

**Test Report acc. to FCC Title 47 CFR Part 15
relating to
Schulte-Schlagbaum AG
SAFE-O-TRONIC access LS 400**

**Title 47 - Telecommunication
Part 15 - Radio Frequency Devices
Subpart C – Intentional Radiators
Measurement Procedure:
ANSI C63.4-2009**

EUT: SAFE-O-TRONIC access LS 400
 FCC ID: Q3ISOTA

Date of issue: 2011-06-21

Manufacturer's details

Manufacturer	Schulte-Schlagbaum AG
Manufacturer's grantee code	Q3I
Manufacturer's address	Nevigeser Str. 100 - 110 42553 Velbert Germany Phone: +49 (0) 2051 20 86 518 Fax: +49 (0) 2051 20 86 922 Contact: Mr. Helmut Guth Email: helmut.guth@sag-schlagbaum.com
Relevant standard used	47 CFR Part 15C - Intentional Radiators ANSI C63.4-2009

Test Report prepared by

Technical engineer	Ralf Trepper m. dudde hochfrequenz-technik (laboratory) Rottland 5a 51429 Bergisch Gladbach Germany Phone: +49 2207 96890 Fax: +49 2207 968920 Email: m.duddelabor@dudde.com
--------------------	---

Equipment Under Test (EUT)

Equipment category	Inductive application / RFID
Trade name	SAFE-O-TRONIC
Type designation	SAFE-O-TRONIC access LS 400
Serial no.	---
Variants	LS 300 LS 200 LS 100 DS 400 DS 300 DS 200

1. Test results

Clause	Requirements headline	Test result			Report page number
8.1	Antenna Requirement	Pass	Fail	N.t.*	9
8.2	Restricted bands of operation	Pass	Fail	N.t.*	10 to 11
8.3	Conducted limits	Pass	Fail	N.t.*	12 to 15
8.4	Radiated emission limits	Pass	Fail	N.t.*	16 to 21
8.5	Frequency tolerance	Pass	Fail	N.t.*	22 to 24

* Not tested

The equipment meets the requirements	Yes	No
--------------------------------------	-----	----

 Signature:
 (Technician)

 Signature:
 (Manager)

Table of contents

1. Test results.....	3
2. Introduction.....	5
3. Testing laboratory	5
4. Applicant.....	6
5. Product and product documentation	6
6. Conclusions, observations and comments	7
7. Operational description.....	8
8. Compliance assessment	9
8.1 Antenna requirement	9
8.1.1 Regulation.....	9
8.1.2 Result.....	9
8.2 Restricted bands of operation	10
8.2.1 Regulation.....	10
8.2.2 Result	11
8.3 Conducted limits	12
8.3.1 Regulation.....	12
8.3.2 Test equipment	13
8.3.3 Test procedures.....	13
8.3.4 Result	14
8.4 Radiated emission limits	16
8.4.1 Regulation.....	16
8.4.2 Test equipment	17
8.4.3 Test procedure	18
8.4.4 Calculation of the field strength	19
8.4.5 Result	20
8.5 Frequency tolerance	22
8.5.1 Regulation.....	22
8.5.2 Test equipment	22
8.5.3 Test procedures.....	22
8.5.4 Result	24
9. Additional information to the test report	25

2. Introduction

This test report consists of:

- Test result summary
- List of contents
- Introduction and further information
- Performance assessment
- Detailed test information

All pages have been numbered consecutively and bear the m. dudde hochfrequenz-technik logo, the test report number, the date, the test specification in its current version as well as the type designation of the EUT. The total number of pages in this report is **26**.

