

FCC RADIO TEST REPORT

Applicant..... : FOSHAN SHUNDE ADVANTE ELECTRON LTD.

Address..... : North Second XinXi Road, LunJiao Industrial Avenue LunJiao, Shunde, Foshan, Guangdong, China

Manufacturer..... : FOSHAN SHUNDE ADVANTE ELECTRON LTD.

Address..... : North Second XinXi Road, LunJiao Industrial Avenue LunJiao, Shunde, Foshan, Guangdong, China

Factory..... : FOSHAN SHUNDE ADVANTE ELECTRON LTD.

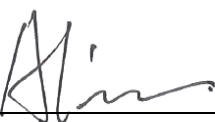
Address..... : North Second XinXi Road, LunJiao Industrial Avenue LunJiao, Shunde, Foshan, Guangdong, China

Product Name..... : Kinetic Wireless Doorbell

Brand Name..... : N/A

Model No. : FO, O, F28 (For model difference refer to section 2)

FCC ID..... : Q2I2024FO


Measurement Standard..... : 47 CFR FCC Part 15, Subpart C (Section 15.231)

Receipt Date of Samples..... : August 12, 2024

Date of Tested..... : August 13, 2024 to August 20, 2024

Date of Report..... : September 07, 2024

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Alina Guo / Project Engineer

Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result.....	4
2. General Description of EUT	5
3. Test Channels and Modes Detail.....	7
4. Configuration of EUT.....	7
5. Modification of EUT	7
6. Description of Support Device.....	7
7. Test Facility and Location	8
8. Applicable Standards and References.....	9
9. Deviations and Abnormalities from Standard Conditions	9
10. Test Conditions	9
11. Measurement Uncertainty	10
12. Sample Calculations	11
13. Duty Cycle	12
14. Test Items and Results	13
14.1 Conducted Emissions Measurement	13
14.2 Radiated Spurious Emissions Measurement.....	15
14.3 20dB Occupied Bandwidth.....	24
14.4 Transmission time	26
14.5 Antenna Requirement	28
15. Test Equipment List.....	29

Revision History

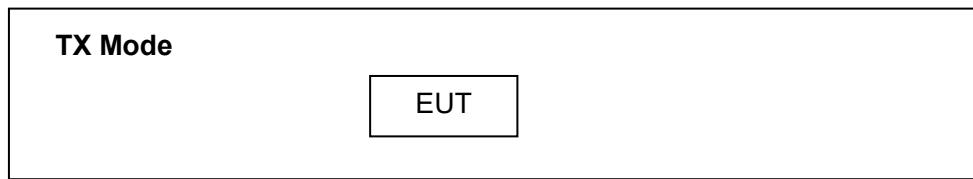
1. Summary of Test Result

FCC Rules	Description of Test	Result	Remarks
§15.207 (a)	AC Power Line Conducted Emission	N/A <small>see note 2</small>	---
§15.231(b) & 15.209	Radiated Spurious Emission	PASS	---
§15.231(c)	20 dB Occupied bandwidth	PASS	---
§15.231(a)	Transmission time	PASS	---
§15.203	Antenna Requirement	PASS	---

Note: 1. The EUT has been tested as an independent unit. And continual transmitting in maximum power (New batteries were used during test)
 2. AC Power Conducted Emission is not applicable due to the EUT only can be powered by battery.

2. General Description of EUT

Product Information	
Product Name:	Kinetic Wireless Doorbell
Main Model Name:	FO
Additional Model Name:	O, F28
Model Difference:	These models have the same circuit schematic, construction, PCB Layout and critical components. Their differences are model name due to trading purpose.
S/N:	2408-4622
Brand Name:	N/A
Hardware Version:	V01
Software Version:	V01
Rating:	DC 3V CR2032 battery
Typical arrangement:	Table-top
I/O Port:	Refer to the user manual
Accessories Information	
Adapter:	N/A
Cable:	N/A
Other:	N/A
Additional Information	
Note:	According to the model difference and manufacturer's requirement, all tests were performed on model FO.
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.


Technical Specification	
Declaring the Frequency:	433.924MHz
Modulation Type:	ASK
Antenna Type:	Spring antenna
Antenna Gain:	0 dBi (Declared by manufacturer)
Number of Channels:	1

3. Test Channels and Modes Detail

Mode	Test Frequency (MHz)	Modulation	Data Rate (Mbps)
1	TX	433.924MHz	ASK

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
---	---	---	---	---	---	---

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and Authorizations	:	<p>The Laboratory has been assessed and proved to be in compliance with CNAS/CL01</p> <p>Listed by CNAS, August 13, 2018</p> <p>The Certificate Registration Number is L5795.</p> <p>The Certificate is valid until August 13, 2030</p> <p>The Laboratory has been assessed and proved to be in compliance with ISO17025</p> <p>Listed by A2LA, November 01, 2017</p> <p>The Certificate Registration Number is 4429.01</p> <p>The Certificate is valid until December 31, 2025</p> <p>Listed by FCC, November 06, 2017</p> <p>Test Firm Registration Number: 907417</p> <p>Listed by Industry Canada, June 08, 2017</p> <p>The Certificate Registration Number. Is 46405-9743A</p> <p>The CAB identifier number: CN0015</p>
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.231

