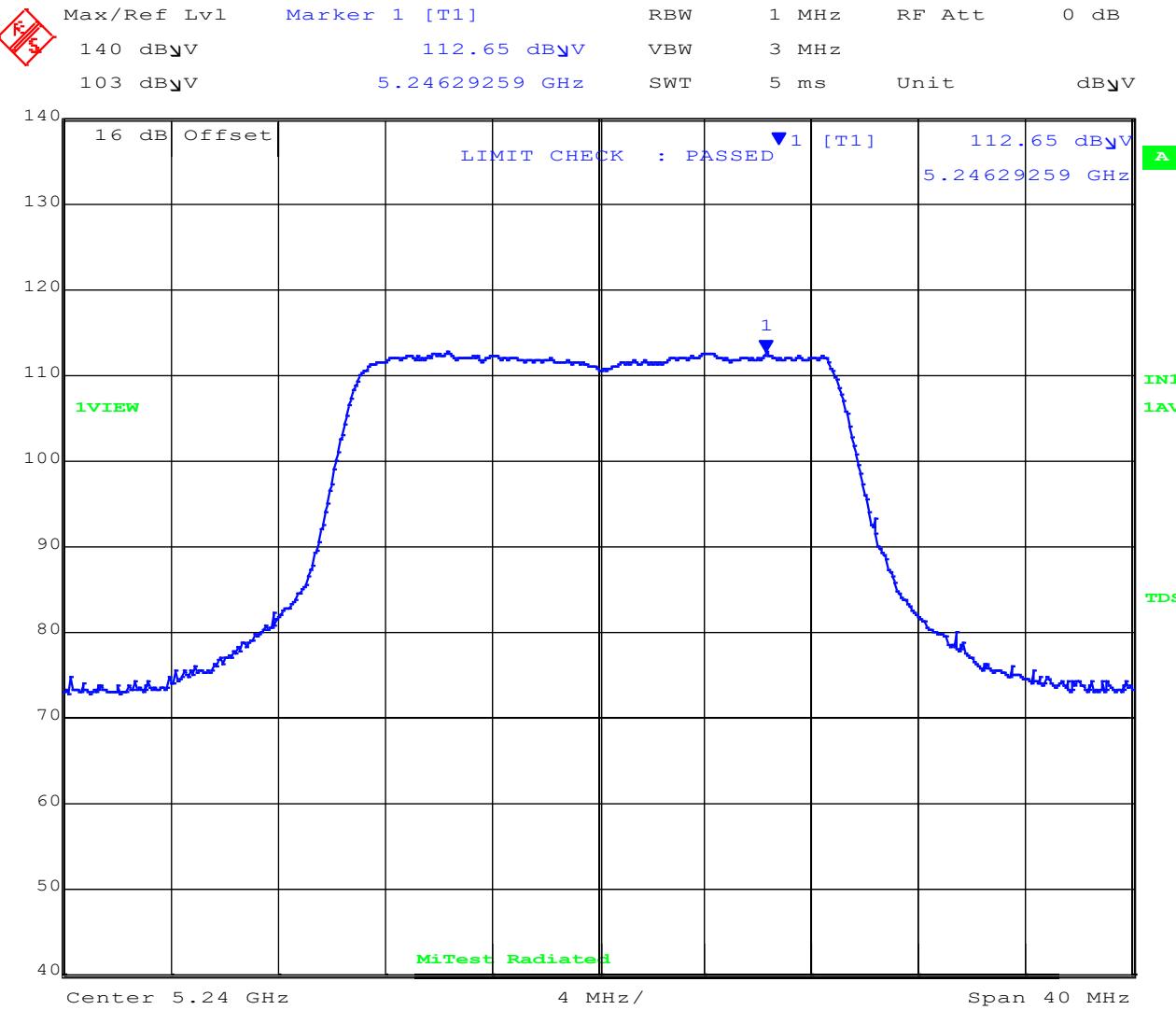
Date: 23.MAR.2021 16:36:02

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5204.83 MHz : 116.09 dB _V /m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 123 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5240.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

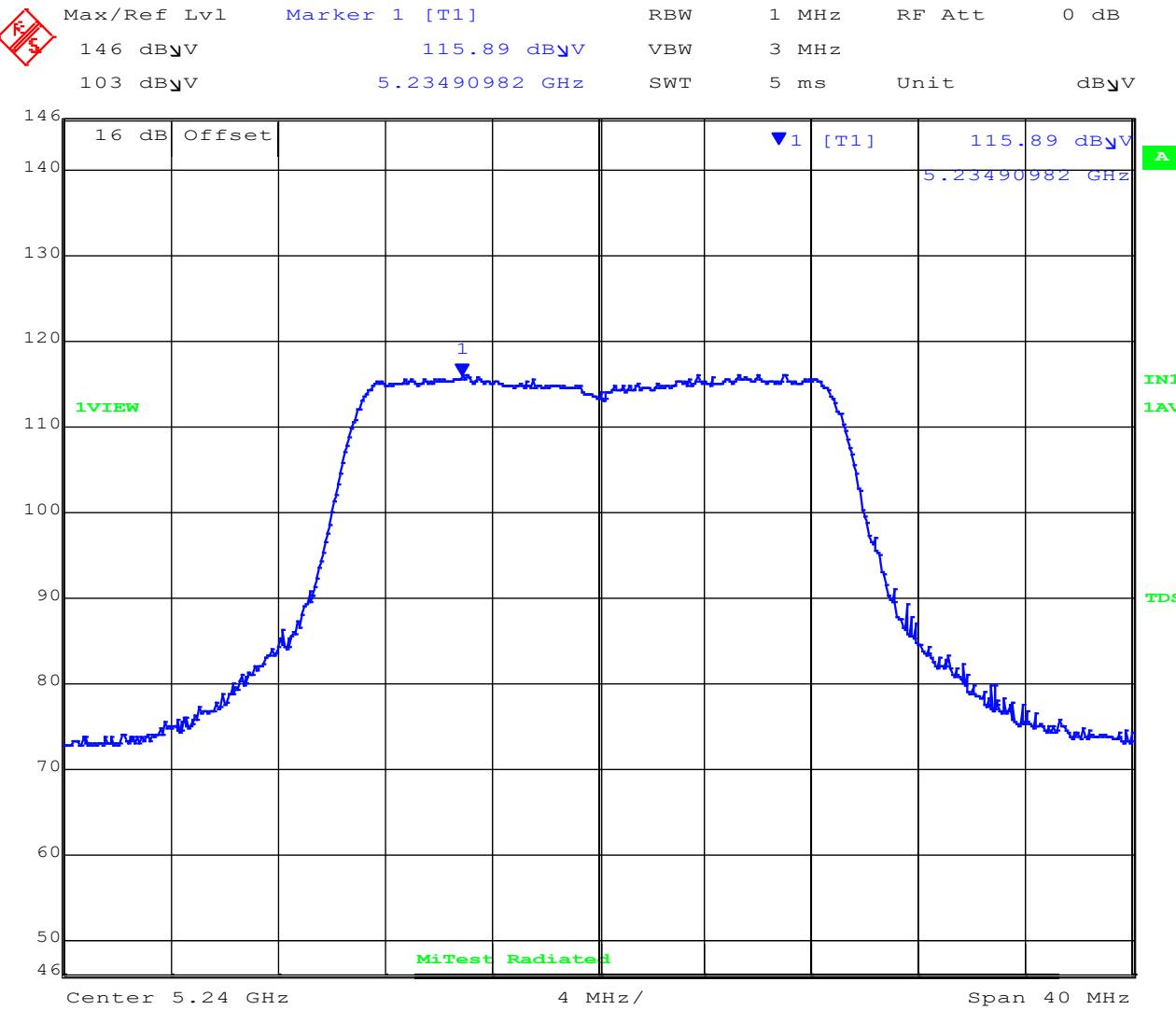
Date: 19.MAR.2021 15:32:39

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5246.29 MHz : 112.65 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 124 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 20 MHz, Channel: 5240.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

Date: 23.MAR.2021 16:40:33

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5234.19 MHz : 115.89 dB _{uV} /m	Limit: ≤ 7.00 dBm, Pass

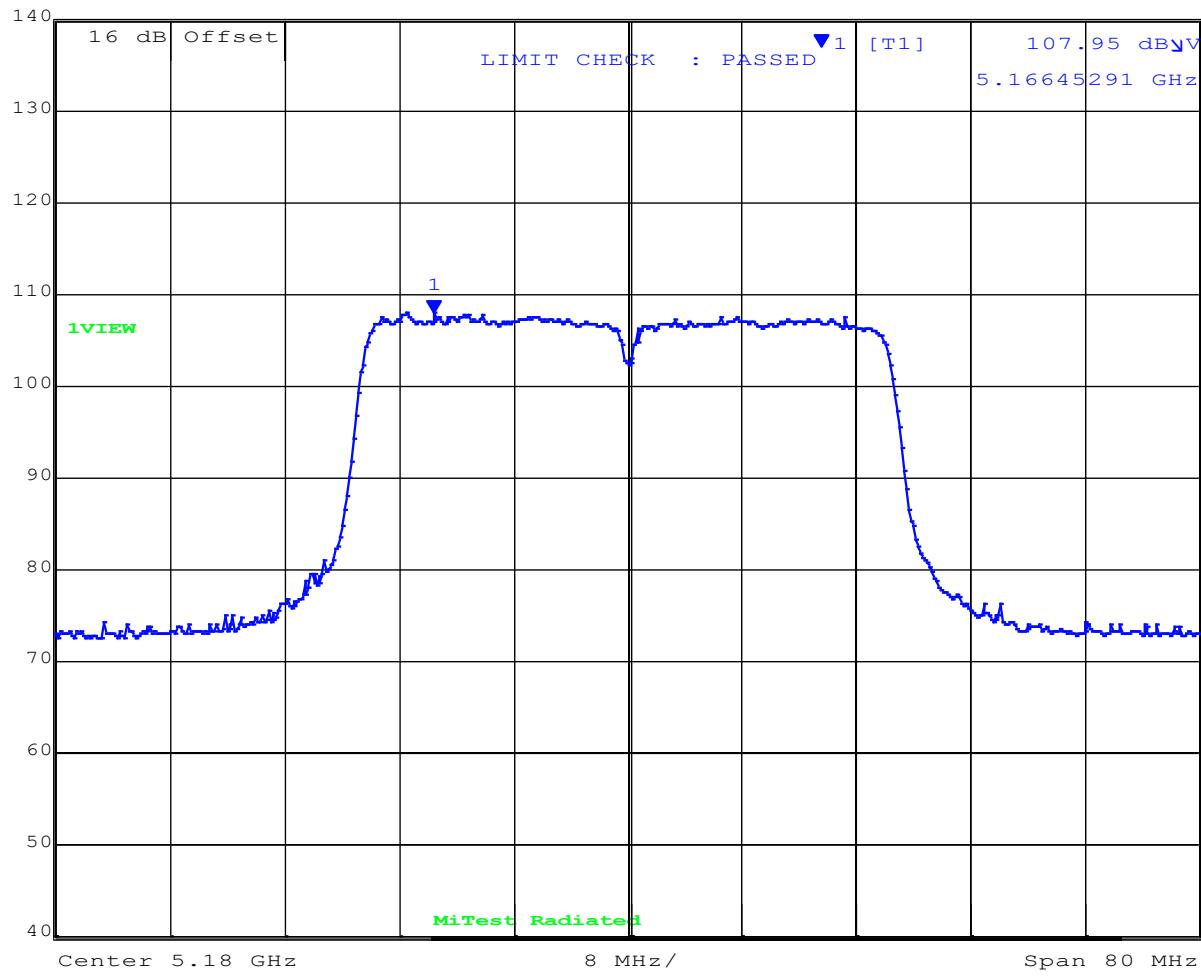
[back to matrix](#)

Issue Date: 12th April 2021

Page: 125 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com


POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5190.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl Marker 1 [T1] RBW 1 MHz RF Att 0 dB
 140 dB_V 107.95 dB_V VBW 3 MHz
 103 dB_V 5.16645291 GHz SWT 5 ms Unit dB_V