The tests were carried out at:

- m. dudde hochfrequenz-technik, D-51429 Bergisch Gladbach

in a representative assembly and in accordance with the test methods and/or requirements stated in:

FCC Title 47 CFR Part 15 Subpart C & ANSI C63.4-2009

The sample of the product was received on:

- 2011-04-26

The tests were carried out in the following period of time:

- 2011-05-10 – 2011-05-11

3. Testing laboratory

m. dudde hochfrequenz-technik
Rottland 5a, 51429 Bergisch Gladbach, Germany

Phone: +49 - (0) 22 07 / 96 89-0
Fax: +49 - (0) 22 07 / 96 89-20

- FCC Registration Number: **699717**

Accredited by:

DAkkS Deutsche Akkreditierungsstelle GmbH
DAkkS accreditation number: D-PL-12053-01

4. Applicant

Company name : Schulte-Schlagbaum AG
Address : Nevigeser Str. 100 - 110
 42553 Velbert
Country : Germany
Telephone : + 49 (0) 2051 20 86 518
Fax : + 49 (0) 2051 20 86 922
Email : helmut.guth@sag-schlagbaum.com
Date of order : 2011-01-25
References : Mr. Helmut Guth

5. Product and product documentation

Samples of the following apparatus were submitted for testing:

Manufacturer : Schulte-Schlagbaum AG
Trademark : SAFE-O-TRONIC
Type designation : **SAFE-O-TRONIC access LS 400**
Hardware version : SAFE-O-TRONIC access LS 400
Variants : LS 300, LS 200, LS 100, DS 400, DS 300, DS 200
Serial number : ---
Software release : ---
Type of equipment : RFID
Power used : 3 x alkaline cells max. 4.5 V DC
Frequency used : 13.560 MHz
Generated frequencies : 32.768 kHz (Crystal), 27.120 MHz (Crystal),
 13.560 MHz (Carrier)
ITU emission class : 15K1 A1D

For issuing this report the following product documentation was used:

Description	Date	Identifications
External photographs of the Equipment Under Test (EUT)	2011-06-21	Annex no. 1
Internal photographs of the Equipment Under Test (EUT)	2011-06-21	Annex no. 2
Channel occupancy / bandwidth	2011-06-21	Annex no. 3
Label sample	2011-06-21	Annex no. 4
Functional description / User manual	2011-06-21	Annex no. 5
Test setup photos	2011-06-21	Annex no. 6
Block diagram	2011-06-21	Annex no. 7
Operational description	2011-06-21	Annex no. 8
Schematics	2011-06-21	Annex no. 9
Parts list	2011-06-21	Annex no. 10

6. Conclusions, observations and comments

The test report will be filed at m. dudde hochfrequenz-technik for a period of 10 years following the issue of this report. It may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of m. dudde hochfrequenz-technik.

The results of the tests as stated in this report are exclusively applicable to the EUT as identified in this report. m. dudde hochfrequenz-technik cannot be held liable for properties of the EUT that have not been observed during these tests.

m. dudde hochfrequenz-technik assumes the sample to comply with the requirements of FCC Title 47 CFR Part 15 for the respective test sector, if the test results turn out positive.

Comments: ---

Date	: 2011-06-21	Date	: 2011-06-21
Name	: Ralf Trepper	Name	: Manfried Dudde
Function	: Technician	Function	: Manager
Signature	:	Signature	:

7. Operational description

7.1 EUT details

SAFE-O-TRONIC locking System combines PIN code and RFID technology in a unique way setting new standards in safeguarding and organizing cabinets, safe deposit boxes and lockers.

The System operating frequency is 13.56 MHz. and supporting RFID Transponder according ISO/IEC 14443 type A and able to communicate with NFC devices.

7.2 EUT configuration

After connecting the battery the **SAFE-O-TRONIC ACCESS LS 400** operates in a test mode and transmits continuously.

Radiated measurements

The **SAFE-O-TRONIC ACCESS LS 400** was tested in a typical fashion. During preliminary emission tests the **SAFE-O-TRONIC ACCESS LS 400** was operated in continuous transmitting mode for worst case emission mode investigation. Therefore, the final qualification testing was completed with **SAFE-O-TRONIC ACCESS LS 400** operated in continuous modes. All tests were performed with the applicant's declared maximum voltage: 4.5 V DC. In order to establish the maximum radiation, firstly, there have been viewed all orthogonal adjustments of the test samples, secondly the test ample have been rotated at all adjustments around the own axis between 0° and 360°, and thirdly, the antenna polarization between horizontal and vertical had been varied.

Conducted measurements

Not applicable, because the **SAFE-O-TRONIC ACCESS LS 400** is only battery powered.

