

MEASUREMENT REPORT

(FCC : Part 15 Subpart C (15.247) / ANSI C63.4-2014)

Product : Wireless Magnetic Reed Switch Sensor
Trade Name : **NR**
Model No. : SMG-05, SMG-03
Applicant : NIETZSCHE ENTERPRISE CO., LTD
Applicant Address : 4F., No. 560, Sec. 2, Chung-Shan RD.,
Taiwan, R.O.C.

Report Number	MLT1706P15002
Applicant	NIETZSCHE ENTERPRISE CO., LTD
Product	Wireless Magnetic Reed Switch Sensor
Sample Received Date	2017/06/19
Sample Tested Date	2017/06/19 ~ 2017/06/26

Report Prepared By	Jesse Tien
Signature	
Date Prepared	2017/06/30

Report Authorized By	Roger Chen
Signature	
Date Authorized	2017/06/30

Test By

Max Light Technology Co., Ltd.
 Room 5, 8F, No.125, Section 3 Roosevelt Road,
 Taipei, Taiwan., R.O.C.
 Office : Tel: 886-2-2363-2447 Fax: 886-2-2363-2597
 Lab. : Tel: 886-2-2663-3486 Fax: 886-2-2663-3582

It may be duplicated completely for legal use with the allowance of the applicant.
 It shall not be reproduced except in full, without the written approval of our
 laboratory.

Contents

History of Test Report.....	5
1. General Information	7
2. Report of Measurements and Examinations.....	8
2.1 List of Measurements and Examinations	8
3. Test Configuration of Equipment under Test.....	9
3.1 Carrier Frequency of Channels	9
3.2 Test Mode and Test Software.....	10
3.3 TEST Methodology & General Test Procedures	11
3.4 Measurement Uncertainty	12
3.5 Description of the Support Equipments	12
4. Test and measurement equipment.....	13
4.1 Calibration	13
4.2 Equipment	13
5. Antenna Requirements.....	15
5.1 Standard Applicable	15
5.2 Antenna Construction and Directional Gain.....	15
6. Test of Conducted Emission.....	16
6.1 Test Limit	16
6.2 Test Procedures	16
6.3 Typical Test Setup	17
6.4 Test Result and Data.....	18
7. Test of Radiated Emission	19
7.1 Test Limit	19
7.2 Test Procedures	19
7.3 Typical Test Setup	20
7.4 Test Result and Data (9kHz ~ 30MHz)	21
7.5 Test Result and Data (30MHz ~ 1GHz, worst emissions found).....	21
7.6 Test Result and Data (Above 1GHz).....	23
8. 6dB Bandwidth	30
8.1 Test Limit	30
8.2 Test Procedures	30
8.3 Test Setup Layout	30
8.4 Test Result and Data.....	31
9. Maximum Peak and Average Output Power.....	33
9.1 Test Limit	33

9.2 Test Procedures	33
9.3 Test Setup Layout	33
9.4 Test Result and Data.....	34
10.Power Spectral Density	39
10.1 Test Limit.....	39
10.2 Test Procedures	39
10.3 Test Setup Layout	39
10.4 Test Result and Data.....	40
11.Band Edges	42
11.1 Test Limit.....	42
11.2 Test Procedure.....	42
11.3 Test Setup Layout	42
11.4 Test Result and Data.....	43
11.5 Restrict Band Emission Measurement Data	46
12.Restricted Bands of Operation	51
12.1 Labeling Requirement.....	51

APPENDIX 1 PHOTOS OF TEST CONFIGURATION

APPENDIX 2 PHOTOS OF EUT

History of Test Report

Original Report Issue Date: 2017/6/30

No additional attachment
 Additional attachments were issued as in the following record:

CERTIFICATION

We here by verify that :

The test data, data evaluation, test procedures and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4-2014. All test were conducted by

MLT(Max Light Technology Co., Ltd) Room 5, 8F, No.125, Section 3 Roosevelt Road, Taipei, Taiwan, R.O.C Also, we attest to the accuracy of each.

We further submit that the energy emitted by the sample EUT tested as described in the report is in compliance with Class B radiated and conducted emission limit of FCC Rules Part 15 Subpart C (15.247).

Applicant Name	NIETZSCHE ENTERPRISE CO., LTD
Applicant Address	4F., No. 560, Sec. 2, Chung-Shan RD., Chung-Ho Dist., New Taipei City 23544, Taiwan, R.O.C.
Manufacturer Name	NIETZSCHE ENTERPRISE CO., LTD
Manufacturer Address	4F., No. 560, Sec. 2, Chung-Shan RD., Chung-Ho Dist., New Taipei City 23544, Taiwan, R.O.C.

Equipment	Wireless Magnetic Reed Switch Sensor
Model No	SMG-05, SMG-03
FCC ID	Q2N-SMG0305

Report Prepared By	Jesse Tien
Signature	

Report Authorized By	Roger Chen
Signature	

1. General Information

1.1 Introduction

The following measurement report is submitted on behalf of NIETZSCHE ENTERPRISE CO., LTD In support of a Class B Digital Device certification in accordance with Part2 Subpart J and Part 15 Subpart C of the Commission's and Regulations.

1.2 Customer Details

Applicant Name	NIETZSCHE ENTERPRISE CO., LTD
Applicant Address	4F., No. 560, Sec. 2, Chung-Shan RD., Chung-Ho Dist., New Taipei City 23544, Taiwan, R.O.C.
Manufacturer Name	NIETZSCHE ENTERPRISE CO., LTD
Manufacturer Address	4F., No. 560, Sec. 2, Chung-Shan RD., Chung-Ho Dist., New Taipei City 23544, Taiwan, R.O.C.

1.3 Technical data of EUT

Equipment	Wireless Magnetic Reed Switch Sensor
Model No	SMG-05, SMG-03
FCC ID	Q2N-SMG0305
Power Type	DC 3V
Type of Modulation	O-QPSK
Transfer rate	250 k bps
Type of Antenna	PCB Antenna
Frequency of Channel	2.405 ~2.480 GHz

During testing the EUT was operated at Tx or Rx mode for each emission measured. This was done in order to ensure that maximum emission levels were attained.

2. Report of Measurements and Examinations

2.1 List of Measurements and Examinations

FCC Rule	Description of Test	Result
15.203	. Antenna Requirement	Pass
15.207	. Conducted Emission	Pass
15.209 15.247(d)	. Radiated Emission	Pass
15.247(a)(2)	. 6dB Bandwidth	Pass
15.247(b)	. Maximum Peak Output Power	Pass
15.247(d)	. 100kHz Bandwidth of Frequency Band Edges	Pass
15.247(e)	. Power Spectral Density	Pass

3. Test Configuration of Equipment under Test

3.1 Carrier Frequency of Channels

Zigbee

Channel	Frequency(MHz)
11	2405
12	2410
13	2415
14	2420
15	2425
16	2430
17	2435
18	2440
19	2445
20	2450
21	2455
22	2460
23	2465
24	2470
25	2475
26	2480

3.2 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4 and C63.10.
- b. The complete test system included Notebook and EUT for RF test.
- c. Test Software: SmartRF Studio 7
- d. New Battery was used for all testing and the worst radiated emission case from X,Y and Z axis evaluation was selected for testing.
- e. The following test modes were performed for test:
 - Zigbee: CH11: 2405MHz, CH18: 2440MHz, CH26: 2480MHz

3.3 TEST Methodology & General Test Procedures

All testing as described bellowed were performed in accordance ANSI C63.4:2014, C63.10:2013 and FCC CFR 47 Part 15 Subpart C.