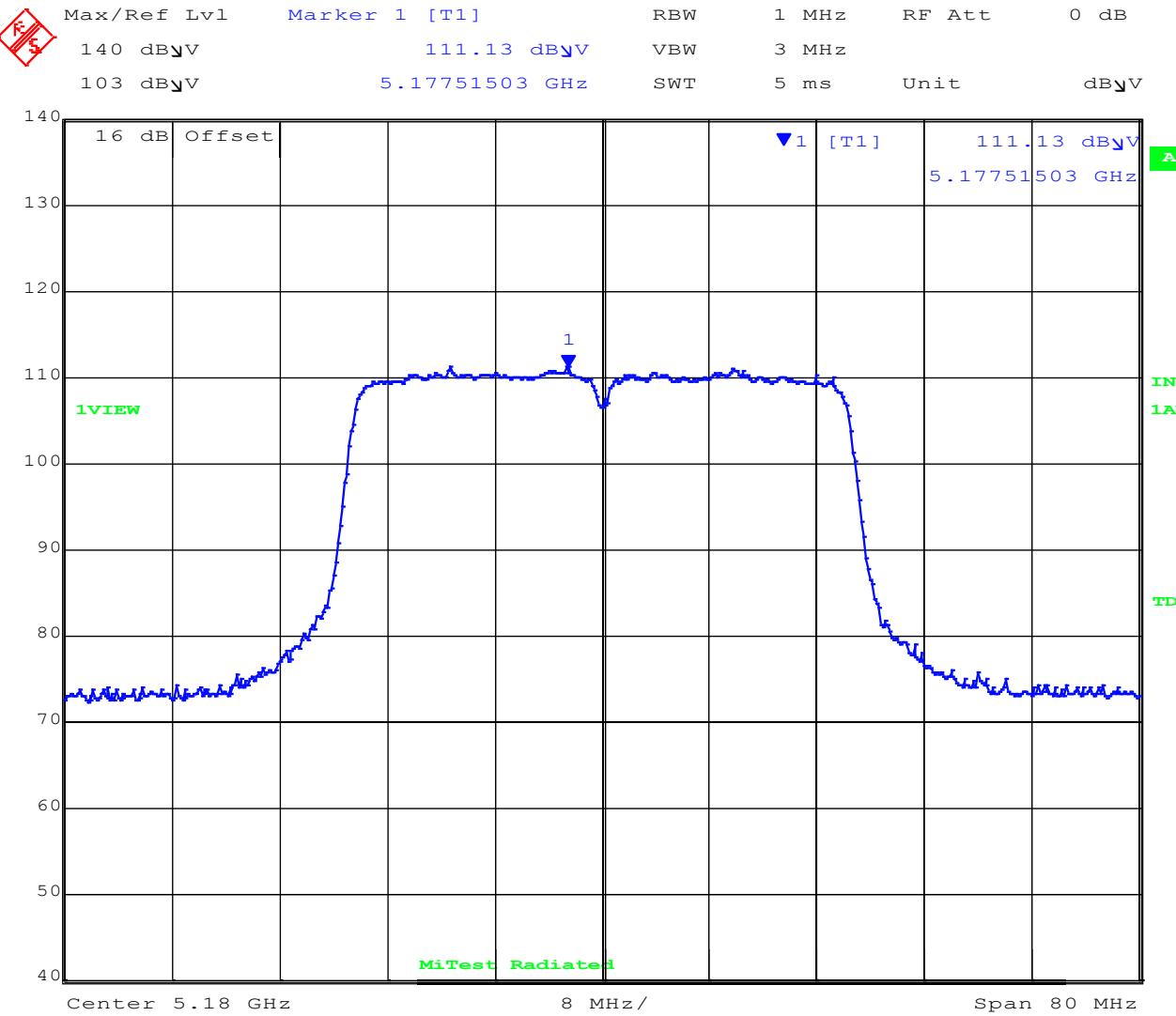
Date: 19.MAR.2021 15:51:57

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5166.45 MHz : 107.95 dB _V /m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 126 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5190.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

Date: 19.MAR.2021 15:50:15

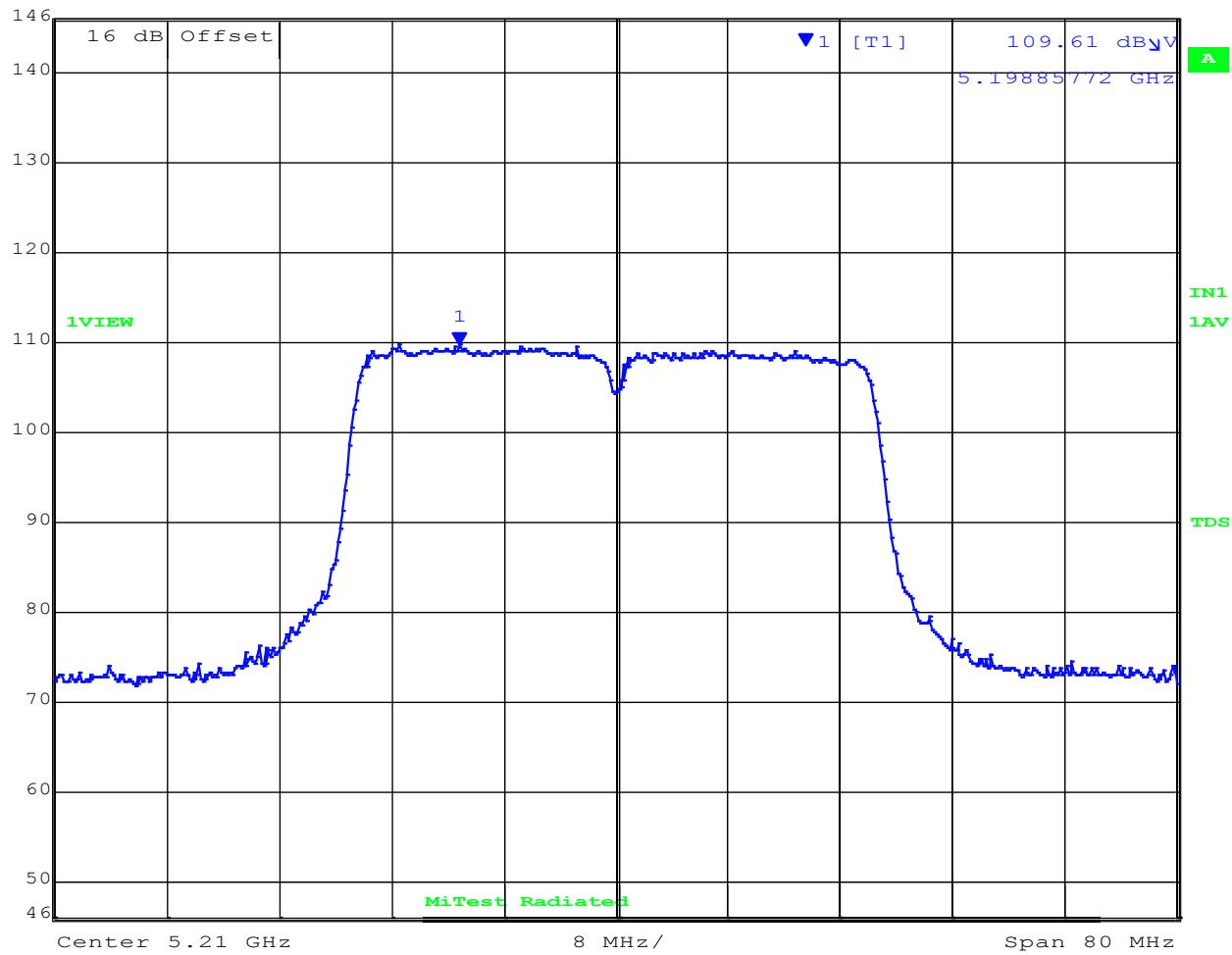
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5177.52 MHz : 111.13 dB _V /m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 127 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

 MiTest
regulatory compliance in the cloud

Variant: 40 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
146 dB _V	109.61 dB _V	VBW	3 MHz		
103 dB _V	5.19885772 GHz	SWT	5 ms	Unit	dB _V

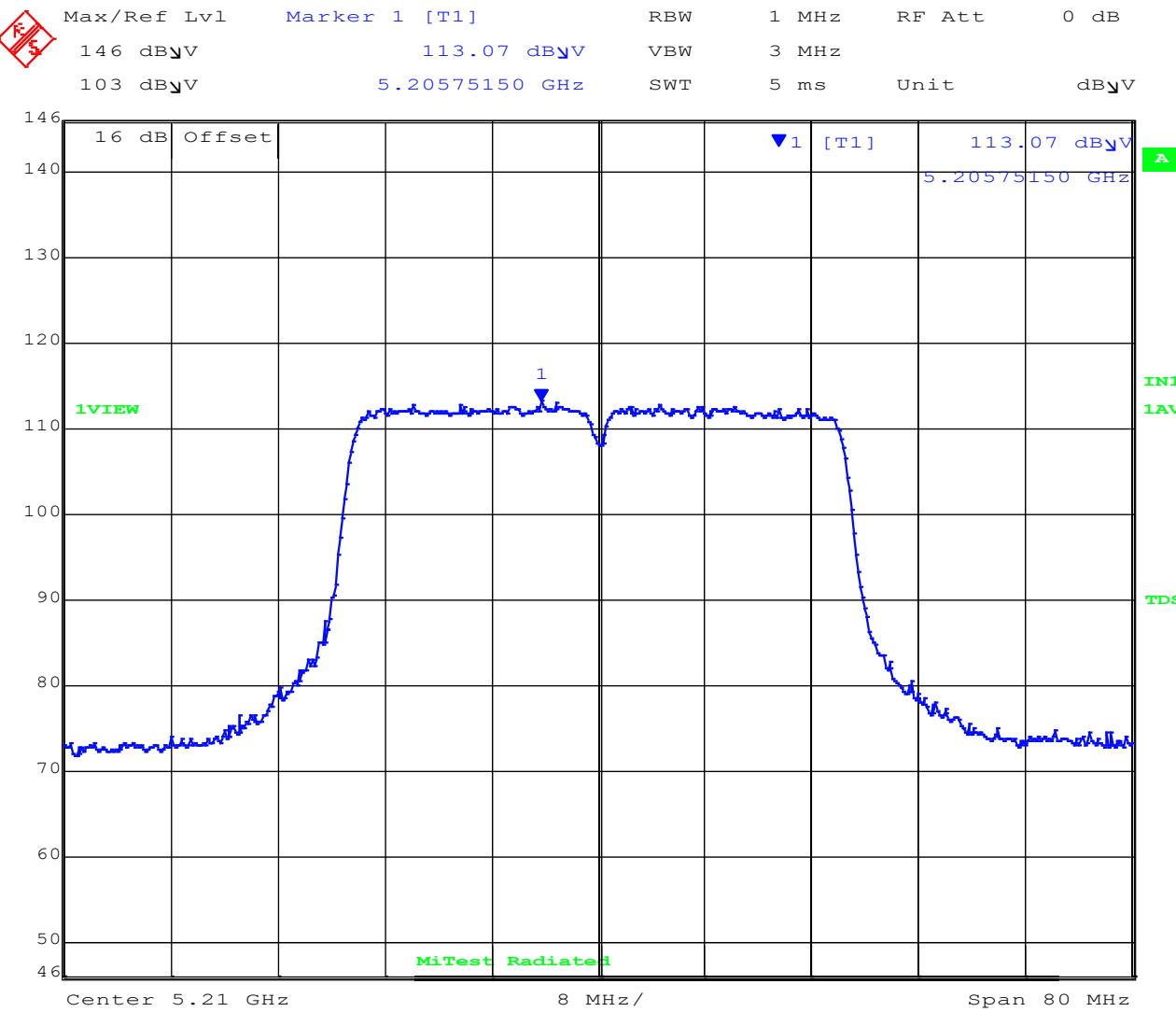
Date: 23.MAR.2021 16:55:14

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5198.86 MHz : 109.61 dBuV/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 128 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5210.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