8. Compliance assessment

8.1 Antenna requirement

8.1.1 Regulation

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.1.2 Result

The equipment meets the requirements	Yes	No	N.t.
Further test results are attached	Yes	No	Page no.

Integrated PCB antenna

N.t.* See page no. 25

8.2 Restricted bands of operation

8.2.1 Regulation

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this Section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a), the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a), and the fundamental emission is outside of the bands listed in paragraph (a) more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to Section 15.213.

(4) Any equipment operated under the provisions of § 15.253, § 15.255 or § 15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of Section 15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of Subpart D or F of this part.

(7) Devices operated pursuant to § 15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under § 15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § 15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of Section 15.245 shall not exceed the limits specified in Section 15.245(b).

8.2.2 Result

The equipment meets the requirements	Yes	No	N.t.
Further test results are attached	Yes	No	Page no.

N.t.* See page no. 25

8.3 Conducted limits

8.3.1 Regulation

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50ohms line impedance stabilization network (LISN). Compliance with this provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission(MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.50	66 to 56*	56 to 46*
0.50-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or connected to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

8.3.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration	Remarks
Receiver (9 kHz - 30MHz)	Schwarzbeck FMLK 1518 (428)	1518294 9360	08 / 2010	08/2013	---
Panorama- Monitor FMLK / VUMA	PAZ1550 (429)				
Protector limiter 9 kHz - 30MHz 10 dB	Rhode & Schwarz ESH 3Z2 (272)	357,881052	02 / 2010	02 / 2012	---
V-LISN 50 ohms//(50 uH+5 ohms)	RFT NNB 11 (72)	13835240	06 / 2011	06 / 2014	---
V-LISN 50 ohms//(50 uH+5 ohms)	EMCO (49b)	9512-1227	08 / 2008	08/2011	---
RF- cable	Aircell 1.5m [BNC/N]	K30	01/2011	01/2012	---

8.3.3 Test procedures

The EUT and the additional equipment (if required) are connected to the main power through a line impedance stabilization network (LISN). The LISN must be appropriate to ANSI C63.4-2009 Section 7. Additional equipment must also be connected to a second LISN with the same specifications described in the above sentence (if required).

8.3.4 Result

Tested with external AC power supply

Remark: *¹ Noise level of the measuring instrument $\leq -2\text{dB}_{\mu}\text{V}$ (0.009 – 30MHz)

Remark: ^{*2} Quasi peak measurements lower than “Specified Average Limit”

The equipment meets the requirements Yes No N.t.²

Further test results are attached Yes No Page no. _____

N.t.* See page no. 25

Tested with a Laptop over USB port

Remark: *¹ Noise level of the measuring instrument $\leq -2\text{dB}\mu\text{V}$ (0.009 – 30MHz)

Remark: ² Quasi peak measurements lower than “Specified Average Limit”

The equipment meets the requirements Yes No N.t.²

Further test results are attached Yes No Page no. _____

N.t.* See page no. 25

8.4 Radiated emission limits

8.4.1 Regulation

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in §§ 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.

(f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

EUT: SAFE-O-TRONIC access LS 400
 FCC ID: Q3ISOTA

Date of issue: 2011-06-21

8.4.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	2010/11	2012/11
Pre-amplifier (100kHz - 1.3GHz)	Hewlett Packard 8447 E (166a)	1726A00705	2010/02	2012/02
Pre-amplifier (1GHz - 18GHz)	Narda (345)	---	2010/02	2012/02
Magnetic loop antenna (9 kHz - 30 MHz)	Schwarzbeck FMZB 1516 (23)	---	2010/05	2013/05
Bilog antenna (30- 1000 MHz)	Schwarzbeck VULP 9168 (406)	---	2010/02	2013/02
Horn antenna (0.86-8.5 GHz)	Schwarzbeck BBHA 9120 A (284)	236	2010/01	2013/01
Horn antenna (2.0-14.0 GHz)	Schwarzbeck BBHA 9120 C (169)	305	2010/01	2013/01
RF- cable	Kabelmetal 18m [N]	K1	2011/01	2012/01
RF- cable	Aircell 0.5m [BNC]	K40	2011/01	2012/01
RF- cable	Aircell 1m [BNC/N]	K56	2011/01	2012/01
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K74	2011/01	2012/01
RF- cable	Sucoflex 106 Suhner 6,4m [N]	K75	2011/01	2012/01