ANSI C63.10-2013

References Test Guidance:

N/A

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	AC Power Conducted Emission	---	---	---	---
2.	Radiated Emission	1	DC 3V	Sean	See note 1
3.	20 dB Occupied bandwidth	1	DC 3V	Sean	See note 1
4.	Transmission time	1	DC 3V	Sean	See note 1
5.	Antenna Requirement	---	---	---	---

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa.
2. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±2.52 dB	---
2.	Radiated Emission Test	9kHz ~ 30MHz	±5.60 dB	---
		30MHz ~ 1GHz	±5.60 dB	---
		1GHz ~ 18GHz	±5.22 dB	---
		18GHz ~ 40GHz	±5.22 dB	---
3.	Occupied Bandwidth	---	±1.05%	---
4.	Transmission time	---	±0.01ms	---

Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
2. The measurement uncertainty levels above are estimated and calculated according to CISPR 16-4-2.
3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

Conducted Emission						
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector
0.1900	30.10	10.60	40.70	79.00	-38.30	QP

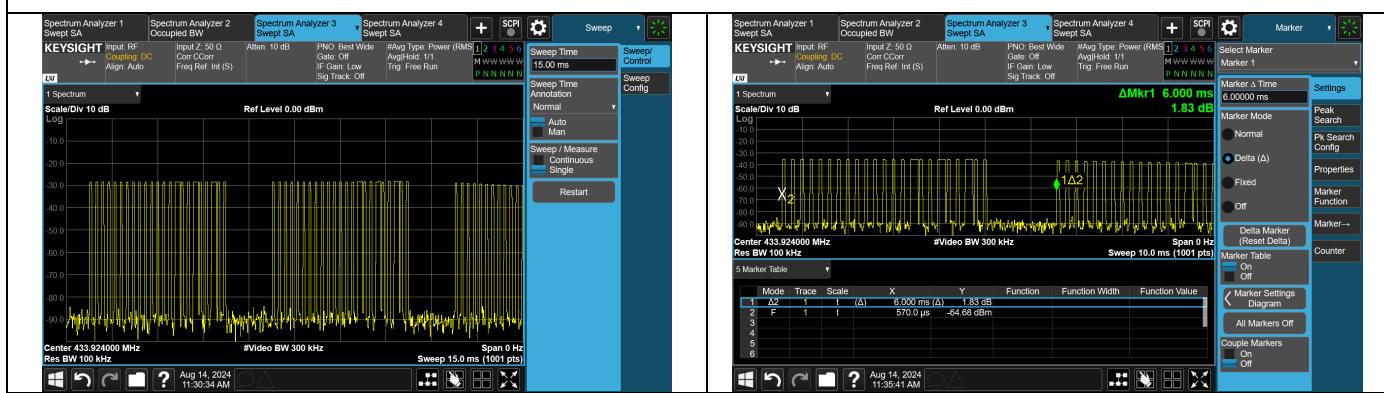
Where,

Freq. = Emission frequency in MHz
 Reading Level = Spectrum Analyzer/Receiver Reading
 Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation
 Measurement = Reading + Corrector Factor
 Limit = Limit stated in standard
 Margin = Measurement - Limit
 Detector = Reading for Quasi-Peak / Average / Peak

Radiated Spurious Emissions						
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
324.8800	14.81	22.09	36.90	46.00	-9.10	QP

Where,

Freq. = Emission frequency in MHz
 Reading Level = Spectrum Analyzer/Receiver Reading
 Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier
 Measurement = Reading + Corrector Factor
 Limit = Limit stated in standard
 Over = Margin, which calculated by Measurement - Limit
 Detector = Reading for Quasi-Peak / Average / Peak


Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Duty Cycle

Frequency MHz	TP time (ms)	Ton time (Total) (ms)	Duty cycle	AV Factor
433.924	6.00	1.91	31.8%	-9.95