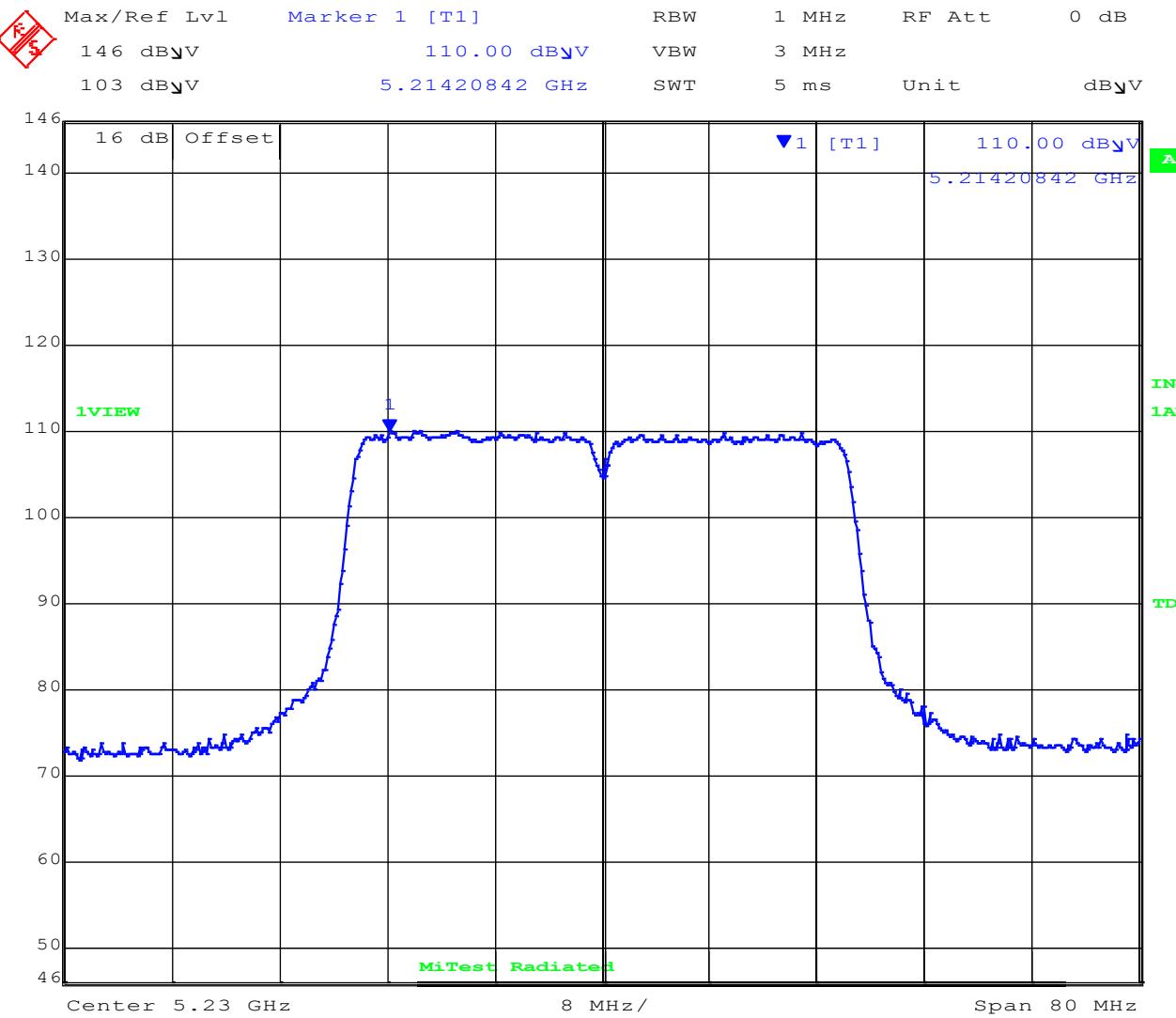
Date: 23.MAR.2021 16:56:08

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5205.75 MHz : 113.07 dB _{uV} /m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 129 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5230.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Date: 23.MAR.2021 16:52:22

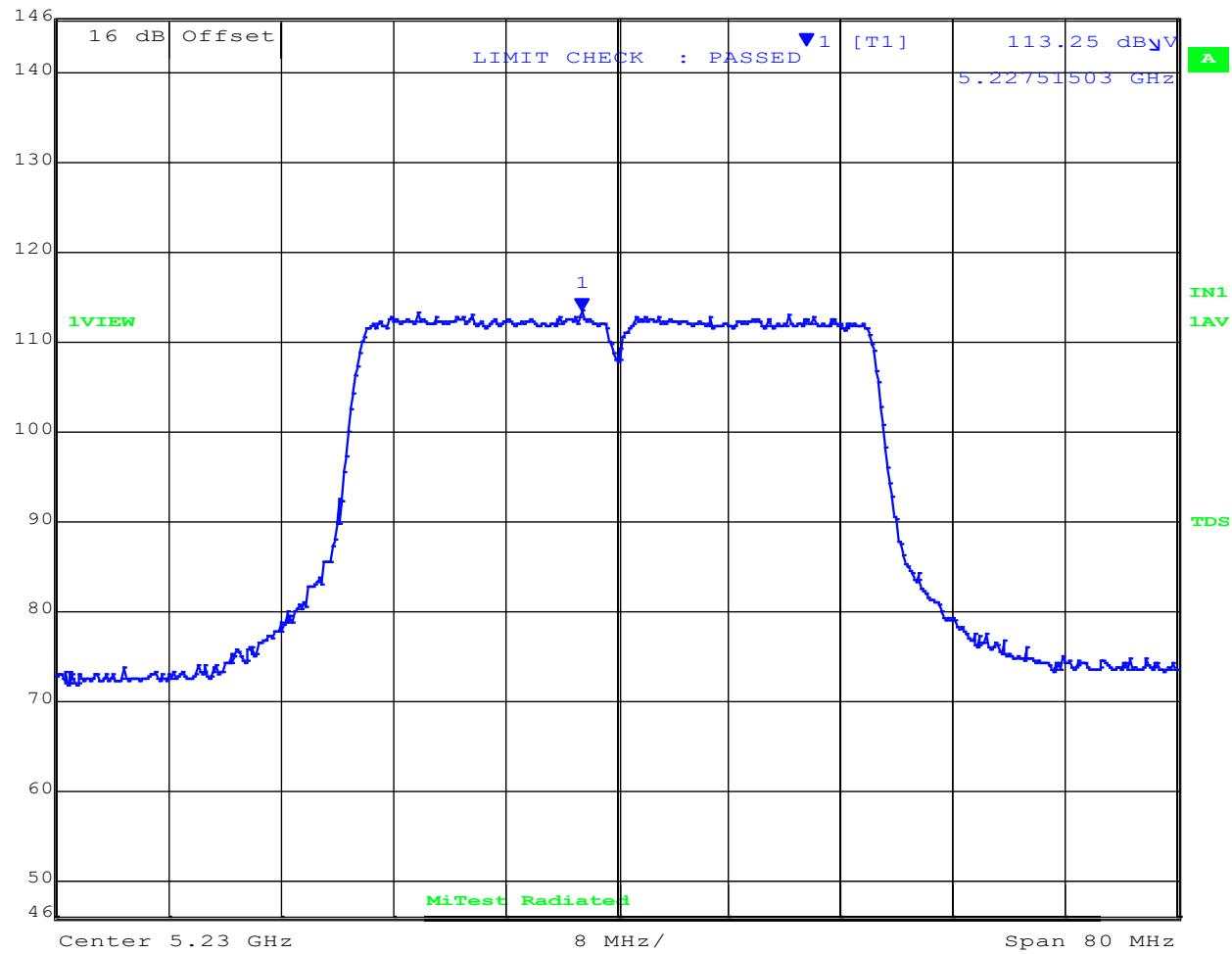
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5214.21 MHz : 110.00 dB _{uV} /m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 130 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 40 MHz, Channel: 5230.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

	Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
	146 dB _u V	113.25 dB _u V	VBW	3 MHz		
	103 dB _u V	5.22751503 GHz	SWT	5 ms	Unit	dB _u V

Date: 23.MAR.2021 16:53:25

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5227.52 MHz : 113.25 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

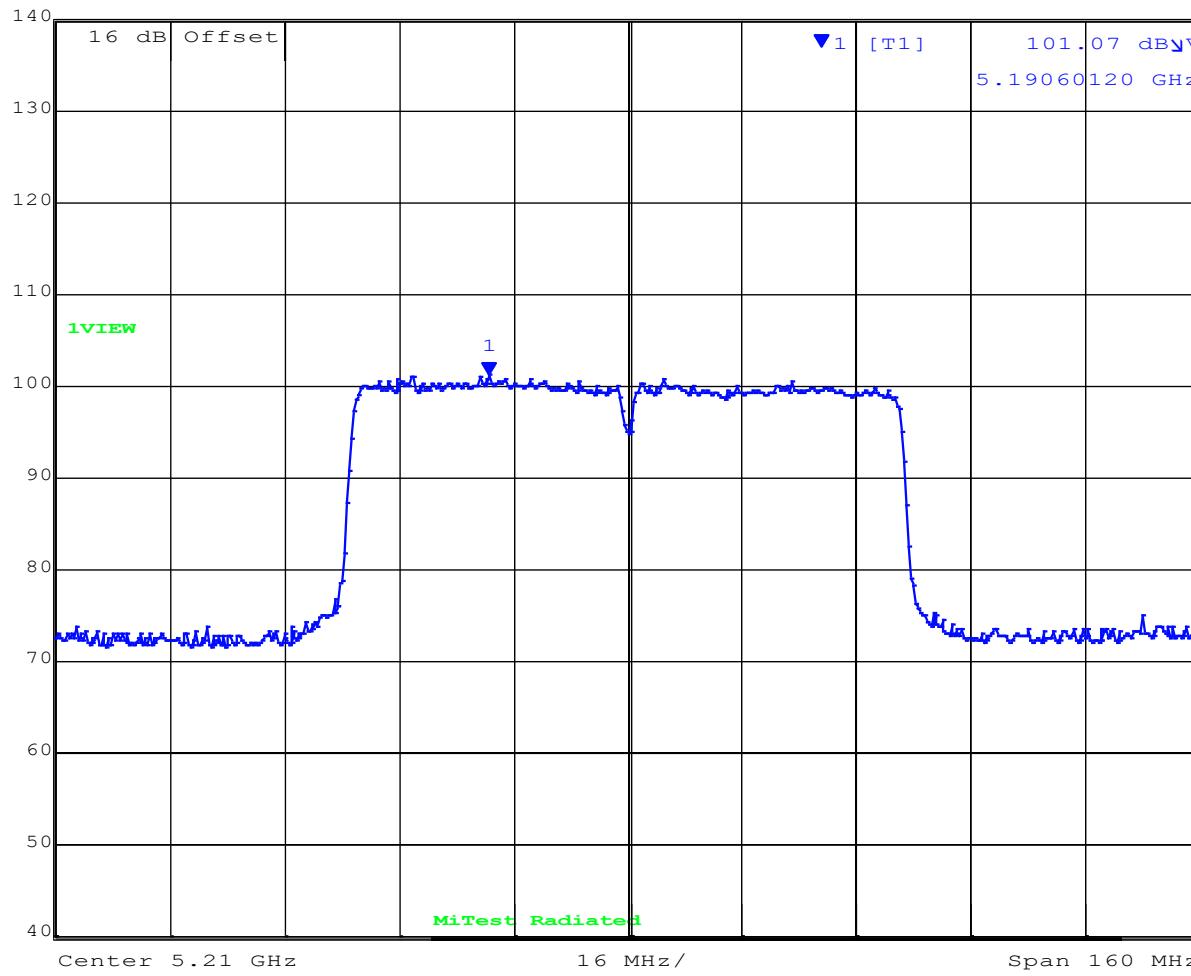
[back to matrix](#)