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4 and C63.10. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors. The resolution bandwidth of test receiver/spectrum analyzer is 9 KHz and video bandwidth is 120 KHz.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m (1.5 m for above 1 GHz) above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 1) Putting the EUT on the platform and turning on the EUT (on/off button on the bottom of the EUT).
- 2) Setting test channel described as “Channel setting and operating condition”, and testing channel by channel.
- 3) For the spurious emission test based on ANSI C63.4 and C63.10, the resolution bandwidth of test receiver/spectrum analyzer is 120 KHz and video bandwidth is 300 KHz for Quasi-peak detection at frequency 30 MHz~1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz RMS detector for Average Value at frequency above 1GHz

3.4 Measurement Uncertainty

Measurement Item	Uncertainty
Conducted emissions	±2.24 dB
Radiated emissions (30MHz ~ 1GHz)	±3.96 dB
Radiated emissions (above 1GHz)	±3.74 dB

3.5 Description of the Support Equipments

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

4. Test and measurement equipment

4.1 Calibration

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2 Equipment

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

TABLELIST OF TEST AND MEASUREMENT EQUIPMENT

Item	Instrument	Manufacturer	Model No.	S/N	Next Cal. Date
1.	Spectrum Analyzer	HP	8591EM	73412A00110	2018/04/13
2.	Pre Amplifier	MLT	PREAMP6G-01	20110209	2018/03/21
3.	Pre Amplifier	MLT	PREAMP6G-02	20110301	2018/03/24
4.	Biconilog Antenna	EMCO	3142C	00044568	2017/10/06
5.	Spectrum Analyzer	Agilent	E7403A	US40240137	2018/03/16
6.	LISN	EMCO	3825/2	2658	2017/11/18
7.	Spectrum Analyzer	Agilent	E4446A	US44300422	2018/03/25
8.	Home Antenna	SCHWARZBECK	BBHA 9120D	304	2017/10/06
9.	Home Antenna	SCHWARZBECK	BBHA 9170	181	2017/11/12
10.	Spectrum Analyzer	Agilent	E4407B	US44300422	2017/11/12
11.	Pre Amplifier	TA	0.10~19.1GHz 60dBm	RF01	2017/11/12
12.	Pre Amplifier	Herotek	A402-417	30690	2017/11/12
13.	Spectrum Analyzer	Agilent	N9010A	MY50060164	2017/08/26

★ Calibration interval of instruments listed above is one year

5. Antenna Requirements

5.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.2 Antenna Construction and Directional Gain

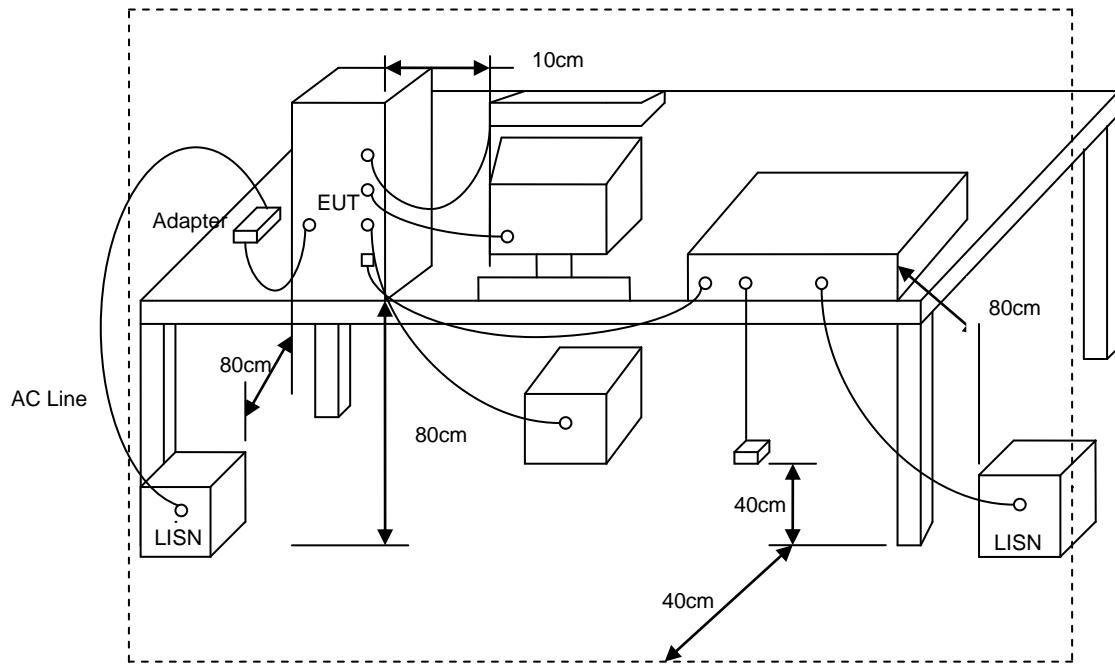
Antenna Type: PCB Antenna

Antenna Gain: 2 dBi

6. Test of Conducted Emission

6.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.


Frequency (MHz)	Quasi Peak (dB μ V)	Average (dB μ V)
0.15 – 0.5	66-56*	56-46*
0.5 – 5.0	56	46
5.0 – 30.0	60	50

*Decreases with the logarithm of the frequency.

6.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

6.3 Typical Test Setup

6.4 Test Result and Data

This EUT is powered by a battery (DC 3V), and therefore do not need to test the power line conducted emissions.

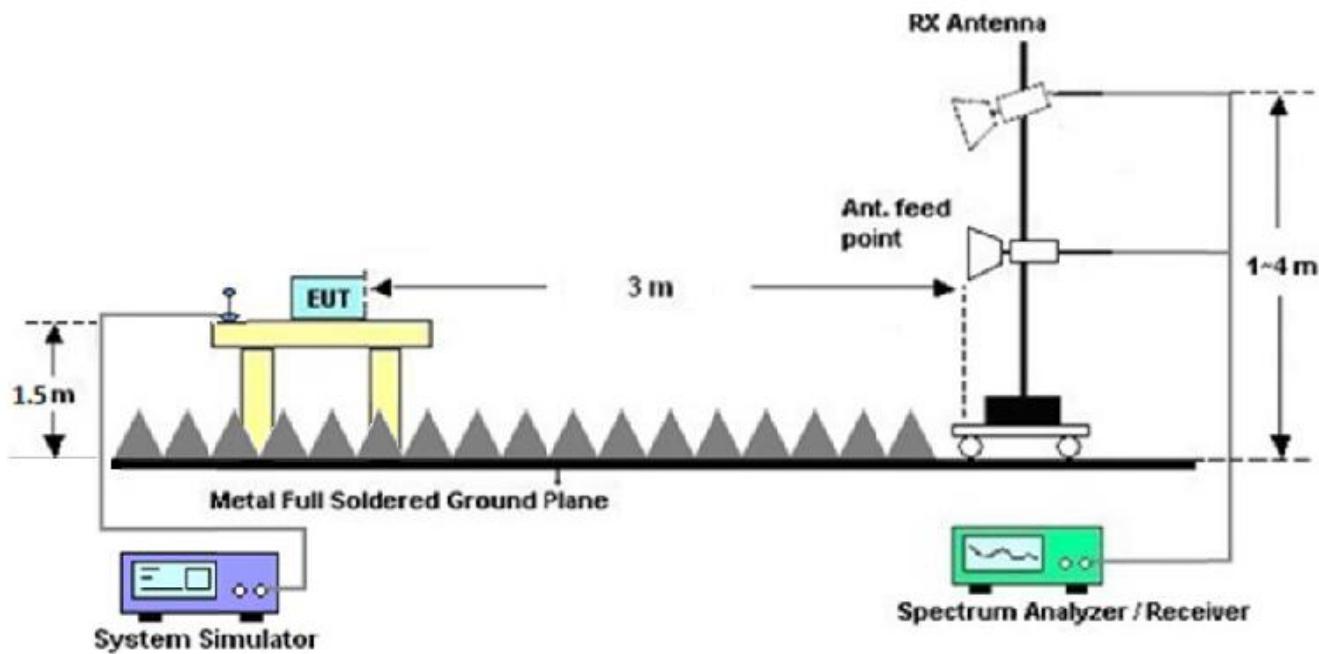
7. Test of Radiated Emission

7.1 Test Limit

Radiated Emissions were measured from 9 KHz to 25 GHz and return leads of the EUT according to the methods defined in ANSI C63.4-2014 and C63.10-2013. In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