Test Photo

TP time

Ton 1 time

Ton 2 time

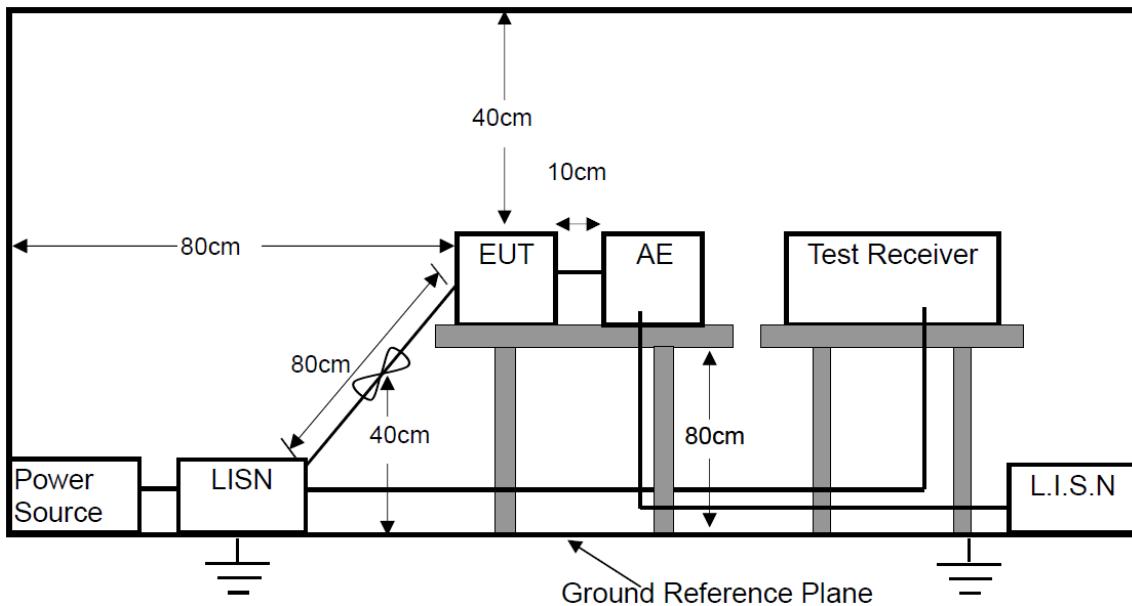
Note: Duty Cycle = (Total Ton time / TP time) x 100%

Total Ton time = Ton 1 x n1 + Ton 2 x n2 + + Ton n x n = 0.07*20 + 0.17*3=1.91ms

AV Factor = 20log(Duty Cycle).

14. Test Items and Results

14.1 Conducted Emissions Measurement


LIMIT

According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.
2. The lower limit shall apply at the transition frequencies.
3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

Not Applicable.

14.2 Radiated Spurious Emissions Measurement

LIMIT

Frequency range MHz	Distance Meters	Field Strengths Limit (15.209)
		μ V/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

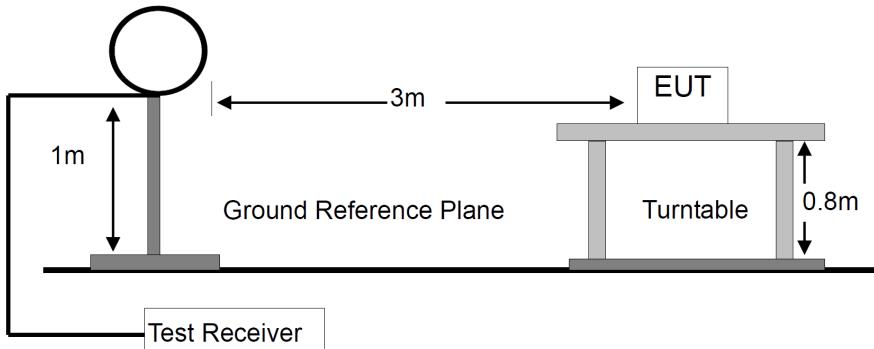
Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

(2) The smaller limit shall apply at the cross point between two frequency bands.

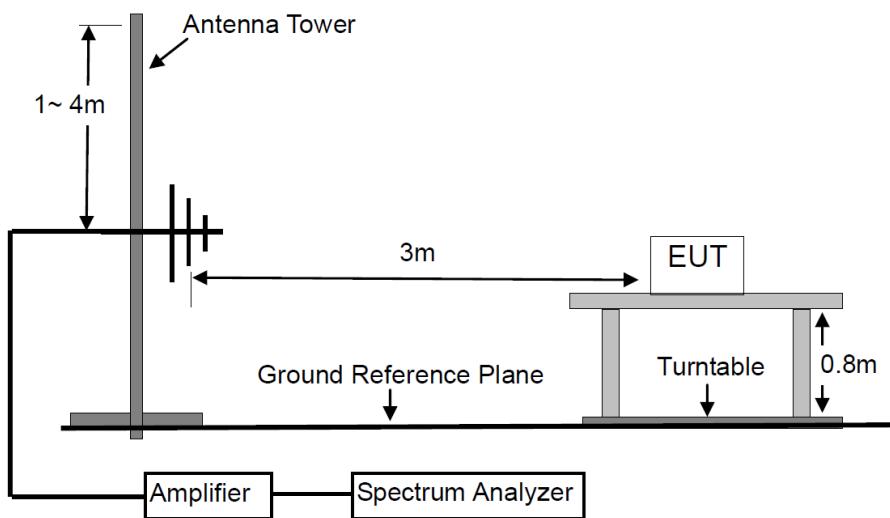
(3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