Issue Date: 12th April 2021

Page: 131 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com


POWER SPECTRAL DENSITY

Variant: 80 MHz, Channel: 5210.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

Max/Ref Lvl Marker 1 [T1] RBW 1 MHz RF Att 0 dB
 140 dB_uV 101.07 dB_uV VBW 3 MHz
 103 dB_uV 5.19060120 GHz SWT 5 ms Unit dB_uV

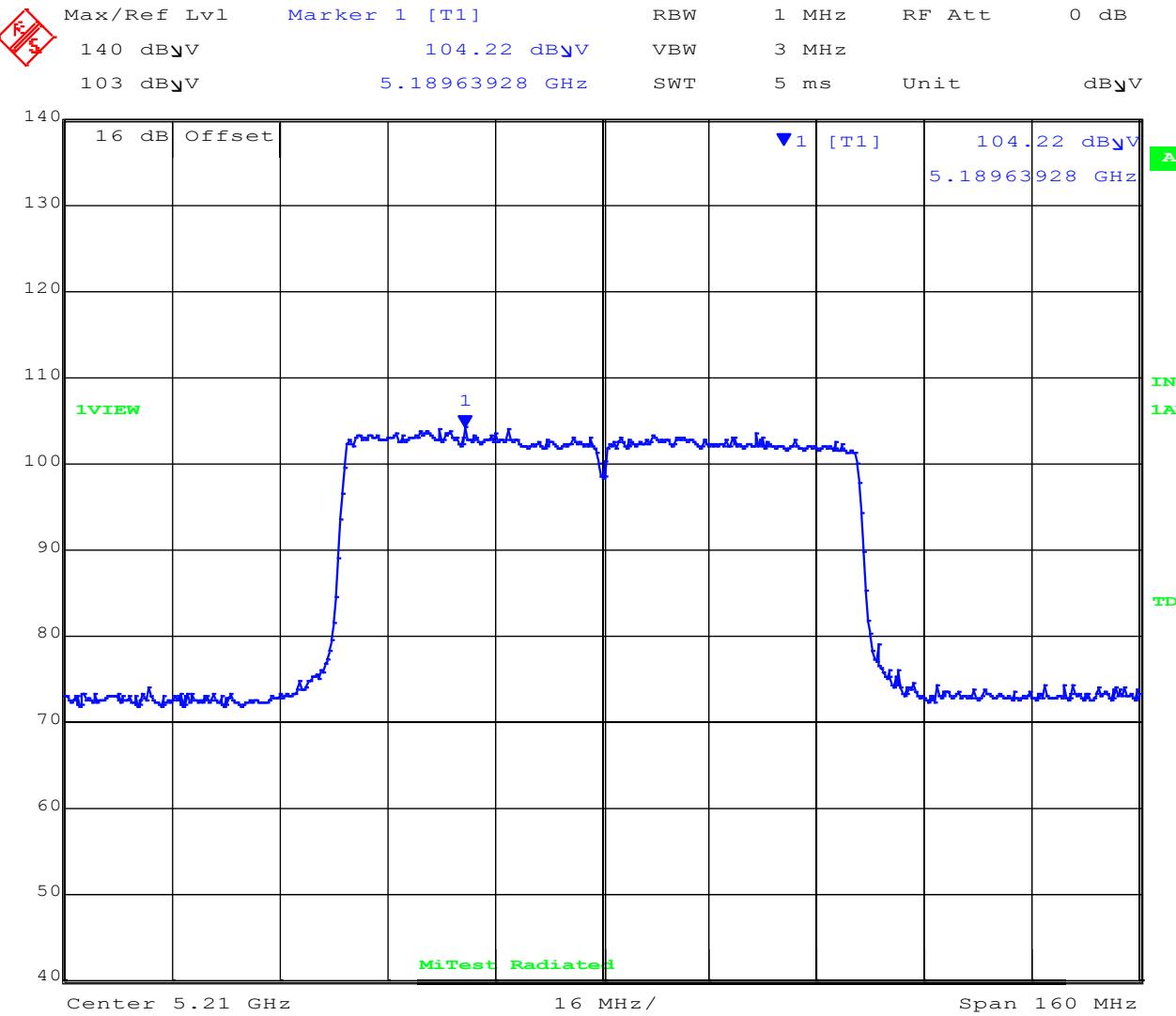
Date: 19. MAR. 2021 15:08:30

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5190.60 MHz : 101.07 dBuV/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

Issue Date: 12th April 2021

Page: 132 of 149


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

POWER SPECTRAL DENSITY

Variant: 80 MHz, Channel: 5210.00 MHz, Polarity V Temp: 20, Voltage: 55 Vdc

Date: 19.MAR.2021 15:08:01

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5189.64 MHz : 104.22 dB _u V/m	Limit: ≤ 7.00 dBm, Pass

[back to matrix](#)

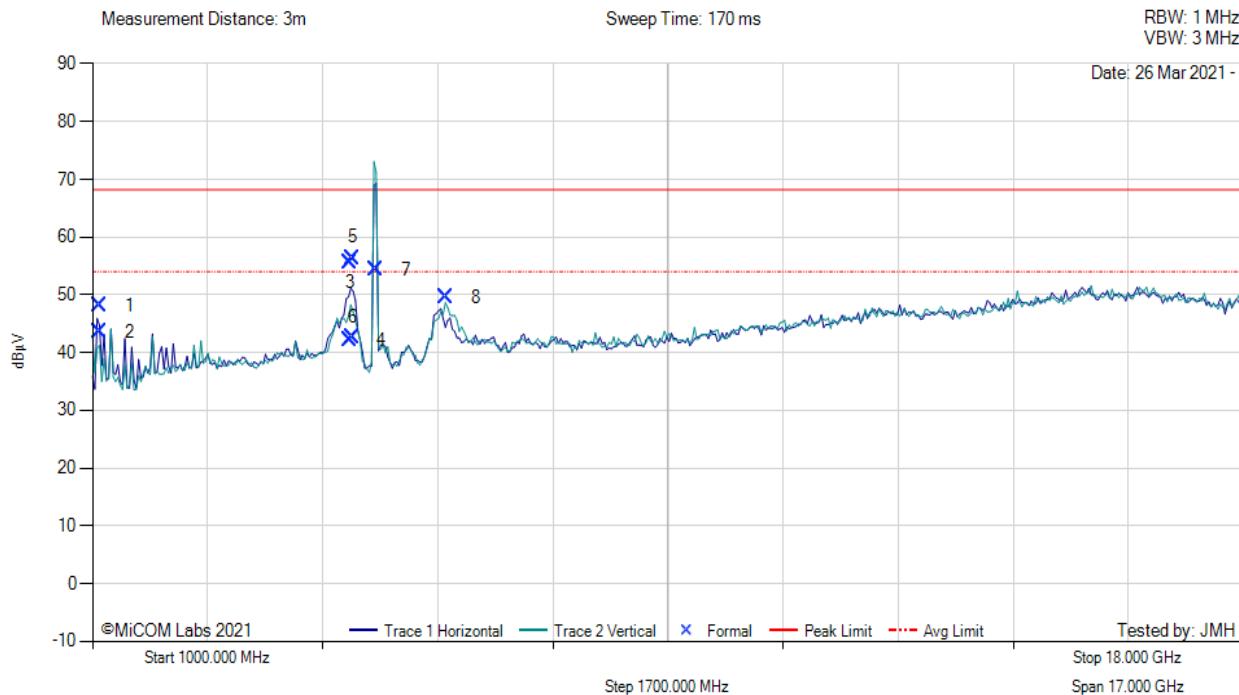
Issue Date: 12th April 2021

Page: 133 of 149

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

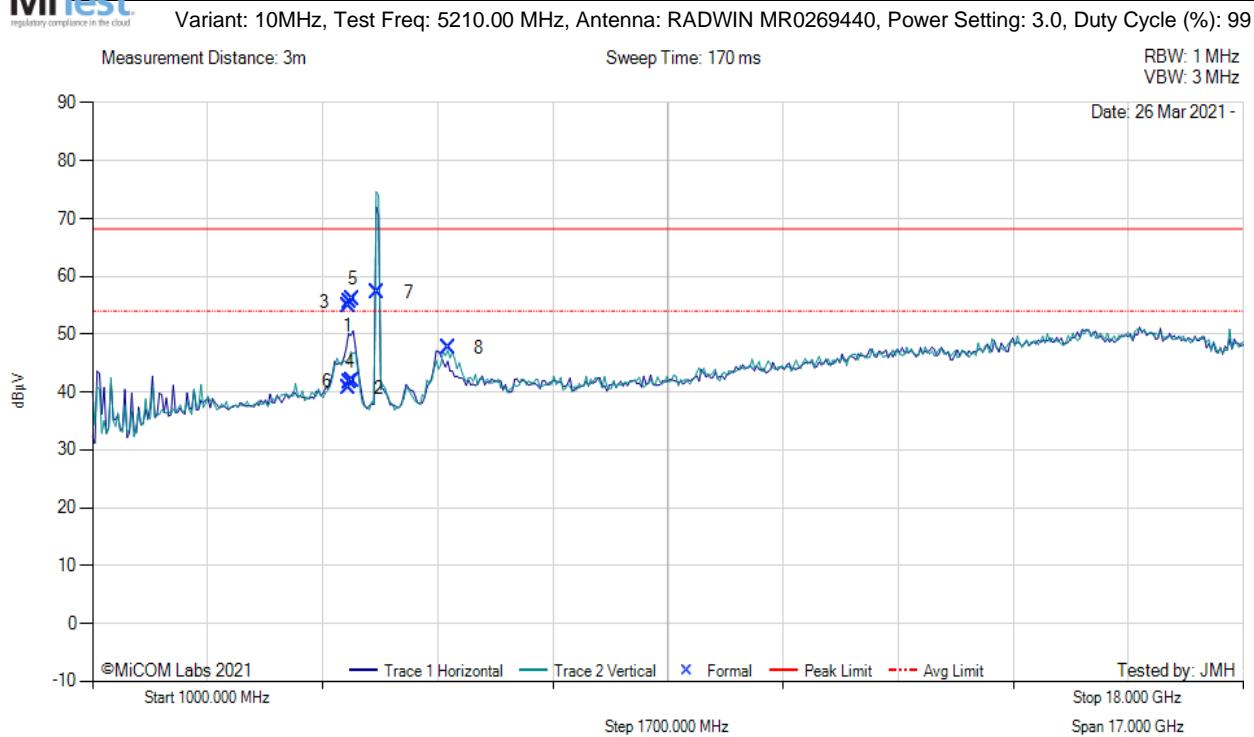
A.3. Radiated


A.3.1. TX Spurious & Restricted Band Emissions

A.3.1.1. RADWIN MR0269440

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: 10MHz, Test Freq: 5175.00 MHz, Antenna: RADWIN MR0269440, Power Setting: 3.0, Duty Cycle (%): 99

