

Nokia Corporation

Application For Certification

FCC ID: PYAMD-12

Wireless Portable Speaker

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

2.4GHz Transceiver

Report No.: 140220014SZN-001

Prepared and Checked by:	Approved by:	
Sign on file		
Leo Lai	Billy Li	
Project Engineer	Supervisor	
	Date: March 31, 2014	

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample
 may be said to have been obtained.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

TRF No.: FCC 15C_TX_b

6F, D Block, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

EXHIBIT 9: Test Equipment List

MEASUREMENT/TECHNICAL REPORT

Nokia Corporation

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

FCC ID: PYAMD-12

This report concerns (check one:) Orig	ginal Grant <u>X</u>	Class II Chan	ge
Equipment Type: DSS - Part 15 Spread S	Spectrum Transmitt	er_	
Deferred grant requested per 47 CFR 0.4	-57(d)(1)(ii)?	Yes	No <u>X</u>
	If yes, defe	r until:c	late
Company Name agrees to notify the Com	nmission by:		
of the intended date of announcement of date.	the product so tha	date t the grant can be	e issued on that
Transition Rules Request per 15.37?		Yes	No <u>X</u>
If no, assumed Part 15, Subpart C for Edition] provision.	intentional radiate	or – the new 47	CFR [10-1-13
Report prepared by:			
	Kejiyuan Branch 6F, Block D, Hua Nanshan District Phone: (86 755)	Services Shenzhe han Building, Lar , Shenzhen, P. R.) 8601 6288) 8601 6751	ngshan Road,

Table of Contents

1.0 <u>General Description</u>	2
1.1 Product Description	2
1.2 Test Methodology	2
1.3 Test Facility	2
2.0 System Test Configuration	4
2.1 Justification	4
2.2 EUT Exercising Software	4
2.3 Special Accessories	4
2.4 Equipment Modification	
2.5 Measurement Uncertainty	5
2.6 Support Equipment List and Description	5
3.0 <u>Test Results</u>	
3.1 Radiated Test Result	
3.1.1 Field Strength Calculation	
3.1.2 Radiated Emission Data and Configuration Photograp	
3.1.3 Transimitter Spurious Emissions (Radiated)	
3.2 Conducted Emissions at Mains Termial	15
3.2.1 Conducted Emissions and Data Configuration Photograph	ı15
3.3 Peak Power	18
3.4 20dB Bandwidth	24
3.5 Channel Number (Number of Hopping Frequencies)	26
3.6 Channel Separation (Carrier Frequency Separation)	29
3.7 Dwell Time (Time of Occupancy)	
3.8 Band Edge	37
3.9 Transmitter Spurious Emissions (Conducted)	39
4.0 Equipment Photographs	44
5.0 Product Labelling	46
6.0 <u>Technical Specifications</u>	48
7.0 <u>Instruction Manual</u>	50
7.0 IIISU UCUOII Mailuai	
8.0 Miscellaneous Information	52
8.1 Discussion of Pulse Desensitizatio	
8.2 Transmitter Duty Cycle Calculation	
8.3 Emissions Test Procedures	
0.0 Emiliono 1000 1000 1000 milioni	
9.0 Test Equipment List	58
10.0 <u>Annex</u>	

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.pdf
Operational Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
Test Setup Photo	Conducted Emission	conducted photos.pdf
External Photos	External Photo	external photos.pdf
Internal Photos	Internal Photo	internal photos.pdf
ID Label/Location Info	Label Artwork and Location	label.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
Users Manual	User Manual	manual.pdf
Cover Letter	Letter of Agency	letter of agency.pdf
RF Exposure	RF Exposure	RF Exposure.pdf

EXHIBIT 1

GENERAL DESCRIPTION

1.0 **General Description**

1.1 Product Description

The Equipment under Test (EUT) is a Wireless Portable Speaker model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0). It is powered by D.C. 3.7V from internal rechargeable battery or charged by USB Cable through PC USB Port or compatible charger.

Antenna Type: Integral antenna

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4: 2009 and DA 00-705. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.3 Test Facility

The Semi-Anechoic chamber and shield room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch** and located at 6F, Block D, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: 242492).

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4: 2009.

The EUT was powered by a fully charged 3.7V internal rechargeable battery and Charged by AC adapter (Input: AC 100-240V 50-60Hz, 0.2A, Output: DC 5V, 1.3A) or PC USB port during the test. Only the worst case data was reported.

All packets DH1, DH3 & DH5 mode in all modulation types GFSK, $\pi/4$ –DQPSK and 8-DPSK were tested, and only the worst data was reported in this report.