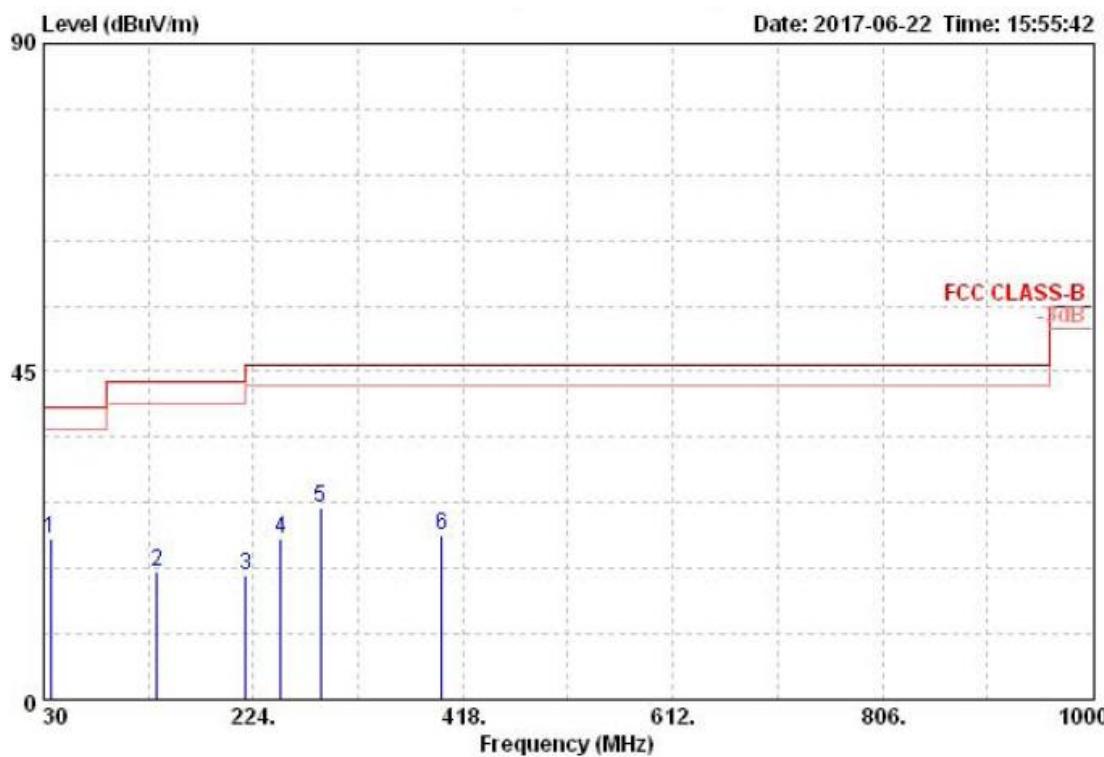
7.2 Test Procedures


- The EUT was placed on a rotatable table top 0.8 meter above ground (1.5 meter for above 1 GHz).
- The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- The table was rotated 360 degrees to determine the position of the highest radiation.
- The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

7.3 Typical Test Setup

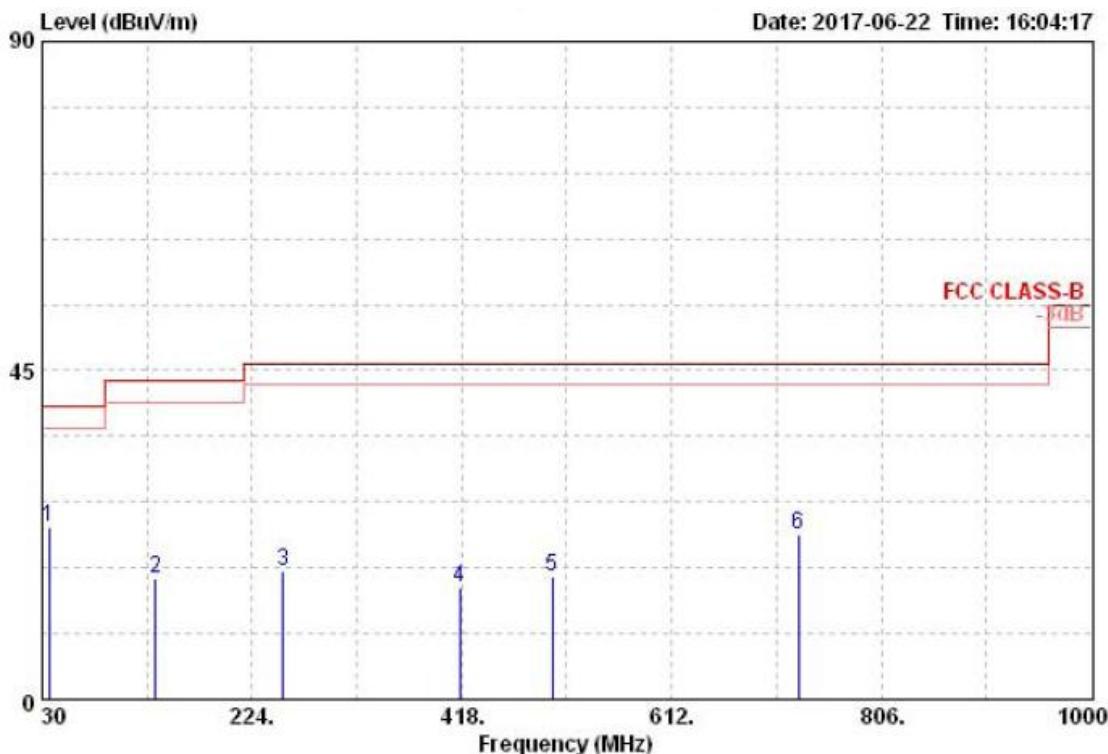
For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



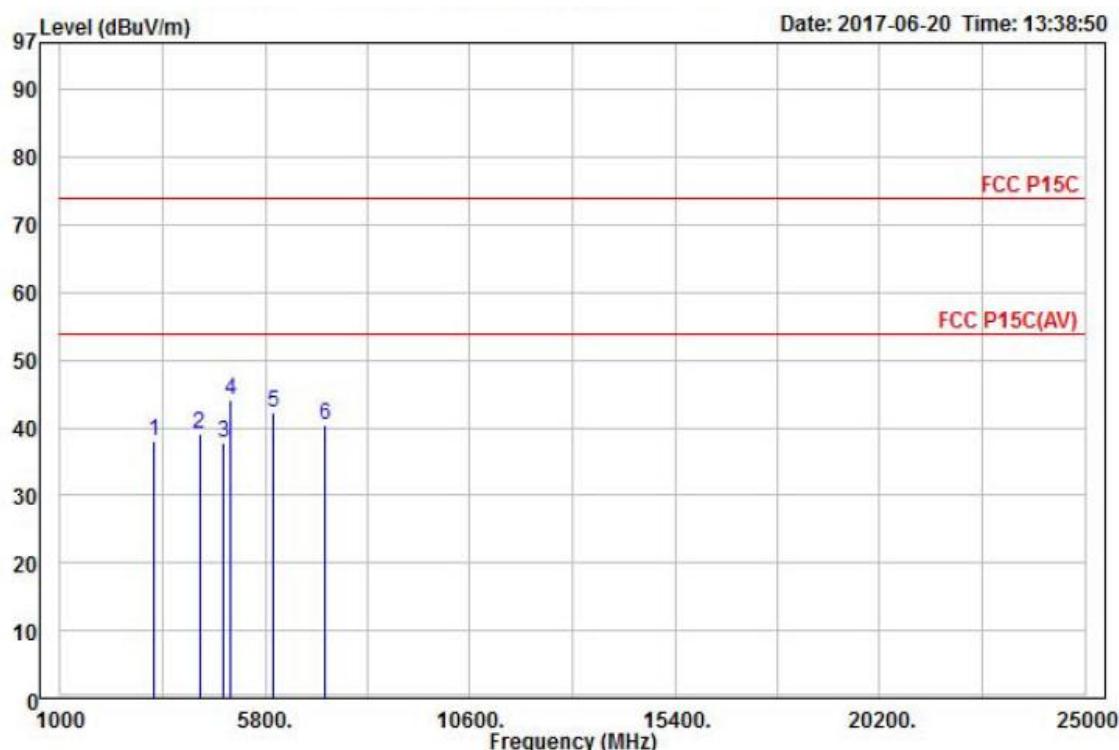
7.4 Test Result and Data (9kHz ~ 30MHz)

The 9kHz - 30MHz spurious emission is under limit 20dB more.

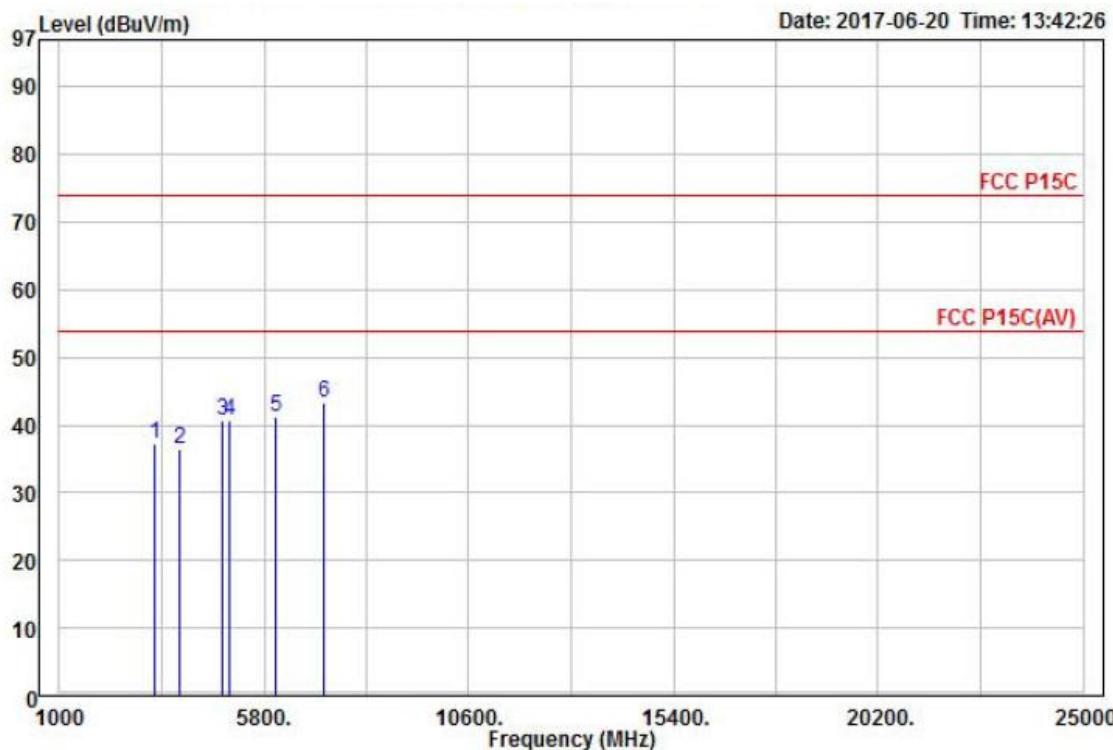

7.5 Test Result and Data (30MHz ~ 1GHz, worst emissions found)

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 22, 2017	Humidity	: 70 %
Memo	Z axis		