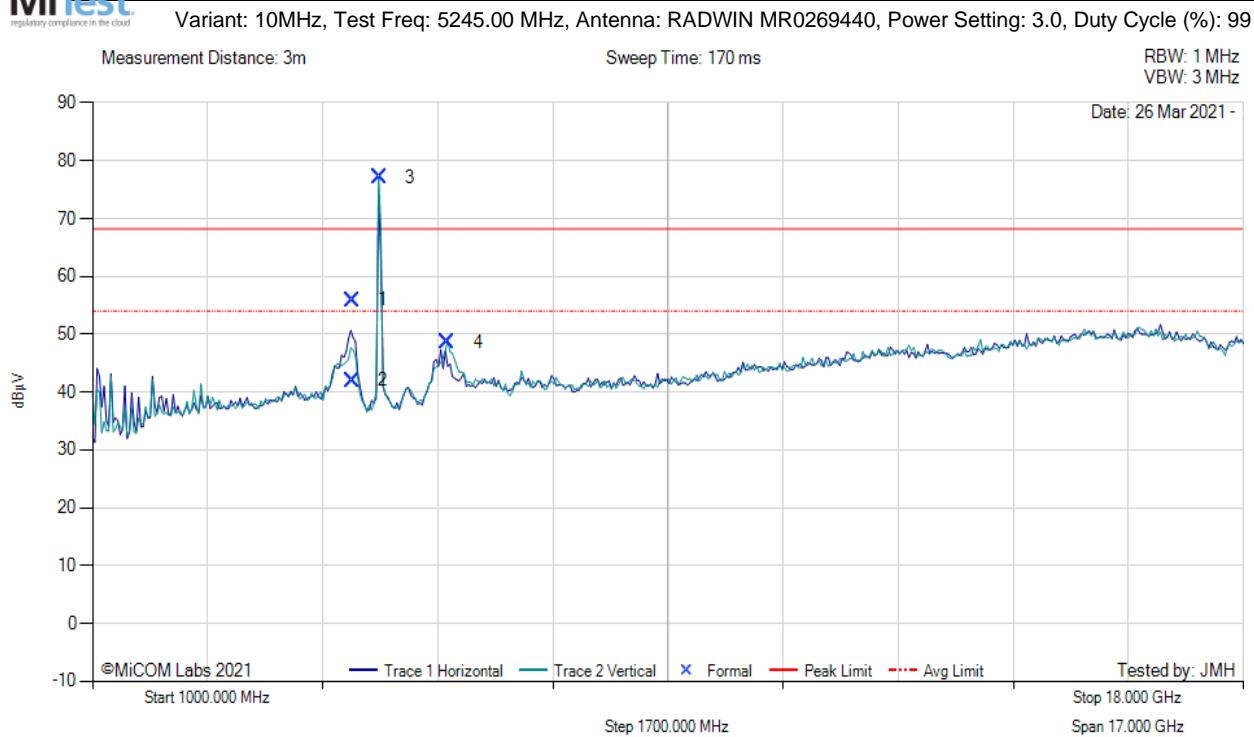


1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1100.07	64.16	1.36	-17.46	48.06	Max Peak	Horizontal	98	47	68.2	-20.2	Pass
2	1100.07	59.62	1.36	-17.46	43.52	Max Avg	Horizontal	98	47	54.0	-10.5	Pass
3	4810.64	65.21	2.85	-12.42	55.64	Max Peak	Horizontal	197	352	68.2	-12.6	Pass
4	4810.64	51.72	2.85	-12.42	42.15	Max Avg	Horizontal	197	352	54.0	-11.9	Pass
5	4838.01	66.16	2.81	-12.55	56.42	Max Peak	Horizontal	188	338	68.2	-11.8	Pass
6	4838.01	52.44	2.81	-12.55	42.70	Max Avg	Horizontal	188	338	54.0	-11.3	Pass
7	5178.44	63.46	2.97	-12.12	54.31	Fundamental	Vertical	100	0	--	--	
8	6221.84	55.83	3.32	-9.62	49.53	Peak (NRB)	Vertical	200	31	--	--	Pass

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

[back to matrix](#)

TX SPURIOUS & RESTRICTED BAND EMISSIONS

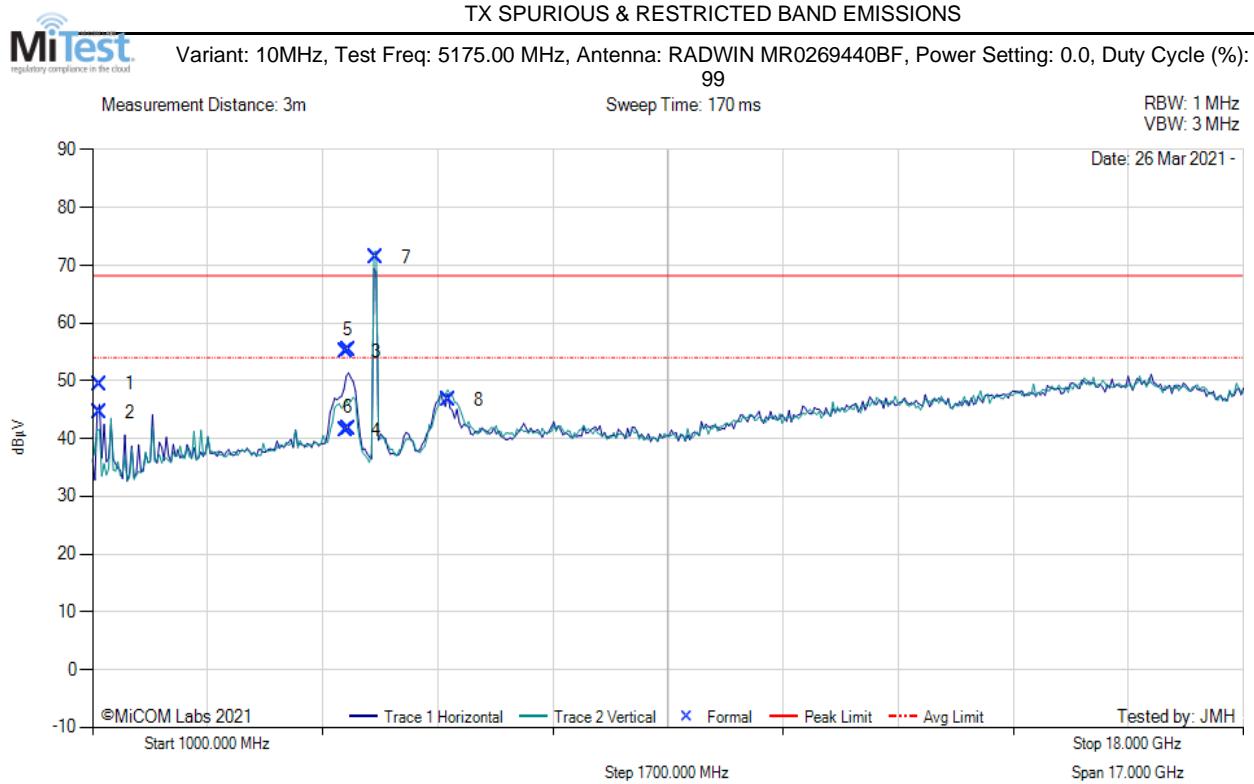


1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4778.36	64.54	2.87	-12.45	54.96	Max Peak	Horizontal	187	335	68.2	-13.3	Pass	
2	4778.36	50.31	2.87	-12.45	40.73	Max Avg	Horizontal	187	335	54.0	-13.3	Pass	
3	4807.58	65.10	2.85	-12.43	55.52	Max Peak	Horizontal	196	335	68.2	-12.7	Pass	
4	4807.58	51.30	2.85	-12.43	41.72	Max Avg	Horizontal	196	335	54.0	-12.3	Pass	
5	4838.18	65.78	2.81	-12.55	56.04	Max Peak	Horizontal	193	334	68.2	-12.2	Pass	
6	4838.18	51.61	2.81	-12.55	41.87	Max Avg	Horizontal	193	334	54.0	-12.1	Pass	
7	5211.71	66.57	2.99	-12.36	57.20	Fundamental	Vertical	100	0	--	--		
8	6250.62	53.82	3.25	-9.49	47.58	Peak (NRB)	Vertical	200	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

[back to matrix](#)

TX SPURIOUS & RESTRICTED BAND EMISSIONS



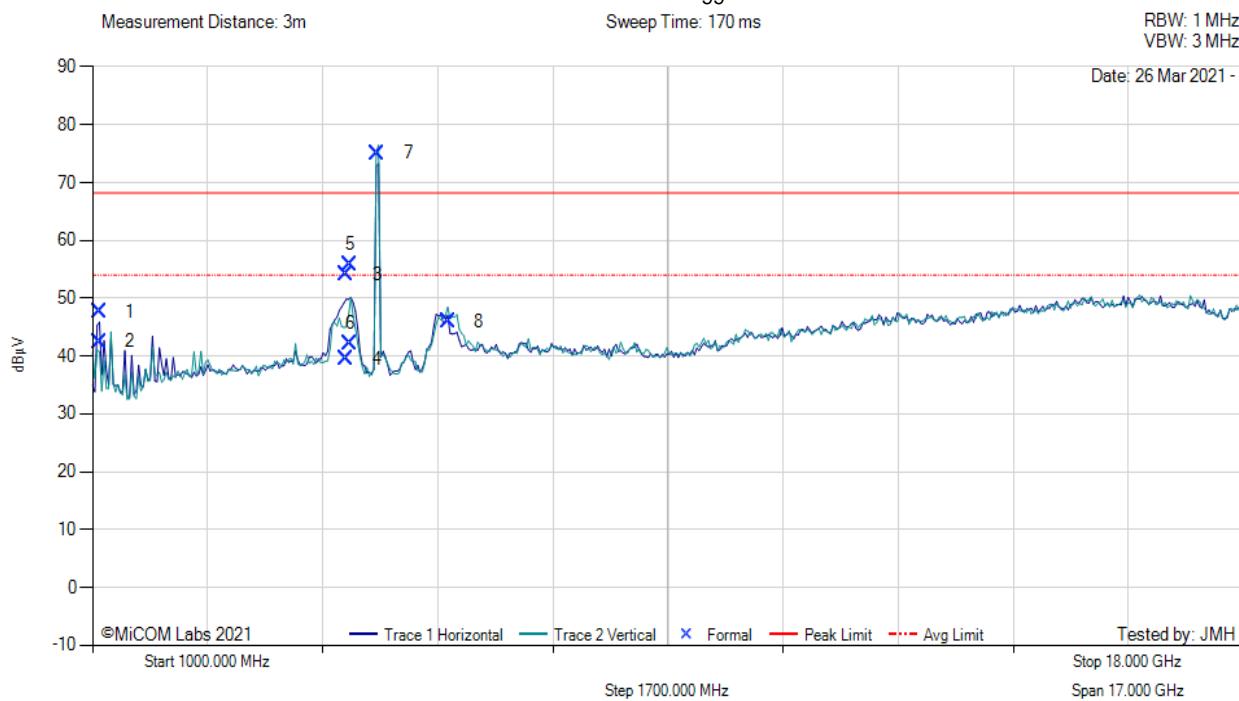
1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4839.11	65.65	2.82	-12.55	55.92	Max Peak	Horizontal	189	356	68.2	-12.3	Pass	
2	4839.11	51.77	2.82	-12.55	42.04	Max Avg	Horizontal	189	356	54.0	-12.0	Pass	
3	5242.14	86.17	3.02	-12.03	77.16	Fundamental	Vertical	200	0	--	--		
4	6247.65	54.90	3.25	-9.51	48.64	Peak (NRB)	Vertical	200	67	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

[back to matrix](#)

A.3.1.2. RADWIN MR0269440BF

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1100.02	65.56	1.36	-17.46	49.46	Max Peak	Horizontal	154	34	68.2	-18.8	Pass	
2	1100.02	60.62	1.36	-17.46	44.52	Max Avg	Horizontal	154	34	54.0	-9.5	Pass	
3	4748.66	64.56	2.84	-12.35	55.05	Max Peak	Horizontal	184	0	68.2	-13.2	Pass	
4	4748.66	50.96	2.84	-12.35	41.45	Max Avg	Horizontal	184	0	54.0	-12.6	Pass	
5	4778.32	64.94	2.87	-12.45	55.36	Max Peak	Horizontal	186	1	68.2	-12.9	Pass	
6	4778.32	51.38	2.87	-12.45	41.80	Max Avg	Horizontal	186	1	54.0	-12.2	Pass	
7	5176.55	80.57	2.96	-12.14	71.39	Fundamental	Vertical	150	0	--	--		
8	6249.94	52.90	3.25	-9.50	46.65	Peak (NRB)	Vertical	150	0	--	--	Pass	


Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

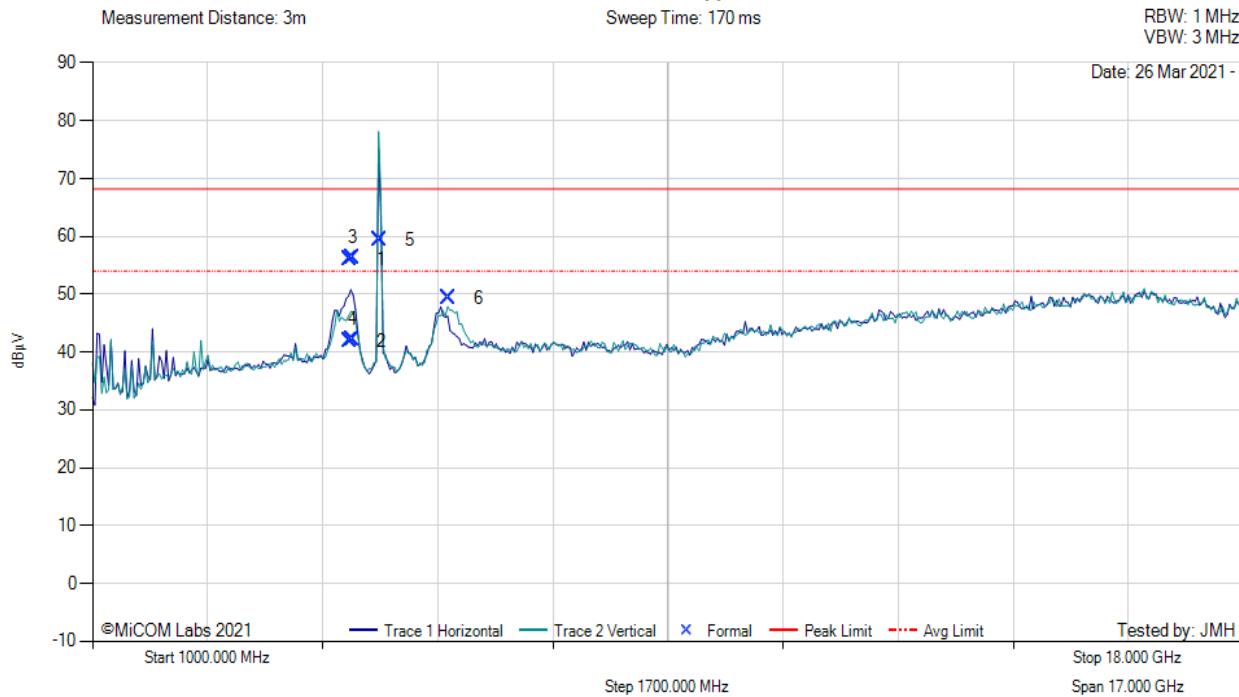
[back to matrix](#)

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: 10MHz, Test Freq: 5210.00 MHz, Antenna: RADWIN MR0269440BF, Power Setting: 0.0, Duty Cycle (%): 99

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1100.05	63.75	1.36	-17.46	47.65	Max Peak	Horizontal	194	28	68.2	-20.6	Pass	
2	1100.05	58.64	1.36	-17.46	42.54	Max Avg	Horizontal	194	28	54.0	-11.5	Pass	
3	4750.59	63.66	2.82	-12.36	54.12	Max Peak	Horizontal	195	350	68.2	-14.1	Pass	
4	4750.59	49.08	2.82	-12.36	39.54	Max Avg	Horizontal	195	350	54.0	-14.5	Pass	
5	4809.28	65.34	2.85	-12.42	55.77	Max Peak	Horizontal	182	0	68.2	-12.5	Pass	
6	4809.28	51.68	2.85	-12.42	42.11	Max Avg	Horizontal	182	0	54.0	-11.9	Pass	
7	5209.62	84.43	2.99	-12.37	75.05	Fundamental	Vertical	150	0	--	--		
8	6250.07	52.25	3.25	-9.49	46.01	Peak (NRB)	Vertical	150	0	--	--	Pass	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.


[back to matrix](#)

TX SPURIOUS & RESTRICTED BAND EMISSIONS

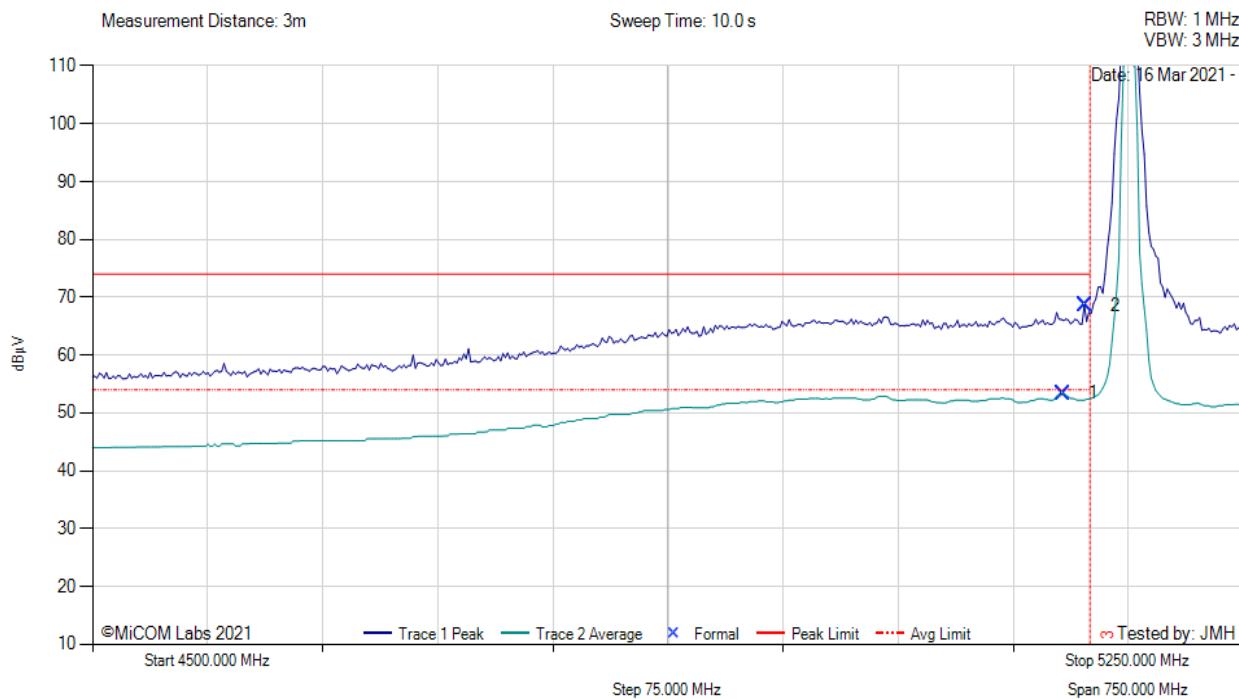
Variant: 10MHz, Test Freq: 5245.00 MHz, Antenna: RADWIN MR0269440BF, Power Setting: 0.0, Duty Cycle (%):

99

1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4809.83	65.59	2.85	-12.42	56.02	Max Peak	Horizontal	185	357	68.2	-12.2	Pass	
2	4809.83	51.52	2.85	-12.42	41.95	Max Avg	Horizontal	185	357	54.0	-12.1	Pass	
3	4836.91	66.02	2.81	-12.54	56.29	Max Peak	Horizontal	177	0	68.2	-11.9	Pass	
4	4836.91	51.90	2.81	-12.54	42.17	Max Avg	Horizontal	177	0	54.0	-11.8	Pass	
5	5243.02	68.44	3.02	-12.03	59.43	Fundamental	Vertical	100	0	--	--		
6	6250.07	55.51	3.25	-9.49	49.27	Peak (NRB)	Vertical	150	0	--	--	Pass	

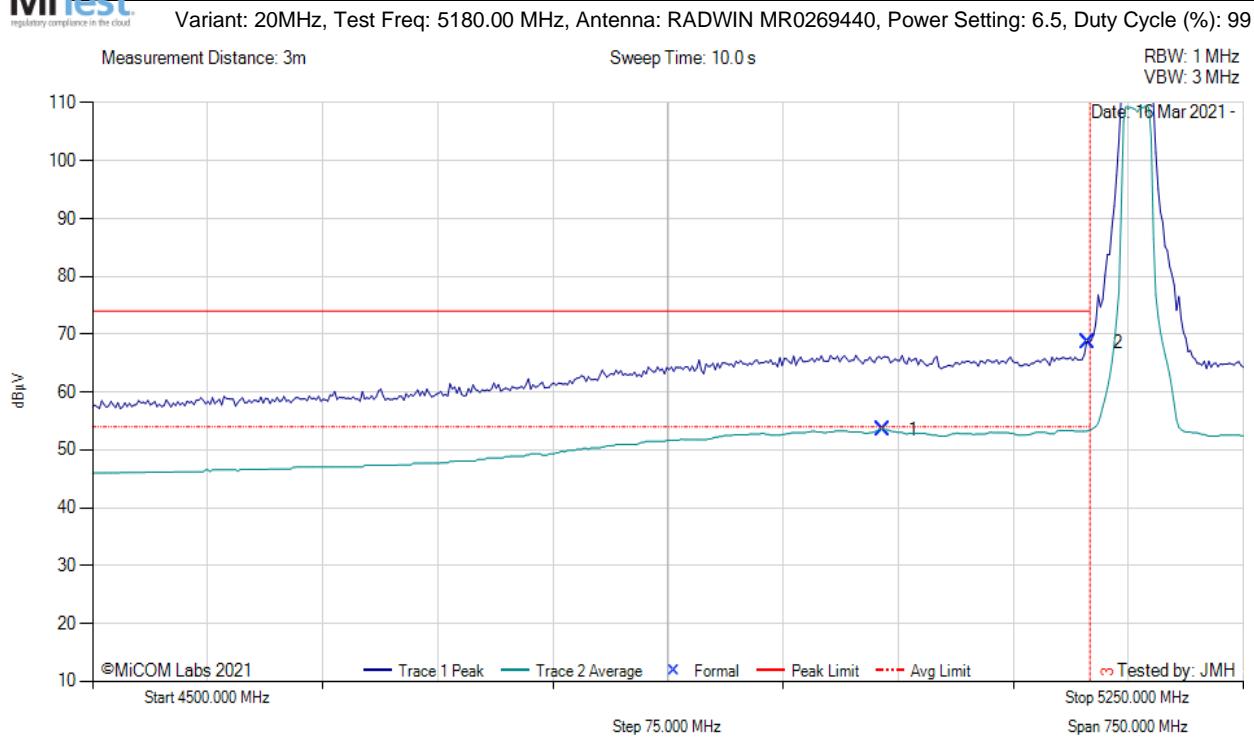
Test Notes: EUT powered by POE. Connected to laptop outside chamber. 5G Notch in front of amp to prevent overload.