8.4.3 Test procedure

The EUT and this peripheral (when additional equipment exists) are placed on a turn table which is 0.8 m above the ground. The turn table would be allowed to rotate 360 degrees to determine the position of the maximum emission level. The test distance between the EUT and the receiving antenna are 3m. To find the maximum emission, the polarization of the receiving antenna is changed in horizontal and vertical polarization; the position of the EUT was changed in different orthogonal determinations.

ANSI C63.4-2009 Section 8 “Radiated Emissions Testing”

Measurement procedures for electric field radiated emissions above 1 GHz are covered in Clause 8 of ANSI C63.4-2009. The ANSI C63.4-2009 measurement procedure consists of both an exploratory test and a final measurement. The exploratory test is critical to determine the frequency of all significant emissions. For each mode of operation required to be tested, the frequency spectrum is monitored. Variations in antenna height, antenna orientation, antenna polarization, EUT azimuth, and cable or wire placement is explored to produce the emission that has the highest amplitude relative to the limit.

The final measurements are made based on the findings in the exploratory testing. When making exploratory and final measurements it is necessary to maximize the measured radiated emission. Subclause 8.3.1.2 of ANSI C63.4-2009 states that the measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” We consider the “cone of radiation” to be the 3 dB beam width of the measurement antenna.

While the “bore-sighting” technique is not explicitly mentioned in ANSI C63.4-2009, it is a useful technique for measurements using a directional antenna, such as a double-ridged waveguide antenna. Several precautions must be observed, including: knowledge of the beam width of the antenna and the resulting illumination area relative to the size of the EUT, estimation for source of the emission and general location within larger EUTS, measuring system sensitivity, etc.

ANSI C63.4-2009 requires that the measurement antenna is kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. That means that if the directional radiation pattern of the EUT results in a maximum emission at an upwards angle from the EUT, when a directional antenna is used to make the measurement it will be necessary for it to be pointed towards the source of the emission within the EUT. This can be done by either pointing the antenna at an angle towards the source of the emission, or by rotating the EUT, in both height and polarization, to maximize the measured emission. The emission must be kept within the illumination area of the 3 dB beamwidth of the antenna so that the maximum emission from the EUT is measured.

Radiated emissions test characteristics	
Frequency range	30 MHz - 4,000 MHz
Test distance	3 m*
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1,000 MHz) 1 MHz (1000 MHz - 4,000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/horizontal

* According to Section 15.31 (f) (1): At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

8.4.4 Calculation of the field strength

The field strength is calculated by the following calculation:

Corrected Level = Receiver Level + Correction Factor (without the use of a pre-amplifier)

Corrected Level = Receiver Level + Correction Factor – Pre-amplifier (with the use of a pre-amplifier)

Receiver Level : Receiver reading without correction factors
Correction Factor : Antenna factor + cable loss

For example:

The receiver reading is 32.7 dB μ V. The antenna factor for the measured frequency is +2.5 dB (1/m) and the cable factor for the measured frequency is 0.71 dB, giving a field strength of 35.91dB μ V/m.

The 35.91dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm (35.91/20) = 39.8

For test distance other than what is specified, but fulfilling the requirements of Section 15.31 (f) (1) the field strength is calculated by adding additionally an extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements).