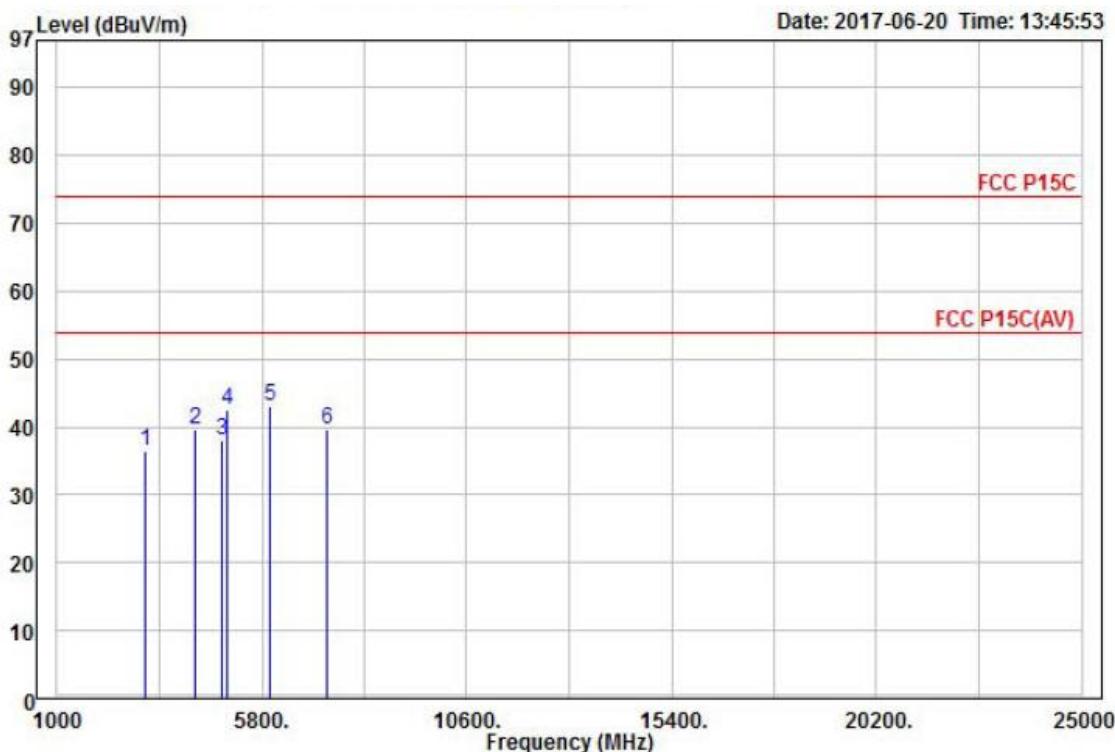
Freq	Level	Over	Limit	Read	Ant	Table	
		Line	Level	Factor		Pos	
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	cm	deg
1 36.00	22.07	-17.93	40.00	44.11	-22.04	100	85 QP
2 134.76	17.63	-25.87	43.50	49.40	-31.77	100	244 QP
3 217.28	17.10	-28.90	46.00	44.50	-27.40	302	360 QP
4 249.22	22.01	-23.99	46.00	47.52	-25.51	263	251 QP
5 286.37	26.32	-19.68	46.00	51.14	-24.82	351	118 QP
6 398.15	22.63	-23.37	46.00	44.60	-21.97	340	0 QP


Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 22, 2017	Humidity	: 70 %
Memo	Z axis		

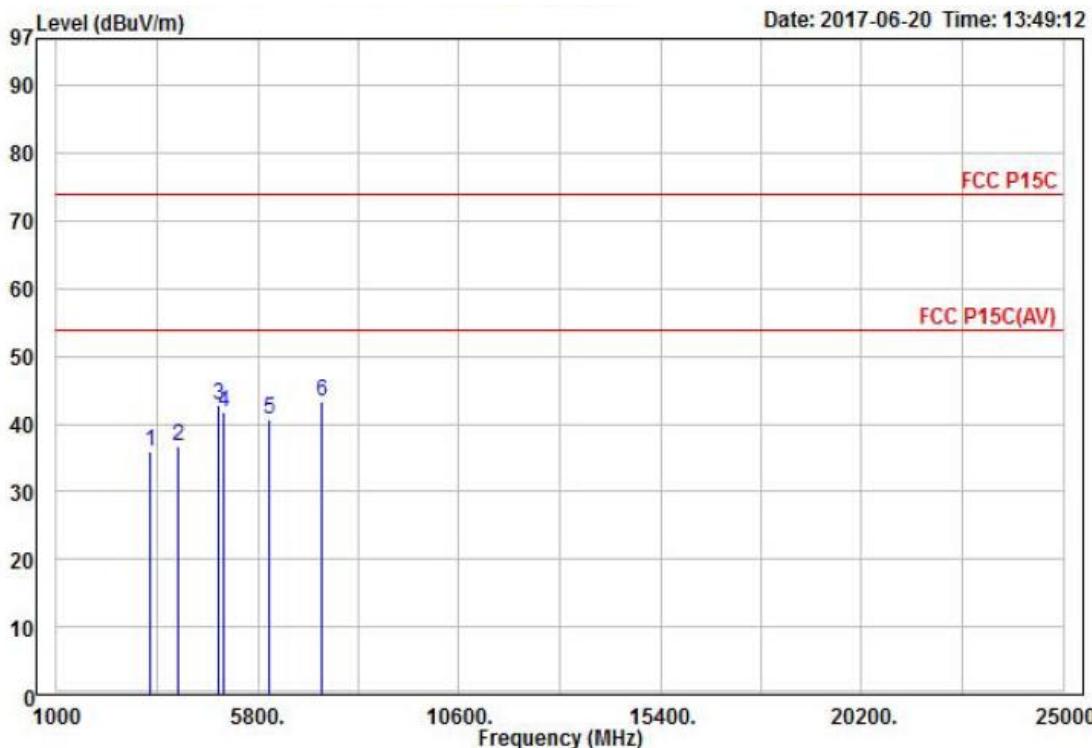
Freq	Level	Over Limit	Read		Ant Pos	Table Pos	Remark	
			Line	Factor				
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	cm	
							deg	
1	36.00	23.46	-16.54	40.00	44.11	-20.65	400	152 QP
2	134.76	16.43	-27.07	43.50	47.10	-30.67	400	242 QP
3	253.10	17.46	-28.54	46.00	42.71	-25.25	100	339 QP
4	416.06	15.24	-30.76	46.00	36.06	-20.82	100	258 QP
5	501.42	16.77	-29.23	46.00	35.82	-19.05	100	137 QP
6	729.37	22.58	-23.42	46.00	35.15	-12.57	100	0 QP