[back to matrix](#)


A.3.2. Restricted Edge & Band-Edge Emissions

A.3.2.3. RADWIN MR0269440

RESTRICTED LOWER BAND-EDGE EMISSIONS
 Variant: 10MHz, Test Freq: 5175.00 MHz, Antenna: RADWIN MR0269440, Power Setting: 7.0, Duty Cycle (%): 99

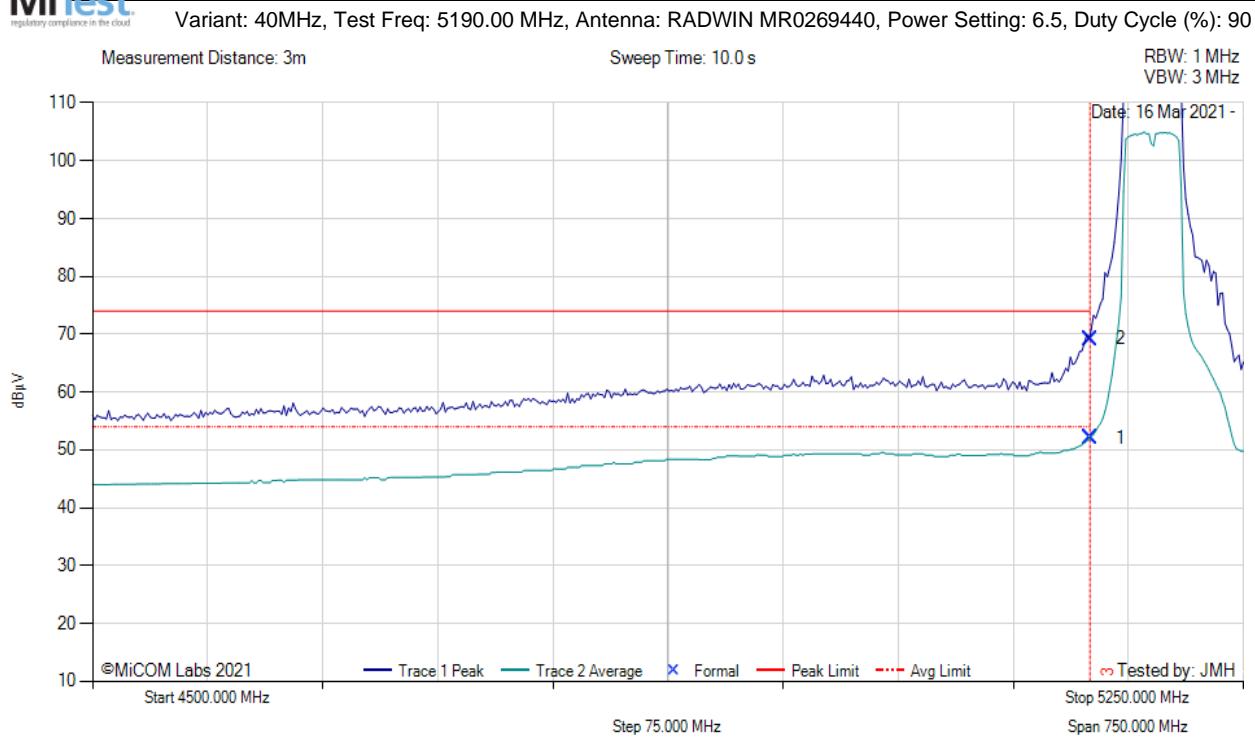


4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	5132.77	16.23	2.98	34.18	53.39	Max Avg	Vertical	189	33	54.0	-0.6	Pass	
2	5146.99	31.46	2.91	34.21	68.58	Max Peak	Vertical	189	33	74.0	-5.4	Fail	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber.

[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

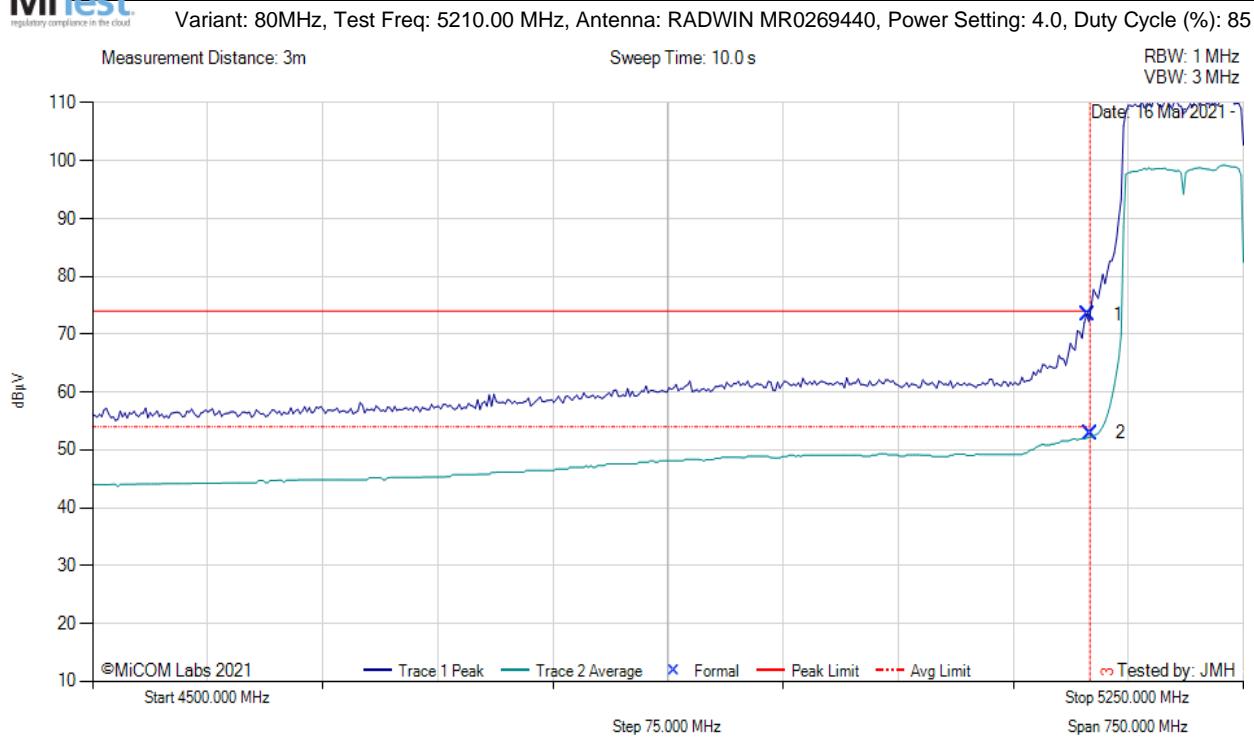


4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5014.73	16.57	2.92	34.08	53.57	Max Avg	Vertical	189	33	54.0	-0.4	Pass	
2	5148.50	31.55	2.91	34.21	68.67	Max Peak	Vertical	189	33	74.0	-5.3	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber.

[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

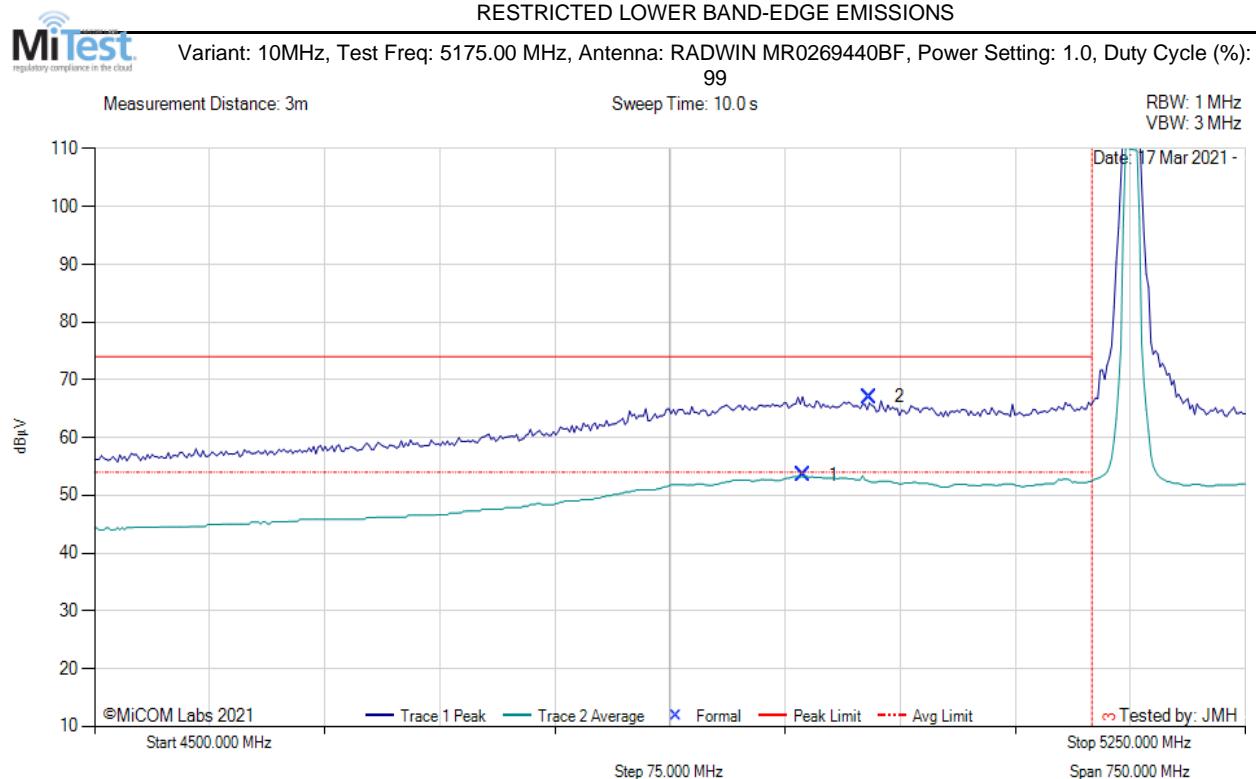


4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5150.00	15.01	2.93	34.21	52.15	Max Avg	Vertical	189	33	54.0	-1.9	Pass	
2	5150.00	32.03	2.93	34.21	69.17	Max Peak	Vertical	189	33	74.0	-4.8	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE, connected to laptop outside chamber. 0.4 DCCF added to average measurement.

[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS


4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5148.50	36.27	2.91	34.21	73.39	Max Peak	Vertical	189	33	74.0	-0.6	Pass	
2	5150.00	15.80	2.93	34.21	52.94	Max Avg	Vertical	189	33	54.0	-1.1	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

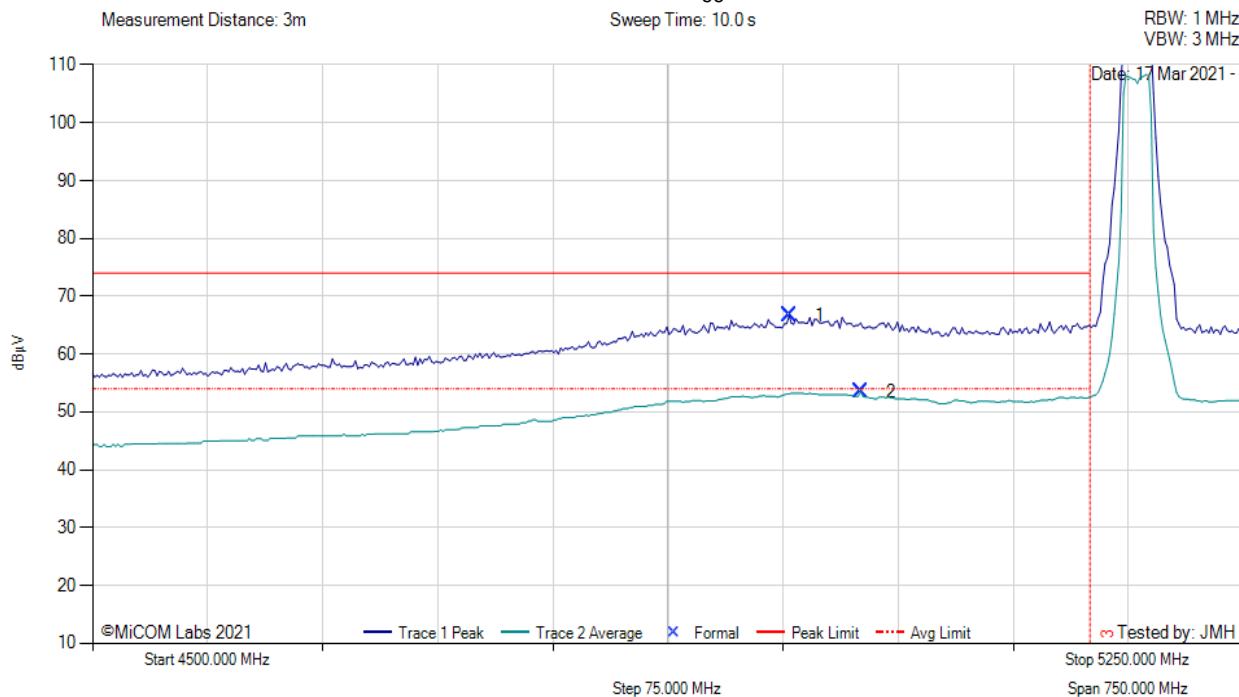
Test Notes: EUT powered by POE, connected to laptop outside chamber. 0.71 DCCF added to average measurement.