EUT: SAFE-O-TRONIC access LS 400
FCC ID: Q3ISOTA

Date of issue: 2011-06-21

8.4.5 Result

FUNDAMENTAL EMISSION & HARMONICS (Section 15.225)										
f (MHz)	Bandwidth (kHz), Type of detector	Noted receiver level dB μ V	Test distance m	Correction factor dB	Distance extrapol. factor dB	Level corrected dB μ V/m	Limit dB μ V/m @ meter	Margin dB μ V/m	Polaris. EUT / antenna orientation height/cm	
13.560	QPK/9kHz	21.0	10	20.2	-19.1	22.1	84.0 @ 30	61.9	V, 90°/90°	100
27.120	QPK/9kHz	≤ 4.0	10	20.2	-19.1	5.1	29.5 @ 30	24.4	V, H/0-360	100-400
40.680	QPK/120kHz	28.7	3	-7.4	0	21.3	40.0 @ 3	18.7	V, 210°/V	144
54.240	QPK/120kHz	≤ 6.5	3	-7.9	0	-1.4	40.0 @ 3	41.4	V, H/0-360	100-400
67.800	QPK/120kHz	37.9	3	-9.9	0	28.0	40.0 @ 3	12.0	V, 195°/V	135
81.360	QPK/120kHz	≤ 6.5	3	-11.5	0	-5.0	40.0 @ 3	45.0	V, H/0-360	100-400
94.920	QPK/120kHz	≤ 6.5	3	-9.5	0	-3.0	43.5 @ 3	46.5	V, H/0-360	100-400
108.480	QPK/120kHz	≤ 6.5	3	-8.0	0	-1.5	43.5 @ 3	45.0	V, H/0-360	100-400
122.040	QPK/120kHz	30.5	3	-8.7	0	21.8	43.5 @ 3	21.7	V, 200°/V	103
135.600	QPK/120kHz	≤ 6.5	3	-7.7	0	-1.2	43.5 @ 3	44.7	V, H/0-360	100-400
149.160	QPK/120kHz	28.6	3	-7.0	0	21.6	43.5 @ 3	21.9	V, 200°/V	103
162.720	QPK/120kHz	≤ 6.5	3	-7.2	0	-0.7	43.5 @ 3	44.2	V, H/0-360	100-400
176.280	QPK/120kHz	34.8	3	-8.9	0	25.9	43.5 @ 3	17.6	V, 210°/V	100
189.840	QPK/120kHz	≤ 6.5	3	-10.0	0	-3.5	43.5 @ 3	47.0	V, H/0-360	100-400
203.400	QPK/120kHz	31.3	3	-10.9	0	20.4	43.5 @ 3	23.1	V, 210°/V	145
257.640	QPK/120kHz	30.5	3	-8.6	0	21.9	46.0 @ 3	24.1	V, 200°/V	185
284.760	QPK/120kHz	27.4	3	-8.3	0	19.1	46.0 @ 3	26.9	V, 210°/V	207
311.880	QPK/120kHz	27.3	3	-6.8	0	20.5	46.0 @ 3	25.5	V, 210°/V	213
Measurement uncertainty			4 dB							

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument ≤ 4.0dB μ V @ 10m distance (0.009 – 30 MHz)Remark: *² noise floor noise level of the measuring instrument ≤ 6.5dB μ V @ 3m distance (30 – 1,000 MHz)Remark: *³ noise floor noise level of the measuring instrument ≤ 10 dB μ V @ 3m distance (1,000 – 2,000 MHz)Remark: *⁴ noise floor noise level of the measuring instrument ≤ 17 dB μ V @ 3m distance (2,000 – 5,500 MHz)Remark: *⁵ for using a pre-amplifier in the range between 100 kHz and 1,000 MHz

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	Page no.
-----------------------------------	-----	----	----------