(4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

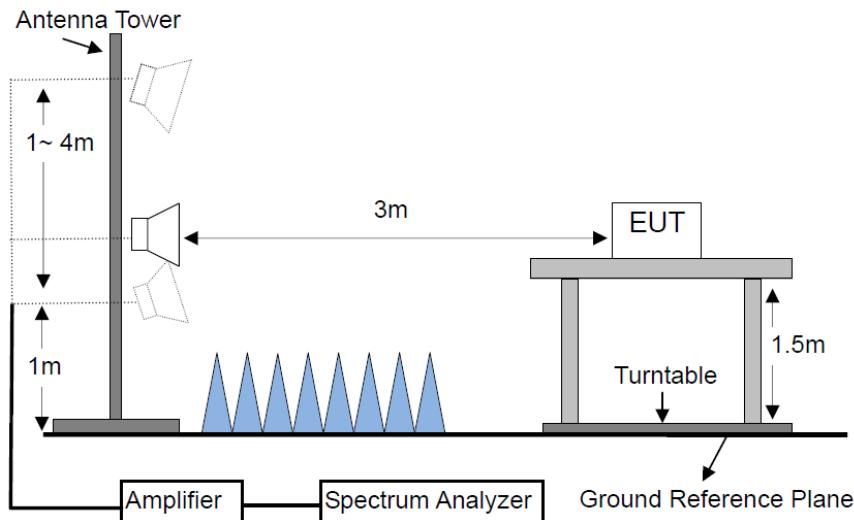
(5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.


According to 15.231(b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/ meter)	spurious emissions (microvolts/meter)
40.66 - 40.70	2250	225
70 - 130	1250	125
130 - 174	1250 to 3750*	125 to 375*
174 - 260	3750	375
260 - 470	3750 to 12500*	375 to 1250*
Above 470	12500	1250


Remark: (1) * Linear interpolations
(2) Emission level (dB) μ V = 20 log Emission level μ V/m.
(3) The smaller limit shall apply at the cross point between two frequency bands.

BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz

For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.

- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

TEST RESULTS

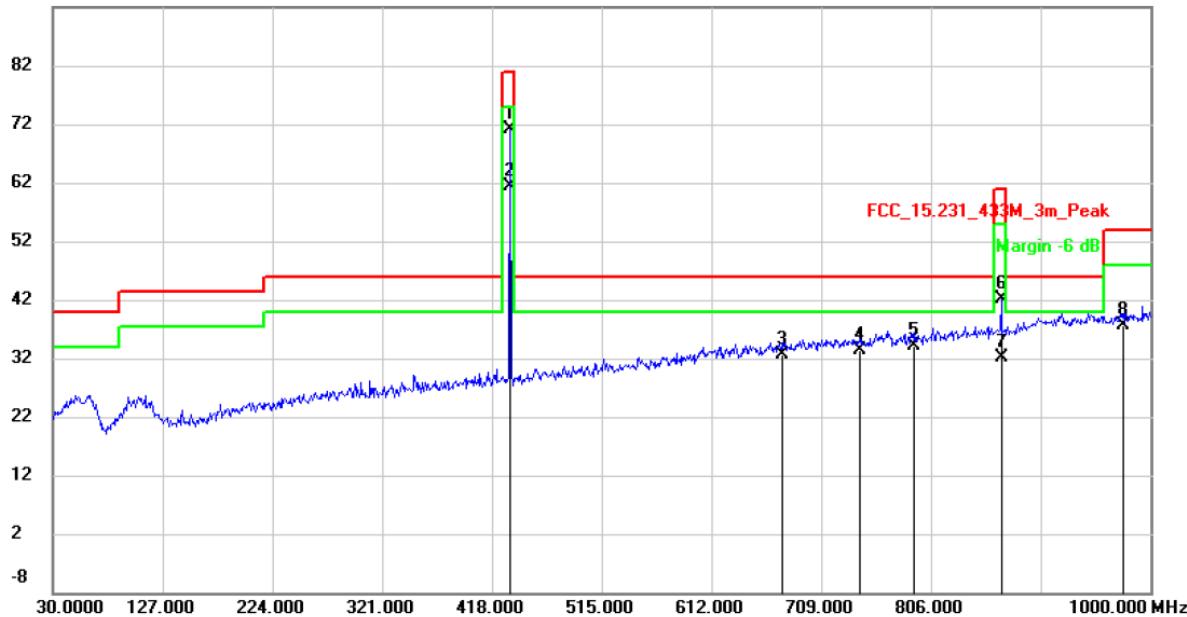
PASS

Please refer to the following pages.

AVG = Peak + AV Factor,

where Peak is the measurement peak level, and AV Factor is calculated by duty cycle, details see section 13 of the report.

Sample calculation, Peak=71.22dBuV/m, AV Factor=-9.95dB, then AVG=71.22+(-9.95)=61.27dBuV/m.