7.6 Test Result and Data (Above 1GHz)

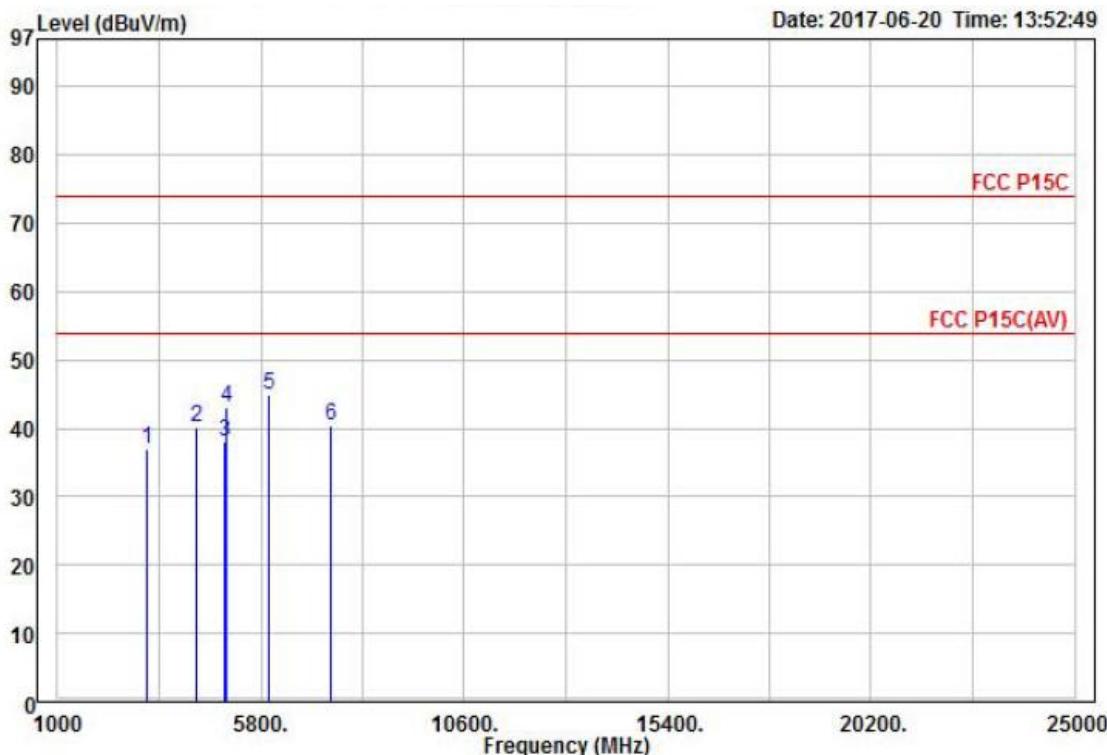
Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


Freq	Level	Over	Limit	Read	Ant		
		Line	Limit	Level	Factor	Factor	Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m	
1 3210.000	38.11	-35.89	74.00	69.34	-31.23	29.22	Peak
2 4256.500	39.13	-34.87	74.00	68.13	-29.00	31.04	Peak
3 4809.500	37.88	-36.12	74.00	65.99	-28.11	32.25	Peak
4 4991.000	44.17	-29.83	74.00	72.05	-27.88	32.64	Peak
5 5998.500	42.30	-31.70	74.00	65.70	-23.40	34.08	Peak
6 7215.500	40.55	-33.45	74.00	61.85	-21.30	37.66	Peak

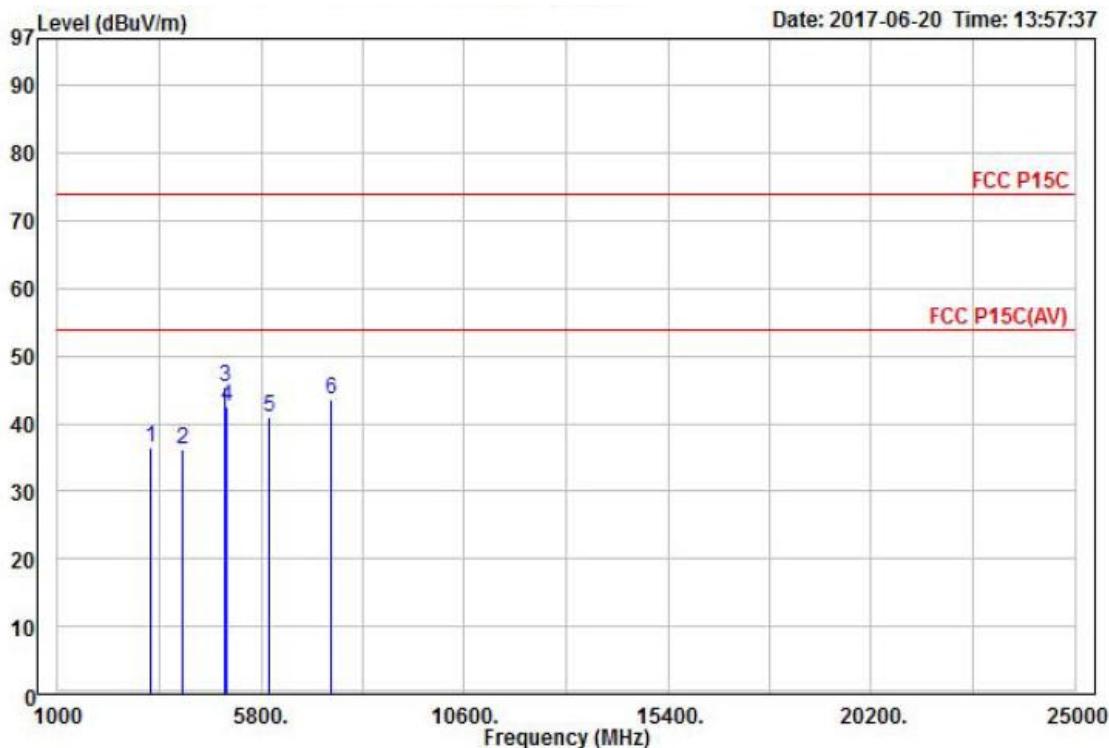
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


Freq	Level	Over	Limit	Read	Ant		
		Line	Level	Factor	Factor	Remark	
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m	
1 3229.500	37.16	-36.84	74.00	68.65	-31.49	29.15	Peak
2 3801.500	36.57	-37.43	74.00	66.73	-30.16	30.20	Peak
3 4810.500	40.66	-33.34	74.00	68.77	-28.11	32.25	Peak
4 4978.000	40.60	-33.40	74.00	68.62	-28.02	32.60	Peak
5 6057.000	41.27	-32.73	74.00	64.81	-23.54	34.11	Peak
6 7215.000	43.22	-30.78	74.00	64.52	-21.30	37.66	Peak

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH18	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


Freq	Level	Over Limit		Read Line	Ant		Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	
1	3080.000	36.44	-37.56	74.00	67.82	-31.38	29.38 Peak
2	4250.000	39.53	-34.47	74.00	68.52	-28.99	31.02 Peak
3	4880.500	38.19	-35.81	74.00	66.31	-28.12	32.32 Peak
4	4991.000	42.54	-31.46	74.00	70.42	-27.88	32.64 Peak
5	5998.500	43.19	-30.81	74.00	66.59	-23.40	34.08 Peak
6	7320.500	39.70	-34.30	74.00	61.14	-21.44	37.71 Peak

Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH18	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


Freq	Level	Over Limit		Read Line	Ant Factor		Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	
1	3229.500	35.94	-38.06	74.00	67.43	-31.49	29.15 Peak
2	3886.000	36.86	-37.14	74.00	66.62	-29.76	30.38 Peak
3	4880.500	42.70	-31.30	74.00	70.82	-28.12	32.32 Peak
4	4991.000	41.86	-32.14	74.00	69.74	-27.88	32.64 Peak
5	6057.000	40.83	-33.17	74.00	64.37	-23.54	34.11 Peak
6	7320.500	43.34	-30.66	74.00	64.78	-21.44	37.71 Peak

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH26	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		

Freq	Level	Over Limit		Line	Read	Ant		
		MHz	dBuV/m			dB	dBuV/m	Factor
1	3099.500	36.98	-37.02	74.00	68.36	-31.38	29.41	Peak
2	4263.000	40.14	-33.86	74.00	69.13	-28.99	31.06	Peak
3	4959.500	38.12	-35.88	74.00	66.20	-28.08	32.54	Peak
4	4997.500	42.99	-31.01	74.00	70.81	-27.82	32.66	Peak
5	5998.500	44.82	-29.18	74.00	68.22	-23.40	34.08	Peak
6	7440.500	40.32	-33.68	74.00	61.22	-20.90	37.76	Peak

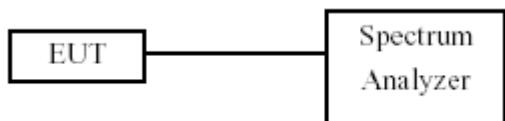
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH26	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		

Freq	Level	Over Limit		Line	Read		Ant Factor	Ant Factor	Remark
		MHz	dBuV/m		dB	dBuV/m			
1	3210.000	36.61	-37.39	74.00	67.84	-31.23	29.22	Peak	
2	3925.000	36.20	-37.80	74.00	65.70	-29.50	30.44	Peak	
3	4960.500	45.58	-28.42	74.00	73.67	-28.09	32.54	Peak	
4	4997.500	42.45	-31.55	74.00	70.27	-27.82	32.66	Peak	
5	5998.500	41.00	-33.00	74.00	64.40	-23.40	34.08	Peak	
6	7440.000	43.54	-30.46	74.00	64.44	-20.90	37.76	Peak	

Notes:

1. Level = Read Level + Factor
2. Factor = Antenna Factor + Cable Loss – Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120 KHz and video bandwidth is 300 KHz for Quasi-peak detection at frequency 30 MHz~1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz RMS detector for Average Value at frequency above 1GHz
6. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
7. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement at frequency above 1GHz.