N.t.* See page no. 25

SPURIOUS RADIATION (Section 15.209)									
f (MHz)	Bandwidth (kHz) Type of detector	Noted receiver level dB μ V	Test distance m	Correction factor dB	Distance extrapol. factor dB	Level corrected dB μ V/m	Limit dB μ V/m	Margin dB μ V/m	Polarisation EUT / antenna orientation
0.1200	0.2, PK	< 4.0	10	20.2	-59.1	-34.9	46.0- @ 300 m	80.90	V, H/0-360°
	0.2, AV	< 4.0	10	20.2	-59.1	-34.9	26.0 @ 300 m	80.90	V, H/0-360°
0.5000	0.2, AV	< 4.0	10	20.2	-19.1	5.1	33.6 @ 30 m	28.5	V, H/0-360°
1.5000	0.2, AV	< 4.0	10	20.2	-19.1	5.1	24.1 @ 30 m	19.00	V, H/0-360°
3.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
5.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
8.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
10.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
20.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
30.0000	9, AV	< 4.0	10	20.2	-19.1	5.1	29.5 @ 30 m	24.4	V, H/0-360°
35.0000	100, AV	≤ 3.5	3	-3.1* ⁶	0	0	0.4	40.0	H,V/H,V
88.0000	100, AV	≤ 3.5	3	-10.8* ⁶	0	-7.3	40.0	47.3	H,V/H,V
216.0000	100, AV	≤ 3.5	3	-10.3* ⁶	0	-6.8	43.5	50.3	H,V/H,V
960.0000	100, AV	≤ 3.5	3	8.5* ⁶	0	12.0	43.5	31.5	H,V/H,V
1700.0000	1000, AV	≤ 4.5	3	3.8* ⁷	0	8.3	54.0	45.7	H,V/H,V
2250.0000	1000, AV	≤ 10	3	8.0* ⁷	0	18.0	54.0	36.0	H,V/H,V
4000.0000	1000, AV	≤ 10	3	8.4* ⁷	0	18.4	54.0	35.6	H,V/H,V
5000.0000	1000, AV	≤ 10	3	9.1* ⁷	0	19.4	54.0	34.6	H,V/H,V
7500.0000	1000, AV	≤ 14	3	12.9* ⁷	0	26.9	54.0	27.1	H,V/H,V
8300.0000	1000, AV	≤ 14	3	14.0* ⁷	0	28.8	54.0	25.2	H,V/H,V
9400.0000	1000, AV	≤ 14	3	16.0* ⁷	0	30.0	54.0	24.0	H,V/H,V
11000.0000	1000, AV	≤ 14	3	18.3* ⁷	0	32.3	54.0	21.7	H,V/H,V
All other emissions than harmonics in the restricted bands are lower than the noise level of the measuring equipment!									
Measurement uncertainty		4 dB							

Blue marked: restricted bands

Bandwidth = the measuring receiver bandwidth

Remark: *¹ noise floor noise level of the measuring instrument ≤ 4.0dB μ V @ 10m distance (0.009 MHz – 30 MHz)Remark: *² noise floor noise level of the measuring instrument ≤ 3.5dB μ V @ 3m distance (30 – 1,000 MHz)Remark: *³ noise floor noise level of the measuring instrument ≤ 4.5dB μ V @ 3m distance (1,000 – 2,000 MHz)Remark: *⁴ noise floor noise level of the measuring instrument ≤ 10dB μ V @ 3m distance (2,000 – 5,500 MHz)Remark: *⁵ noise floor noise level of the measuring instrument ≤ 14dB μ V @ 3m distance (5,500 – 14,500 MHz)Remark: *⁶ for using a pre-amplifier in the range between 100 kHz and 1,000 MHzRemark: *⁷ for using a pre-amplifier in the range between 1.0 GHz and 18.0 GHz

The equipment meets the requirements

Yes No N.t.

Further test results are attached

Yes No Page no.

N.t.* See page no. 25

8.5 Frequency tolerance

8.5.1 Regulation

(e) The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of $-20\text{ }^{\circ}\text{C}$ to $+55\text{ }^{\circ}\text{C}$ at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of $20\text{ }^{\circ}\text{C}$.

8.5.2 Test equipment

Type	Manufacturer/ Model no.	Serial no.	Last calibration	Next calibration
Receiver (9 kHz –18.0 GHz)	Rohde & Schwarz Spectrum Analyzer FSL 18 (171a)	100.117	2010/11	2012/11
Low noise signal generator (10kHz – 5.4GHz)	Marconi Instruments 2042 (6)	119347/003	2010/01	2012/01
Temperature chamber	Brabender TTE 32/40 H (87)	---	2010/03	2013/03
RF- cable	RG58 2.5m [BNC]	K21	2011/01	2012/01

11.5.3 Test procedures

Stability with respect to ambient temperature:

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. If possible, a dummy load should be connected to the EUT, because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn the EUT on, and tune it to one of the number of frequencies required

Couple the intentional radiator output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable and placing the measurement antenna near the EUT (e.g., 15 cm away) or by connecting a dummy load to the measuring instrument through an attenuator, if necessary.