M/N: FO	Testing Voltage: DC 3V
Polarization: Horizontal	Detector: QP
Test Mode: TX	Distance: 3m

Radiated Emission Measurement

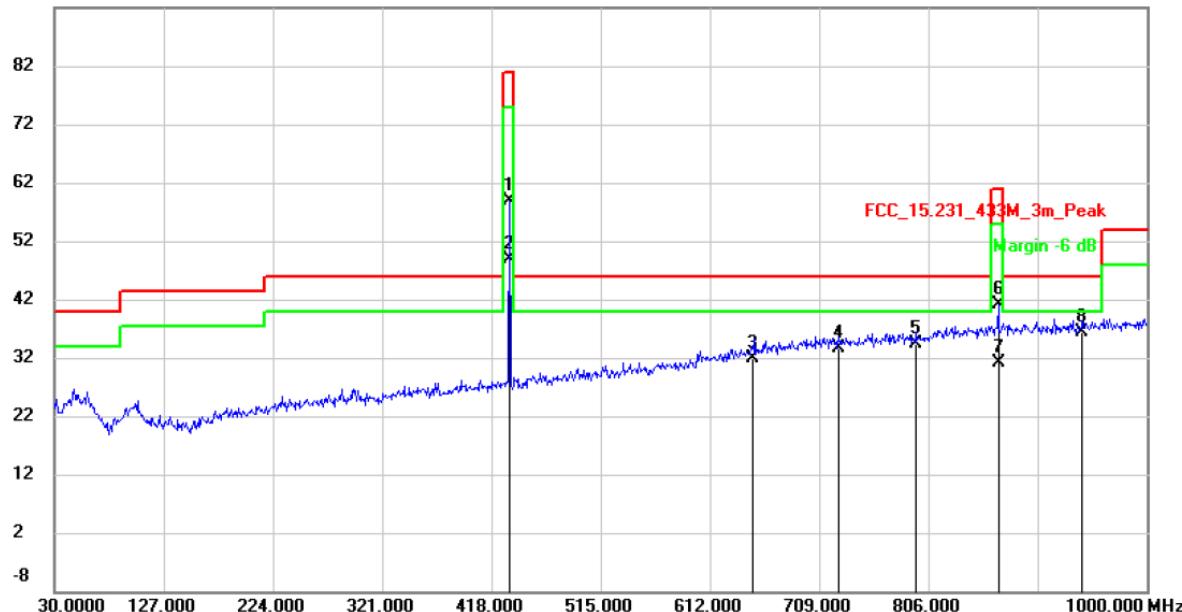
Date: 2024/8/16

Time: 11:30:24

92.0 dB_{uV/m}

No.	Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over	
		MHz	dB _{uV}	dB/m	dB _{uV/m}	dB	Detector	Comment
1	*	433.9240	47.00	24.22	71.22			peak
2		433.9240			61.27	80.80	-19.53	AVG
3		675.0500	4.25	28.45	32.70	46.00	-13.30	QP
4		742.9500	3.86	29.54	33.40	46.00	-12.60	QP
5		791.4500	4.02	30.18	34.20	46.00	-11.80	QP
6		867.8480	10.61	31.50	42.11			peak
7		867.8480			32.16	60.80	-28.64	AVG
8		975.7500	4.21	33.49	37.70	54.00	-16.30	QP

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.


M/N: FO	Testing Voltage: DC 3V
Polarization: Vertical	Detector: QP
Test Mode: TX	Distance: 3m