[back to matrix](#)

A.3.2.4. RADWIN MR0269440BF

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dB μ V	Cable Loss dB	AF dB/m	Level dB μ V/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dB μ V/m	Margin dB	Pass /Fail	
1	4961.72	16.34	2.90	34.22	53.46	Max Avg	Vertical	185	1	54.0	-0.5	Pass	
2	5005.01	30.13	2.91	34.02	67.06	Max Peak	Vertical	185	1	74.0	-6.9	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber.

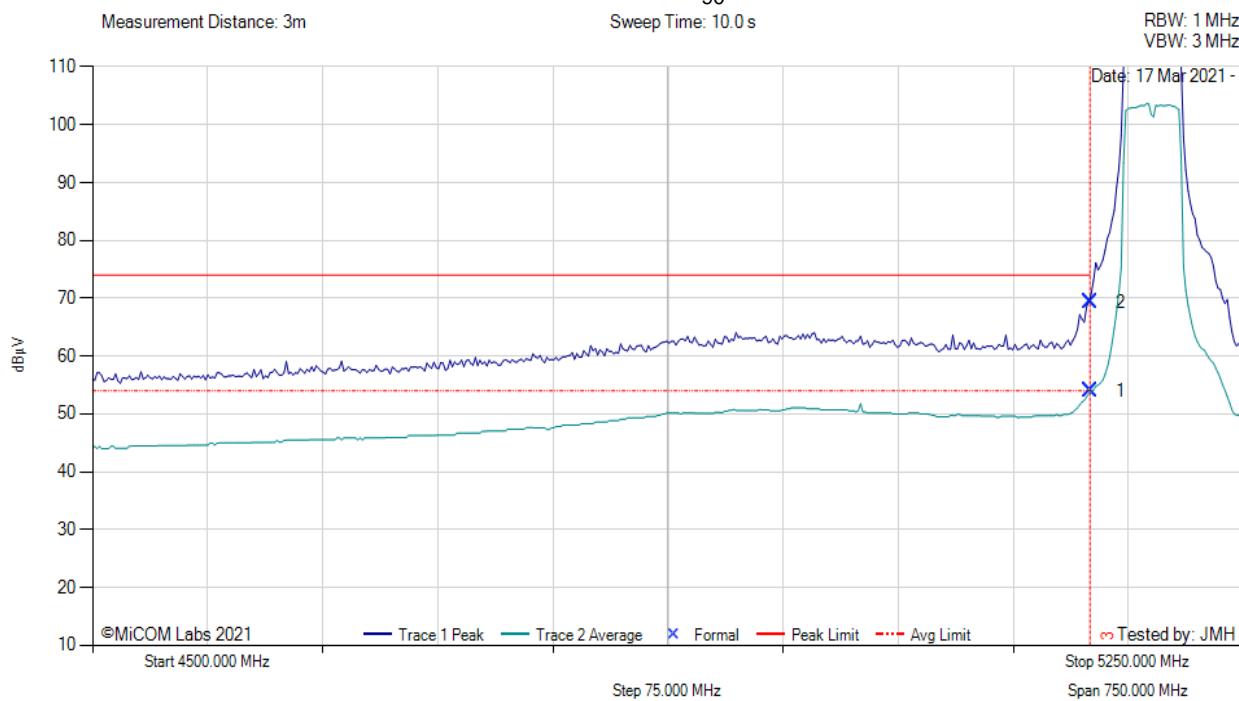

[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

Variant: 20MHz, Test Freq: 5180.00 MHz, Antenna: RADWIN MR0269440BF, Power Setting: 1.0, Duty Cycle (%):

99

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	4953.91	29.71	2.91	34.01	66.63	Max Peak	Vertical	185	1	74.0	-7.4	Pass	
2	5000.50	16.62	2.88	34.06	53.56	Max Avg	Vertical	185	1	54.0	-0.4	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	


Test Notes: EUT powered by POE. Connected to laptop outside chamber.

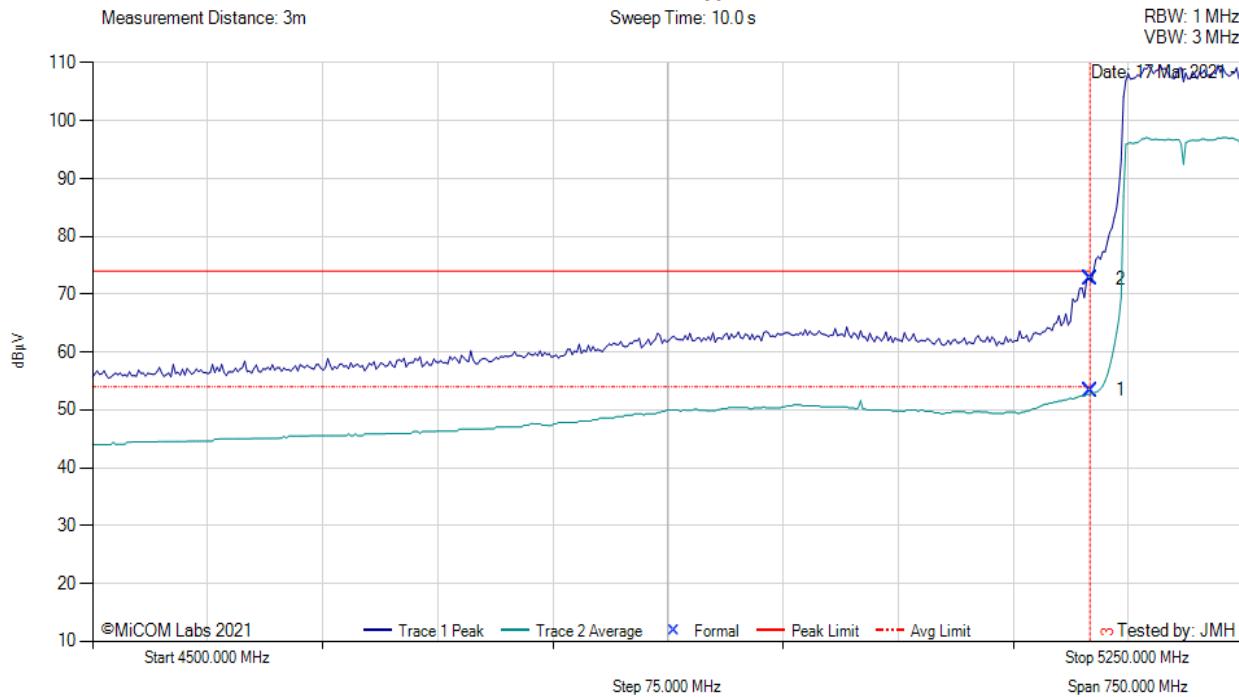
[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

Variant: 40MHz, Test Freq: 5190.00 MHz, Antenna: RADWIN MR0269440BF, Power Setting: -0.5, Duty Cycle (%): 90

4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5150.00	16.78	2.93	34.21	53.92	Max Avg	Vertical	185	0	54.0	-0.1	Pass	
2	5150.00	32.25	2.93	34.21	69.39	Max Peak	Vertical	185	0	74.0	-4.6	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

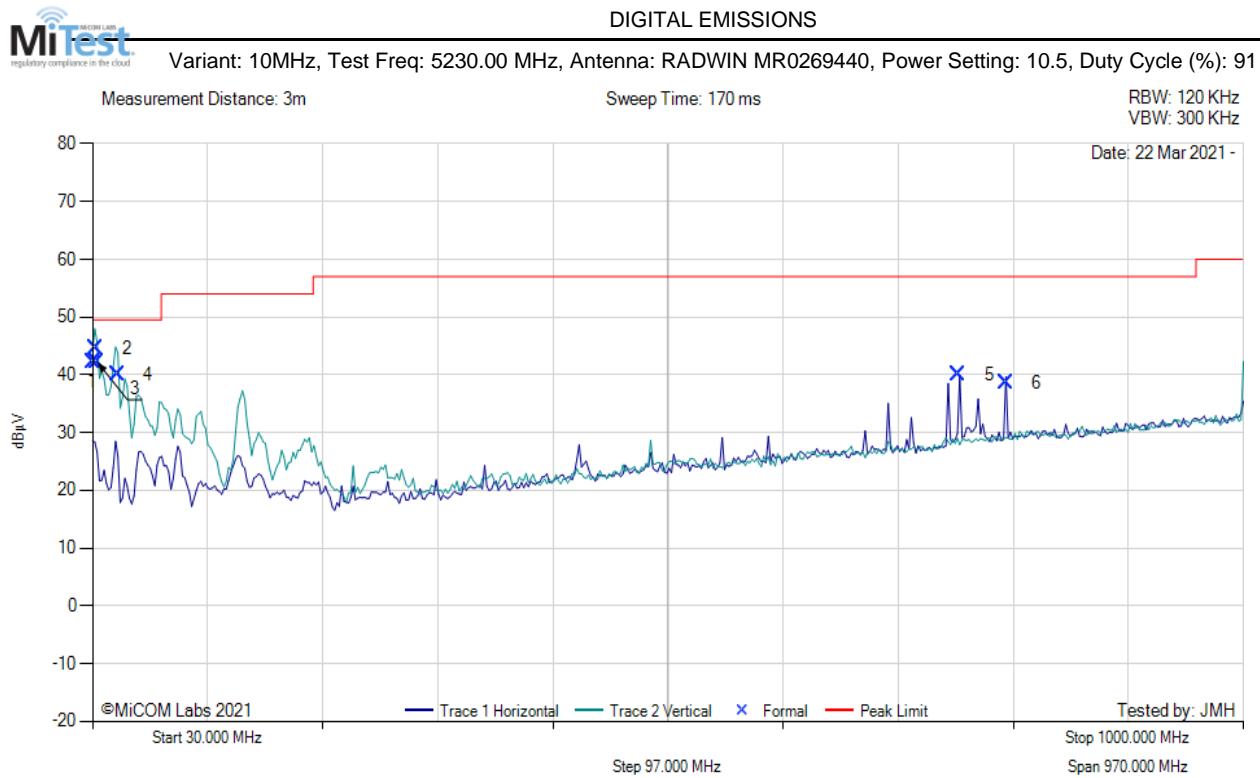
Test Notes: EUT powered by POE. Connected to laptop outside chamber. 0.4 DCCF added to average measurement


[back to matrix](#)

RESTRICTED LOWER BAND-EDGE EMISSIONS

Variant: 80MHz, Test Freq: 5210.00 MHz, Antenna: RADWIN MR0269440BF, Power Setting: -3.0, Duty Cycle (%):

85



4500.00 - 5250.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	5150.00	16.25	2.93	34.21	53.39	Max Avg	Vertical	185	0	54.0	-0.6	Pass	
2	5150.00	35.54	2.93	34.21	72.68	Max Peak	Vertical	185	0	74.0	-1.3	Pass	
3	5150.00	--	--	--	--	Restricted-Band	--	--	--	--	--	--	

Test Notes: EUT powered by POE. Connected to laptop outside chamber. 0.71 DCCF added to average measurement

[back to matrix](#)

A.3.3. Digital Emissions

30.00 - 1000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	30.22	47.02	3.54	-8.20	42.36	MaxQP	Vertical	101	25	49.5	-7.1	Pass	
2	33.07	51.41	3.59	-10.42	44.58	MaxQP	Vertical	98	3	49.5	-4.9	Pass	
3	34.13	49.53	3.59	-10.92	42.20	MaxQP	Vertical	139	217	49.5	-7.3	Pass	
4	50.94	57.08	3.73	-20.71	40.10	MaxQP	Vertical	126	107	49.5	-9.4	Pass	
5	760.00	39.99	6.38	-6.31	40.06	MaxQP	Horizontal	144	23	57.0	-16.9	Pass	
6	799.99	38.00	6.48	-5.93	38.55	MaxQP	Horizontal	136	40	57.0	-18.5	Pass	

Test Notes: Modem 1 5230MHz HT40 PS 10.5. Modem 2 5210MHz HT40 PS 10.5

[back to matrix](#)

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com