8. 6dB Bandwidth


8.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

8.2 Test Procedures

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to 1~5% of the emission bandwidth and $VBW \geq 3 \times RBW$.
- c. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.
- d. The 6dB Bandwidth was measured and recorded.

8.3 Test Setup Layout

8.4 Test Result and Data

Test Date: June 23, 2017

Temperature: 25°C

Atmospheric pressure: 1000 hPa

Humidity: 65%

Modulation Standard	Channel	Frequency (MHz)	6dB Bandwidth (MHz)
O-QPSK	11	2405	1.62
	18	2440	1.61
	26	2480	1.63

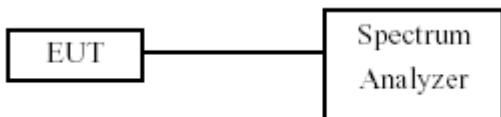
Modulation Standard: O-QPSK

Channel: 11

Modulation Standard: O-QPSK
Channel: 18

Modulation Standard: O-QPSK
Channel: 26

9. Maximum Peak and Average Output Power


9.1 Test Limit

The Maximum Peak and Average Output Power Measurement is 30dBm.

9.2 Test Procedures

- a. The transmitter output was connected to spectrum analyzer.
- b. The spectrum analyzer's resolution bandwidth were set at 1MHz RBW and 3MHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- c. Use the spectrum analyzer's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some analyzers, this may require a manual override to ensure use of peak detector).
- d. Employ trace averaging in power averaging (RMS) mode over a minimum of 100 traces.
- e. Use the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.
- f. The peak and average output power was measured and recorded.

9.3 Test Setup Layout

9.4 Test Result and Data

Test Date: June 23, 2017

Temperature: 25°C

Atmospheric pressure: 1000 hPa

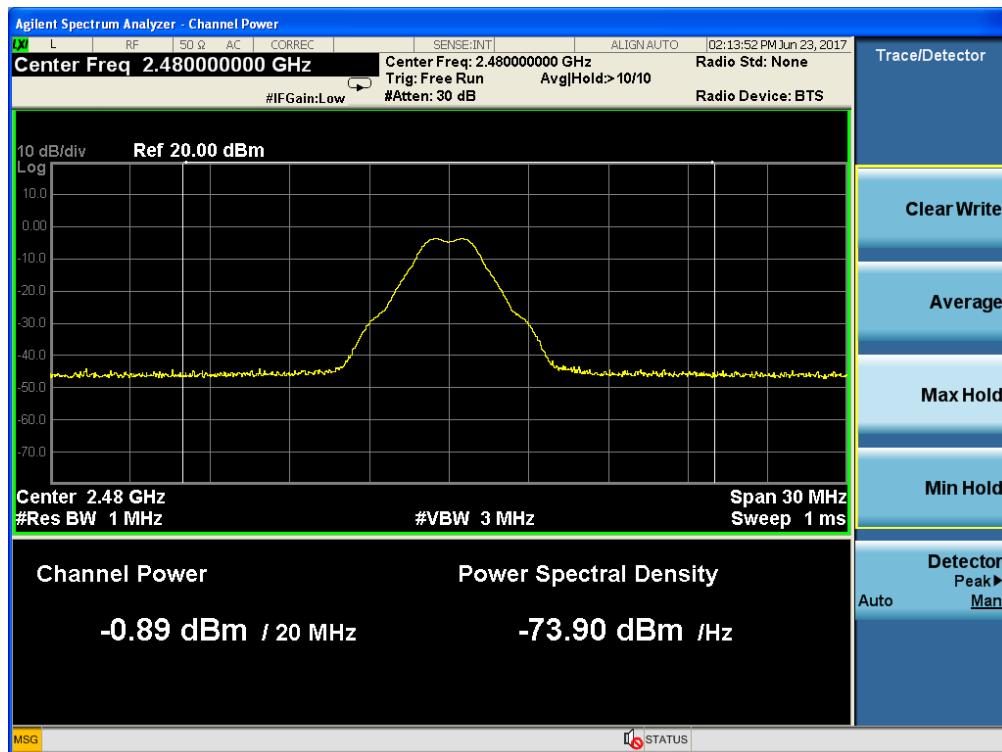
Humidity: 65%

Modulation Standard	Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Output (mW)
O-QPSK	11	2405	0.42	1.10
	18	2440	-0.28	0.94
	26	2480	-0.89	0.81

Modulation Standard	Channel	Frequency (MHz)	Average Power Output (dBm)	Average Power Output (mW)
O-QPSK	11	2405	0.02	1.00
	18	2440	-0.68	0.86
	26	2480	-1.28	0.74

Peak Output Power

Modulation Standard: O-QPSK


Channel: 11

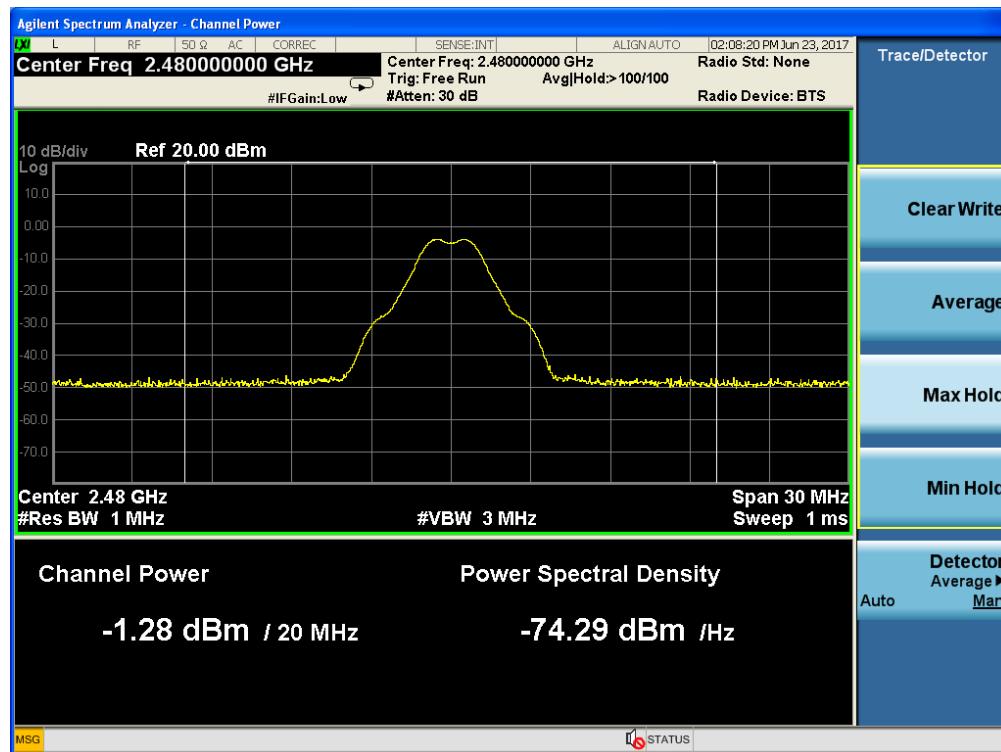
Modulation Standard: O-QPSK
Channel: 18

Modulation Standard: O-QPSK
Channel: 26

Average Output Power

Modulation Standard: O-QPSK

Channel: 11

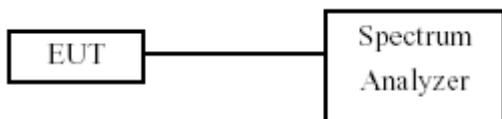


Modulation Standard: O-QPSK

Channel: 18

Modulation Standard: O-QPSK
 Channel: 26

10. Power Spectral Density


10.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm

10.2 Test Procedures

- g. The transmitter output was connected to spectrum analyzer.
- h. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=auto couple.
- i. The power spectral density was measured and recorded.