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. Turn the EUT on, and couple its output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable.

Adjust the location of the measurement antenna and the controls on the measuring instrument to obtain a suitable signal level (i.e., a level that will not overload the measuring instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

Tune the EUT to any one of the number of frequencies specified. Turn the EUT off, and place it inside an environmental chamber if appropriate. Allow the chamber to stabilize at +20 °C before proceeding. Turn on the EUT, and record the operating frequency of the intentional radiator at startup and two, five, and ten minutes after startup. Turn the EUT off and allow it to cool to the ambient temperature, and then repeat this procedure for the number of the frequencies specified. Four measurements are made at each operating frequency.

Stability with respect to input voltage:

Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. If possible, a dummy load should be connected to the EUT, because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn the EUT on, and tune it to one of the number of frequencies required.

Couple the intentional radiator output to the measuring instrument by connecting an antenna to the measurement instrument with a suitable length of coaxial cable and placing the measurement antenna near the EUT (e.g., 15 cm away) or by connecting a dummy load to the measuring instrument through an attenuator, if necessary.

Adjust the location of the measurement antenna and the controls on the measuring instrument to obtain a suitable signal level (i.e., a level that will not overload the measuring instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Turn the EUT off, and place it inside an environmental temperature chamber. For devices that are normally operated continuously, the EUT may be energized while inside the test chamber. For devices that have oscillator heaters, energize only the heater circuit while the EUT is inside the chamber.

Set the temperature control on the chamber to the highest specified EUT operating temperature, and allow the temperature inside the chamber to stabilize at the set temperature before starting frequency measurements.

While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized. Four measurements in total are made.

Repeat the above procedure until the number of frequencies specified has been measured. After all measurements have been made at the highest specified temperature, turn the EUT off. Repeat the above measurement process for the EUT with the test chamber set at the lowest temperature specified by the regulatory or procuring agency. Measurements shall be made at the number of frequencies specified.

8.5.4 Result

Frequency tolerance (Section 15.225(e))			
Test conditions		Carrier Frequency 13.560 MHz	
		Frequency error / (kHz) ppm	Limit ppm
T _{min} -20 °C	V _{min} 3.8 V DC	(0.0035) 0.23	100
	V _{max} 5.0 V DC	(0.00) 0.00	100
T -10 °C	V _{min} 3.8 V DC	(0.05) 0.4	100
	V _{max} 5.0 V DC	(0.15) 1.12	100
T 0 °C	V _{min} 3.8 V DC	(0.02) 0.15	100
	V _{max} 5.0 V DC	(0.05) 0.4	100
T +10 °C	V _{min} 3.8 V DC	(0.01) 0.1	100
	V _{max} 5.0 V DC	(0.01) 0.1	100
T _{nom} +20 °C	V _{min} 3.8 V DC	(0.02) 0.15	100
	V _{max} 5.0 V DC	(0.04) 0.3	100
T +30 °C	V _{min} 3.8 V DC	(0.04) 0.3	100
	V _{max} 5.0 V DC	(0.06) 0.4	100
T +40 °C	V _{min} 3.8 V DC	(0.03) 0.2	100
	V _{max} 5.0 V DC	(0.07) 0.5	100
T _{max} +50 °C	V _{min} 3.8 V DC	(0.09) 0.7	100
	V _{max} 5.0 V DC	(0.06) 0.4	100
Maximum frequency error (kHz)		(0.15) 1.12	---
Measurement uncertainty		$\pm 5 * 10^{-8}$	

The equipment meets the requirements	Yes	No	N.t.
--------------------------------------	-----	----	------

Further test results are attached	Yes	No	Page no.
-----------------------------------	-----	----	----------

N.t.* See page no. 25

9. Additional information to the test report**Remarks**

- N.t.¹ Not tested, because the antenna is part of the PCB
- N.t.² Not tested, because the EUT is directly battery powered
- N.t.³ Not tested, because not applicable to the EUT
- N.t.⁴ Not tested, because not ordered

EUT: SAFE-O-TRONIC access LS 400
FCC ID: Q3ISOTA

Date of issue: 2011-06-21

End of test report