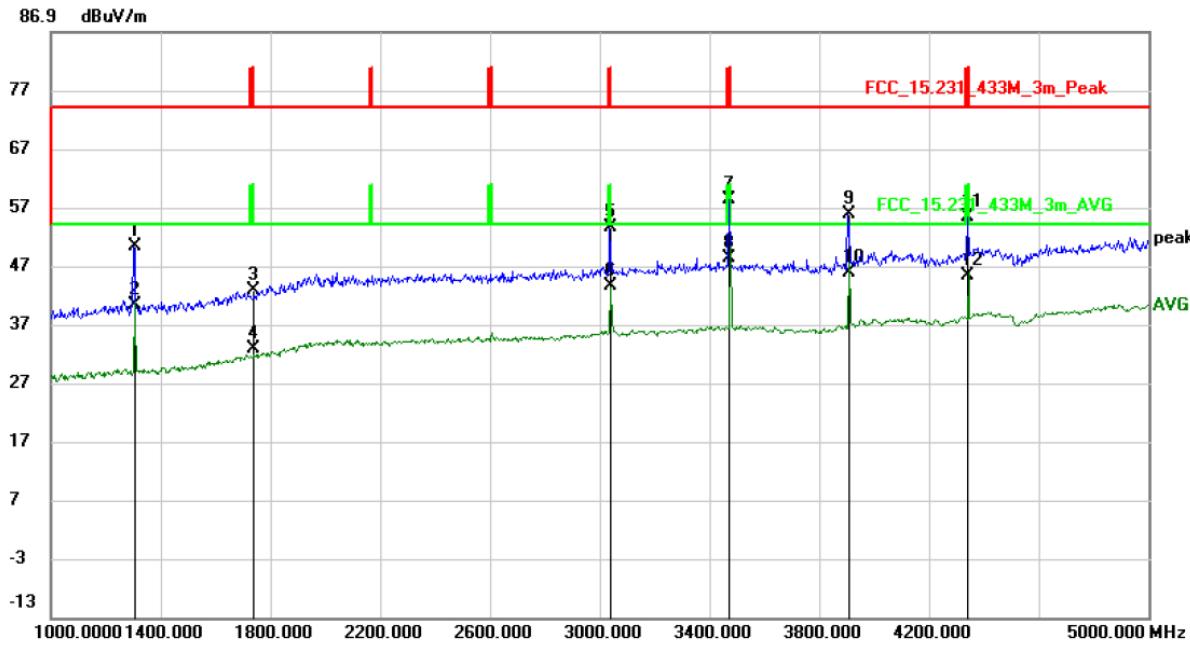
Radiated Emission Measurement

Date: 2024/8/16

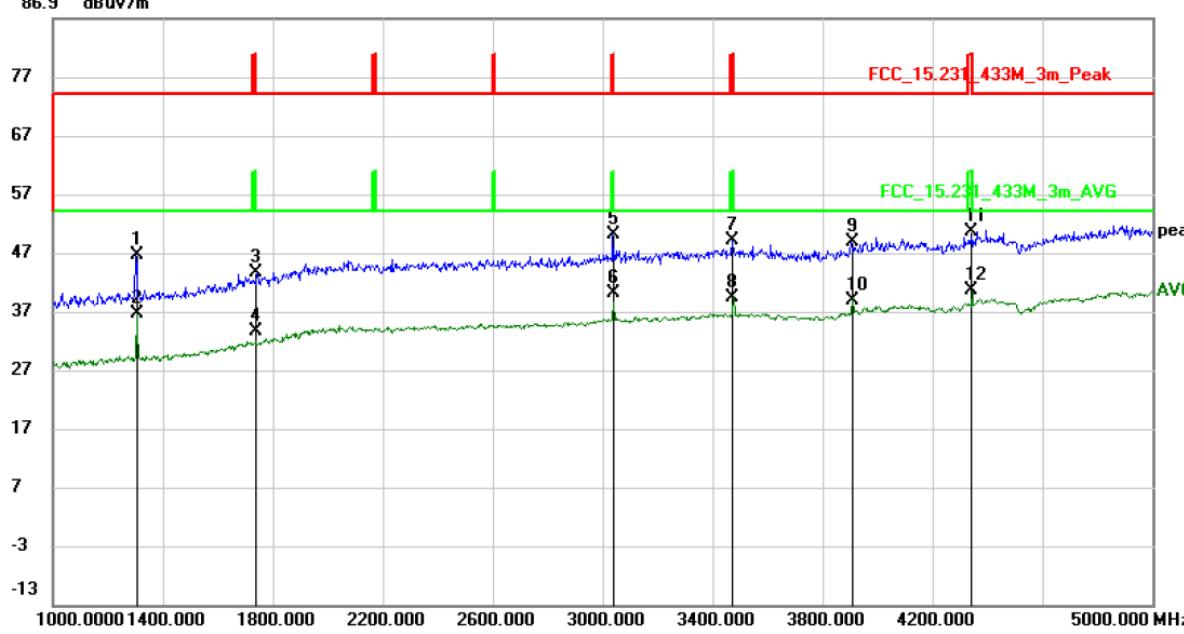
Time: 11:37:16

92.0 dBuV/m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment
1	433.9240	35.72	23.22	58.94				peak
2	433.9240				48.99	80.80	-31.81	AVG
3	649.8300	4.28	27.72	32.00	46.00	-14.00		QP
4	726.4600	4.28	29.32	33.60	46.00	-12.40		QP
5	795.3300	4.07	30.23	34.30	46.00	-11.70		QP
6	867.8480	9.62	31.50	41.12				peak
7	867.8480				31.17	60.80	-29.63	AVG
8 *	942.7700	4.40	32.00	36.40	46.00	-9.60		QP


Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: FO	Testing Voltage: DC 3V
Polarization: Horizontal	Detector: Peak & AVG
Test Mode: TX	Distance: 3m


Radiated Emission Measurement

Date: 2024/8/16

Time: 11:08:04

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Comment						
								MHz	dBuV	dB/m	dBuV/m	dB	Detector	
1		1301.772	57.89	-7.61	50.28	74.00	-23.72	peak						
2		1301.772			40.33	54.00	-13.67	AVG						
3		1735.696	47.06	-4.33	42.73	80.80	-38.07	peak						
4		1735.696			32.78	60.80	-28.02	AVG						
5		3037.468	51.57	1.85	53.42	80.80	-27.38	peak						
6		3037.468			43.47	60.80	-17.33	AVG						
7		3471.392	55.49	2.68	58.17	80.80	-22.63	peak						
8		3471.392			48.22	60.80	-12.58	AVG						
9		3905.316	51.93	3.75	55.68	74.00	-18.32	peak						
10	*	3905.316			45.73	54.00	-8.27	AVG						
11		4339.240	50.60	4.75	55.35	80.80	-25.45	peak						
12		4339.240			45.40	60.80	-15.40	AVG						