10.3 Test Setup Layout

10.4 Test Result and Data

Test Date: June 23, 2017

Temperature: 25°C

Atmospheric pressure: 1000 hPa

Humidity: 65%

Modulation Standard	Channel	Frequency (MHz)	Measured Power Density (dBm)
O-QPSK	11	2405	-17.51
	18	2440	-18.26
	26	2480	-19.09

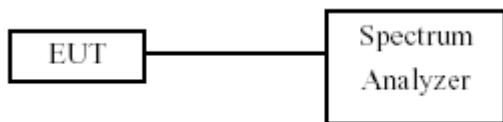
Modulation Standard: O-QPSK

Channel: 11

Modulation Standard: O-QPSK
Channel: 18

Modulation Standard: O-QPSK
Channel: 26

11. Band Edges


11.1 Test Limit

Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

11.2 Test Procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20dB relative to the maximum measured in-band peak PSD level.
- d. The band edges was measured and recorded.

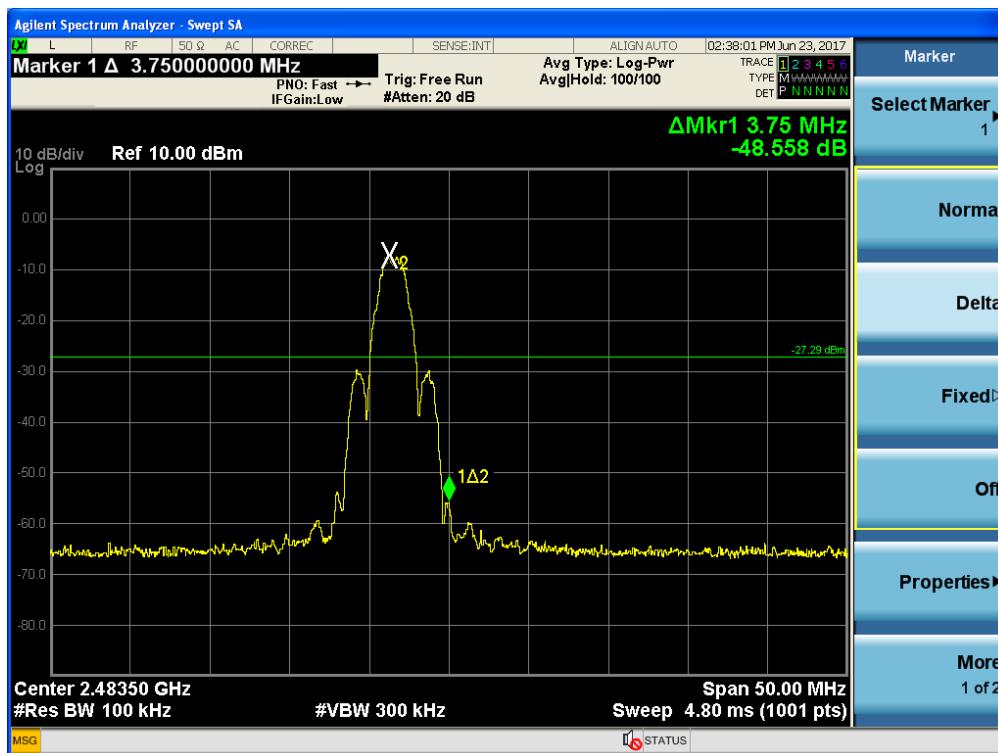
11.3 Test Setup Layout

11.4 Test Result and Data

Test Date: June 23, 2017

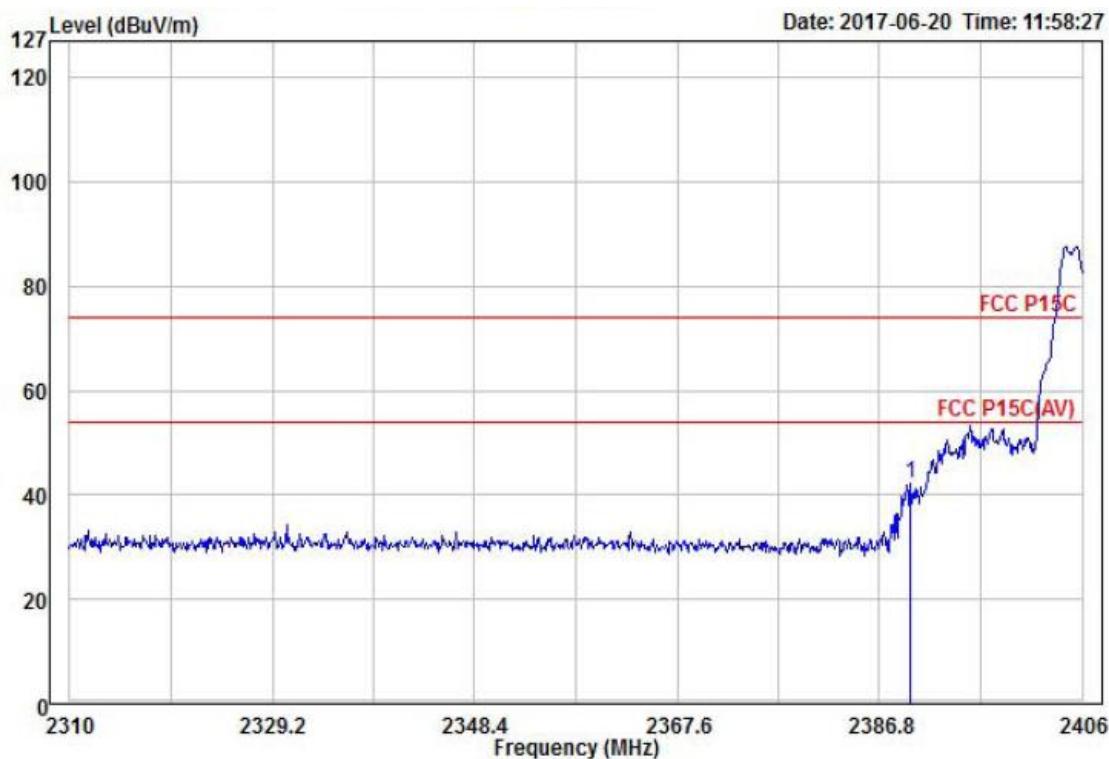
Temperature: 25°C

Atmospheric pressure: 1000 hPa

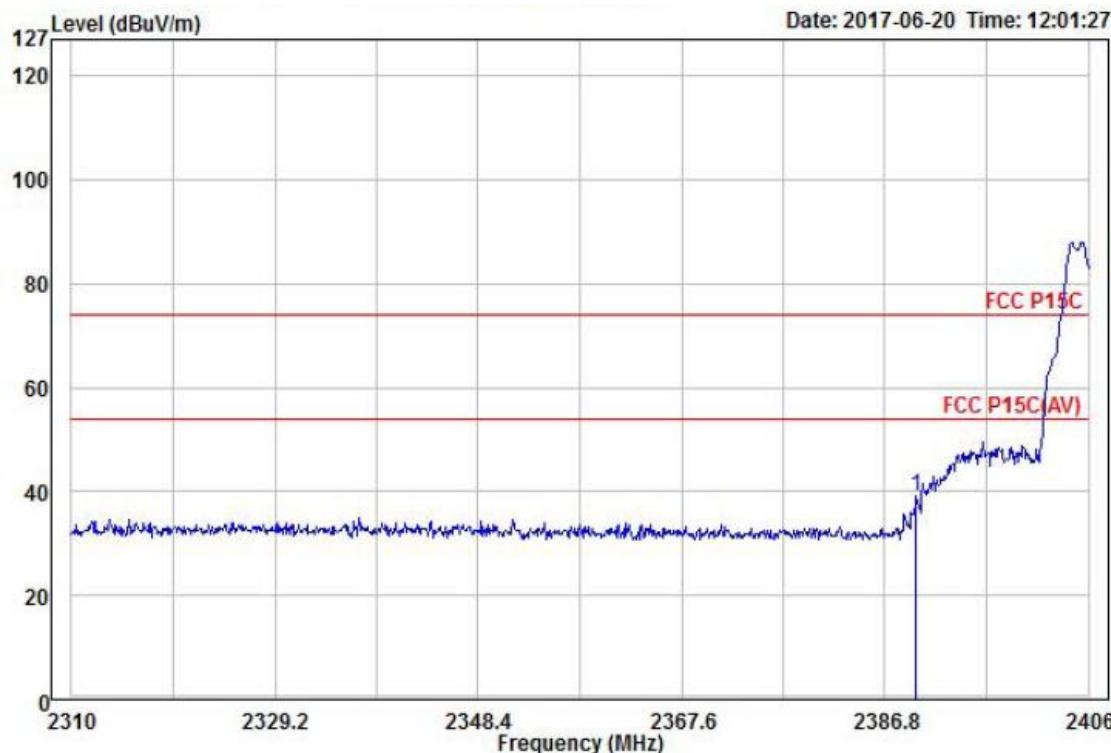

Humidity: 65%

Modulation Standard	Channel	Frequency (MHz)	maximum value in frequency (MHz)	maximum value (dBm)
O-QPSK	11	2405	24775.00	-47.80
	26	2480	24775.00	-47.74