M/N: FO	Testing Voltage: DC 3V																																																																																																																														
Polarization: Vertical	Detector: Peak & AVG																																																																																																																														
Test Mode: TX	Distance: 3m																																																																																																																														
Radiated Emission Measurement																																																																																																																															
Date: 2024/8/16 Time: 11:16:47																																																																																																																															
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measurement</th> <th>Limit</th> <th>Over</th> <th></th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td>MHz</td> <td>dBuV</td> <td>dB/m</td> <td>dBuV/m</td> <td>dB</td> <td>Detector</td> <td>Comment</td> </tr> <tr> <td>1</td> <td>1301.772</td> <td>54.15</td> <td>-7.61</td> <td>46.54</td> <td>74.00</td> <td>-27.46</td> <td>peak</td> <td></td> </tr> <tr> <td>2</td> <td>1301.772</td> <td></td> <td></td> <td>36.59</td> <td>54.00</td> <td>-17.41</td> <td>AVG</td> <td></td> </tr> <tr> <td>3</td> <td>1735.696</td> <td>47.91</td> <td>-4.33</td> <td>43.58</td> <td>80.80</td> <td>-37.22</td> <td>peak</td> <td></td> </tr> <tr> <td>4</td> <td>1735.696</td> <td></td> <td></td> <td>33.63</td> <td>60.80</td> <td>-27.17</td> <td>AVG</td> <td></td> </tr> <tr> <td>5</td> <td>3037.468</td> <td>48.21</td> <td>1.85</td> <td>50.06</td> <td>80.80</td> <td>-30.74</td> <td>peak</td> <td></td> </tr> <tr> <td>6</td> <td>3037.468</td> <td></td> <td></td> <td>40.11</td> <td>60.80</td> <td>-20.69</td> <td>AVG</td> <td></td> </tr> <tr> <td>7</td> <td>3471.392</td> <td>46.45</td> <td>2.68</td> <td>49.13</td> <td>80.80</td> <td>-31.67</td> <td>peak</td> <td></td> </tr> <tr> <td>8</td> <td>3471.392</td> <td></td> <td></td> <td>39.18</td> <td>60.80</td> <td>-21.62</td> <td>AVG</td> <td></td> </tr> <tr> <td>9</td> <td>3905.316</td> <td>45.10</td> <td>3.75</td> <td>48.85</td> <td>74.00</td> <td>-25.15</td> <td>peak</td> <td></td> </tr> <tr> <td>10 *</td> <td>3905.316</td> <td></td> <td></td> <td>38.90</td> <td>54.00</td> <td>-15.10</td> <td>AVG</td> <td></td> </tr> <tr> <td>11</td> <td>4339.240</td> <td>45.69</td> <td>4.75</td> <td>50.44</td> <td>80.80</td> <td>-30.36</td> <td>peak</td> <td></td> </tr> <tr> <td>12</td> <td>4339.240</td> <td></td> <td></td> <td>40.49</td> <td>60.80</td> <td>-20.31</td> <td>AVG</td> <td></td> </tr> </tbody> </table>		No.	Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over				MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment	1	1301.772	54.15	-7.61	46.54	74.00	-27.46	peak		2	1301.772			36.59	54.00	-17.41	AVG		3	1735.696	47.91	-4.33	43.58	80.80	-37.22	peak		4	1735.696			33.63	60.80	-27.17	AVG		5	3037.468	48.21	1.85	50.06	80.80	-30.74	peak		6	3037.468			40.11	60.80	-20.69	AVG		7	3471.392	46.45	2.68	49.13	80.80	-31.67	peak		8	3471.392			39.18	60.80	-21.62	AVG		9	3905.316	45.10	3.75	48.85	74.00	-25.15	peak		10 *	3905.316			38.90	54.00	-15.10	AVG		11	4339.240	45.69	4.75	50.44	80.80	-30.36	peak		12	4339.240			40.49	60.80	-20.31	AVG	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over																																																																																																																								
		MHz	dBuV	dB/m	dBuV/m	dB	Detector	Comment																																																																																																																							
1	1301.772	54.15	-7.61	46.54	74.00	-27.46	peak																																																																																																																								
2	1301.772			36.59	54.00	-17.41	AVG																																																																																																																								
3	1735.696	47.91	-4.33	43.58	80.80	-37.22	peak																																																																																																																								
4	1735.696			33.63	60.80	-27.17	AVG																																																																																																																								
5	3037.468	48.21	1.85	50.06	80.80	-30.74	peak																																																																																																																								
6	3037.468			40.11	60.80	-20.69	AVG																																																																																																																								
7	3471.392	46.45	2.68	49.13	80.80	-31.67	peak																																																																																																																								
8	3471.392			39.18	60.80	-21.62	AVG																																																																																																																								
9	3905.316	45.10	3.75	48.85	74.00	-25.15	peak																																																																																																																								
10 *	3905.316			38.90	54.00	-15.10	AVG																																																																																																																								
11	4339.240	45.69	4.75	50.44	80.80	-30.36	peak																																																																																																																								
12	4339.240			40.49	60.80	-20.31	AVG																																																																																																																								

14.3 20dB Occupied Bandwidth

LIMIT

According to 15.231(C), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.

$$\text{Limit} = 433.924\text{MHz} \times 0.25\% = 1084.81 \text{ KHz}$$

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data

TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHz)	20 dB Bandwidth (KHz)	Limit (KHz)	Result
433.924	163.4	1084.81	PASS

Test Photo

14.4 Transmission time

LIMIT

15.231 (a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

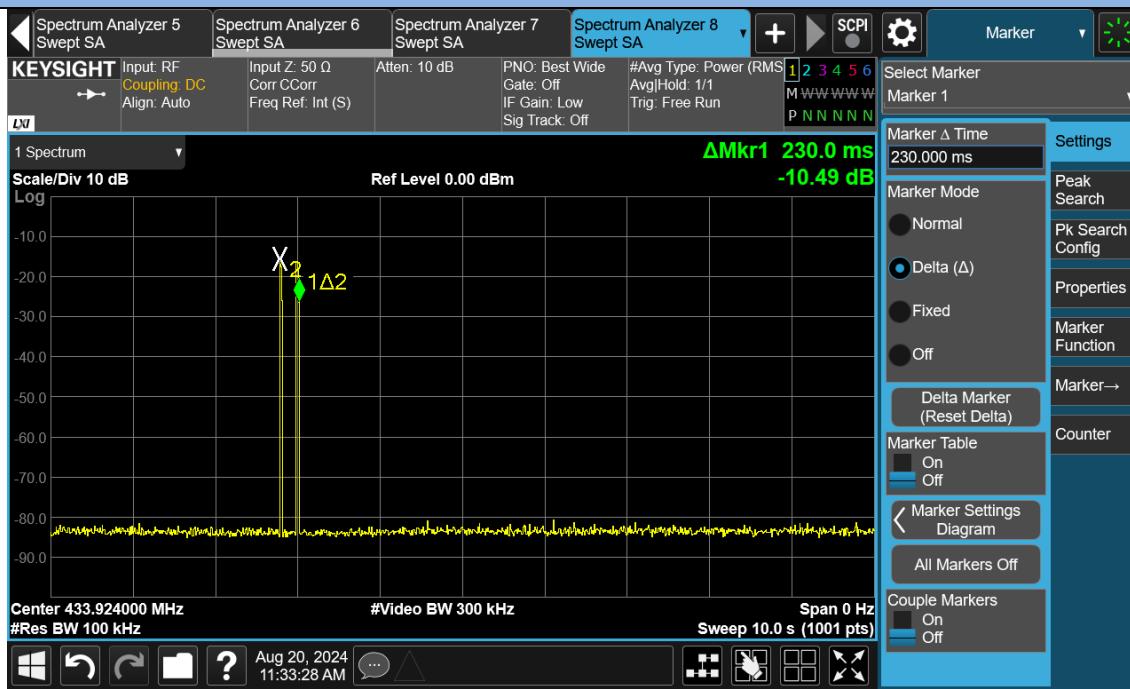
15.231(a) (2) A transmitter activated automatically shall cease transmission within 5seconds after activation.

15.231(e), under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of transmission but in no case less than 10 seconds.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data.


TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHz)	Transmission time (sec)	Limit (sec)	Result
433.924	0.23	<5	PASS

Test Photo

14.5 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is spring antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0dBi, Therefore, the antenna is consider meet the requirement.

15. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 12, 2024	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2024	2 Year
3.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 12, 2024	1 Year
4.	Spectrum Analyzer	Keysight	N9010B	MY62170254	Aug. 14, 2024	1 Year
5.	Power Sensor	DARE	RPR3006W	15I00041SNO 64	Mar. 12, 2024	1 Year
6.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2024	2 Year
7.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 12, 2024	1 Year
8.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 12, 2024	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2024	2 Year
10.	Horn Antenna	COM-Power	AH-840	10100020	Mar. 23, 2024	2 Year
11.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 12, 2024	1 Year
12.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 12, 2024	1 Year
13.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 12, 2024	1 Year
14.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 12, 2024	1 Year
15.	Temperature & Humidity Chamber	Wanshun	SS-HWHS-80	N/A	Mar. 12, 2024	1 Year
16.	DC Source	Maynuo	MY8811	N/A	Mar. 12, 2024	1 Year
17.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
18.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2023	2 Year
19.	Test Software	EZ	EZ_EMC, NTC-3A1.1	N/A	N/A	N/A
20.	Test Software	MWRF	MTS 8310, V2.0.0.0	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.

---End---