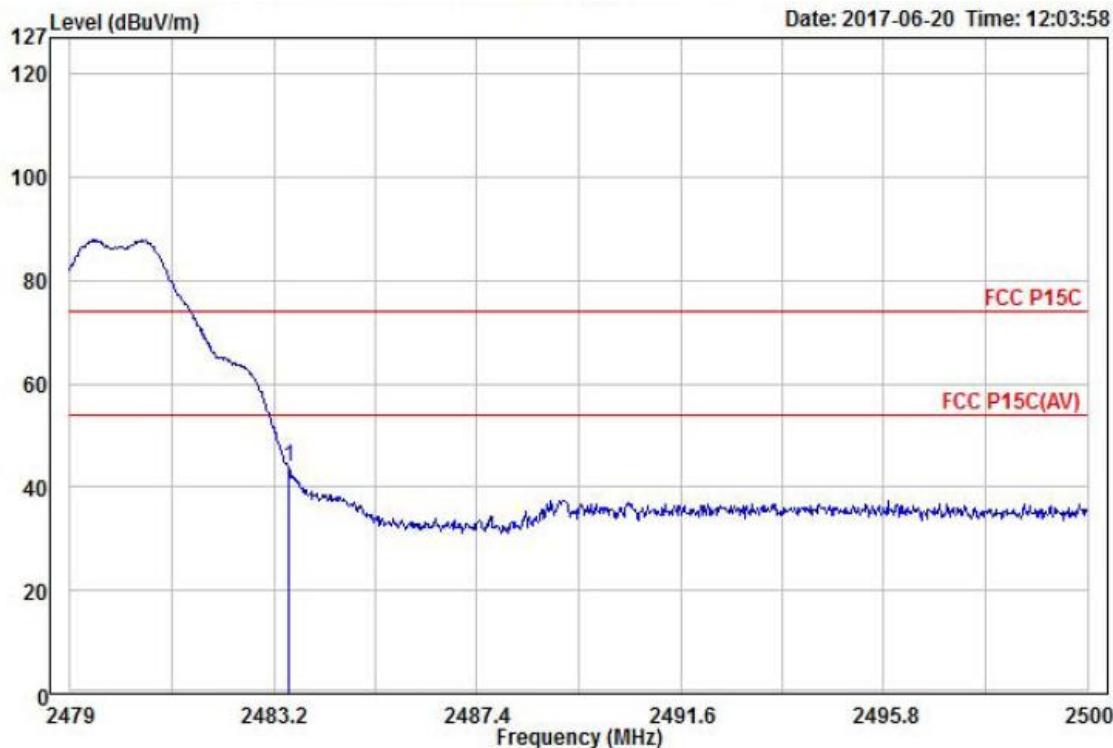
Modulation Standard: O-QPSK
Channel: 11



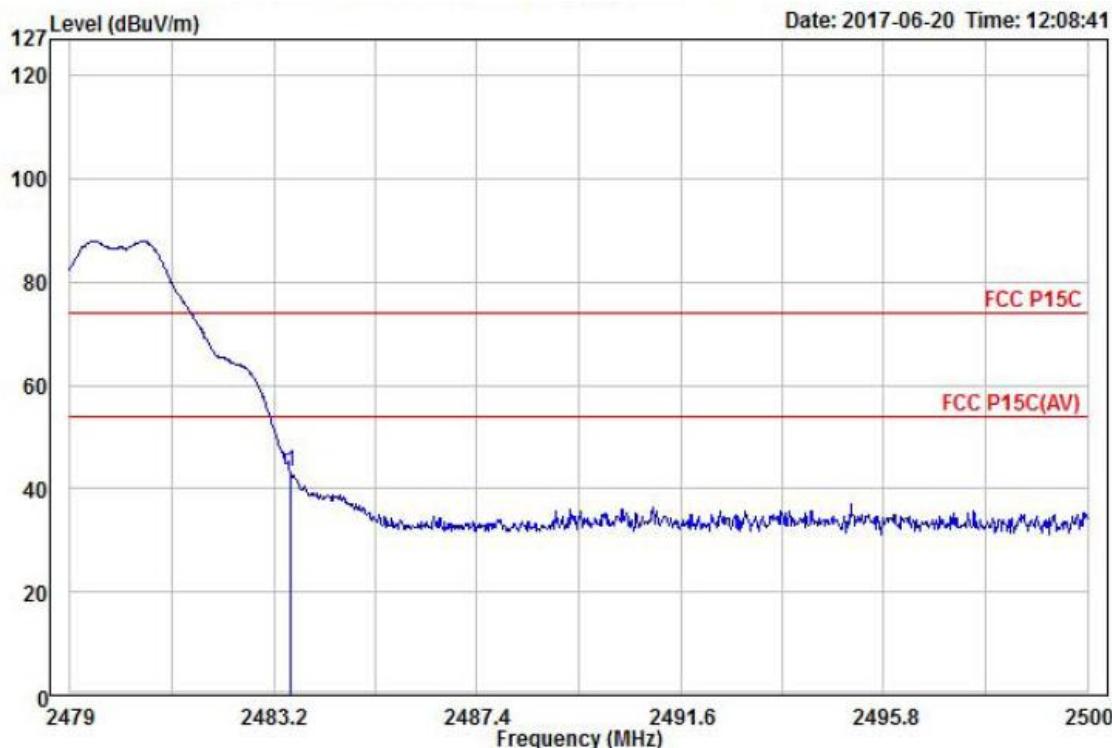
Modulation Standard: O-QPSK
Channel: 26


11.5 Restrict Band Emission Measurement Data

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


	Freq	Over Limit	Limit	Read Line	Read Level	Ant Factor	Ant Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m	
1	2389.776	42.25	-31.75	74.00	75.20	-32.95	28.21	Peak

Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH11	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		


	Freq	Over Limit	Read Line	Ant Factor	Ant Factor	Remark	
	MHz	dBuV/m	dB	dBuV	dB/m	dB/m	
1	2389.776	39.00	-35.00	74.00	71.95	-32.95	28.21 Peak

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode	: O-QPSK CH26	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		

Freq	Level	Over	Limit	Read	Ant		Remark
		Line	Limit	Level	Factor	Factor	
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m	
1	2483.515	44.12	-29.88	74.00	76.87	-32.75	28.12 Peak

Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode	: O-QPSK CH26	Temperature	: 30 °C
Test Date	: June 20, 2017	Humidity	: 70 %
Memo	Z axis		

Freq	Level	Over	Limit	Read	Ant		
		Line	Limit	Level	Factor	Factor	Remark
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m	
1 2483.536	43.19	-30.81	74.00	75.94	-32.75	28.12	Peak

Notes:

1. Result = Meter Reading + Factor
2. Factor = Antenna Factor + Cable Loss – Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz RMS detector for Average Value at frequency above 1GHz
5. All emissions as described above were determining by rotating the EUT through three orthogonal axes to maximizing the emissions if the EUT belongs to hand-held or body-worn devices.
6. Where limits are specified for both average and peak detector functions, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.

12. Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.09000 – 0.11000	16.42000 – 16.42300	399.9 – 410.0	4.500 – 5.150
0.49500 – 0.505**	16.69475 – 16.69525	608.0 – 614.0	5.350 – 5.460
2.17350 – 2.19050	16.80425 – 16.80475	960.0 – 1240.0	7.250 – 7.750
4.12500 – 4.12800	25.50000 – 25.67000	1300.0 – 1427.0	8.025 – 8.500
4.17725 – 4.17775	37.50000 – 38.25000	1435.0 – 1626.5	9.000 – 9.200
4.20725 – 4.20775	73.00000 – 74.60000	1645.5 – 1646.5	9.300 – 9.500
6.21500 – 6.21800	74.80000 – 75.20000	1660.0 – 1710.0	10.600 – 12.700
6.26775 – 6.26825	108.00000 – 121.94000	1718.8 – 1722.2	13.250 – 13.400
6.31175 – 6.31225	123.00000 – 138.00000	2200.0 – 2300.0	14.470 – 14.500
8.29100 – 8.29400	149.90000 – 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 – 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 – 8.38675	156.70000 – 156.90000	2655.0 – 2900.0	22.010 – 23.120
8.41425 – 8.41475	162.01250 – 167.17000	3260.0 – 3267.0	23.600 – 24.000
12.29000 – 12.29300	167.72000 – 173.20000	3332.0 – 3339.0	31.200 – 31.800
12.51975 – 12.52025	240.00000 – 285.00000	3345.8 – 3358.0	36.430 – 36.500
12.57675 – 12.57725	322.00000 – 335.40000	3600.0 – 4400.0	Above 38.6
13.36000 – 13.41000			

**: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

12.1 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.