This device includes two connection modes: Wireless (Bluetooth) connection and Wired connection; When you connect your speaker using a cable, Bluetooth is switched off automatically.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was placed in the center of the turntable when powered by internal rechargeable battery and the rear of unit shall be flushed with the rear of the table when powered by adapter or PC.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

No software is used.

2.3 Special Accessories

No Special Accessory attached.

2.4 Equipment Modification

Any modifications installed previous to testing by Nokia Corporation will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch.

2.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

This product was tested in the following configuration:

Refer List:

Description	Manufacturer	Model No.
Mobile Phone	Nokia	Lumia 820
AC Adapter	Nokia	AC-50U (Input: AC 100-240V 50-60Hz, 0.2A; Output: DC 5V, 1.3A)
Shielding USB Cable	Nokia	CA-190CD, 120cm
Laptop	Lenovo	T420

EXHIBIT 3

TEST RESULTS

3.0 **Test Results**

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

3.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

3.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dBuV

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

PD = 0 dB

AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

3.1.2 Radiated Emission Data and Configuration Photograph - FCC section 15.209

Worst Case Radiated Emission At 86.280 MHz

Judgement: Passed by 12.8 dB

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos.pdf.

TEST PERSONNEL:	
Sign on file	
Leo Lai, Project Engineer Typed / Printed Name	
March 7, 2014 Date	

Applicant: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Worst Case Operating Mode: BT Link With Cell Phone + AC-50U

Table 1

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp	Antenna Factor	Net at 3m	Limit at 3m	Margin (dB)
		, , ,	Gain (dB)	(dB)	(dBµV/m)	(dBµV/m)	, ,
Horizontal	30.970	22.3	20.0	18.6	20.9	40.0	-19.1
Horizontal	403.440	36.7	20.0	13.5	30.2	46.0	-15.8
Horizontal	486.385	33.3	20.0	17.0	30.3	46.0	-15.7
Vertical	32.910	23.6	20.0	18.2	21.8	40.0	-18.2
Vertical	86.280	40.1	20.0	7.1	27.2	40.0	-12.8
Vertical	314.210	22.6	20.0	22.1	24.7	46.0	-21.3

NOTES: 1. Quasi-Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. All emissions are below the QP limit.

Test Engineer: Leo Lai

3.1.3 Transmitter Spurious Emissions (Radiated) - FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission at 4882 MHz

Judgement: Passed by 23.7 dB

TEST PERSONNEL:	
Sign on file	
Leo Lai, Project Engineer Typed/Printed Name	
March 7, 2014	
Date	

Applicant: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Mode: TX-CH00 (2402MHz)

Table 2

Radiated Emissions

Polarization	Frequency	Reading	Pre-	Antenna	Net	Peak Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(dBµV/m)	(dBµV/m)	
			(dB)	, ,	, , ,	, , ,	
Vertical	**2402.000	106.4	36.7	28.5	98.2		
Vertical	*4804.000	52.7	36.1	33.1	49.7	74.0	-24.3

Ī	Polarization	Frequency	Reading	Pre-	Antenna	Average	Net	Average Limit	Margin
		(MHz)	(dBµV)	Amp	Factor	Factor	at 3m	at 3m	(dB)
				Gain	(dB)	(-dB)	(dBµV/m)	(dBµV/m)	
				(dB)					
	Vertical	*4804.000	52.7	36.1	33.1	22.5	27.2	54.0	-26.8

NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Test Engineer: Leo Lai

Applicant: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Mode: TX-CH39 (2441MHz)

Table 3

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Vertical	*4882.000	53.1	36.1	33.3	50.3	74.0	-23.7
Vertical	*7323.000	47.7	36.2	37.9	49.4	74.0	-24.6

Polarization	Frequency	Reading	Pre-	Antenna	Average	Net	Average Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(-dB)	(dBµV/m)	(dBµV/m)	
			(dB)					
Vertical	*4882.000	53.1	36.1	33.3	22.5	27.8	54.0	-26.2
Vertical	*7323.000	47.7	36.2	37.9	22.5	26.9	54.0	-27.1

NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Test Engineer: Leo Lai

Applicant: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Mode: TX-CH78 (2480MHz)

Table 4

Radiated Emissions

Polarization	Frequency	Reading	Pre-	Antenna	Net	Peak Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(dBµV/m)	(dBµV/m)	
			(dB)				
Vertical	**2480.000	106.4	36.7	28.6	98.3		
Vertical	*4960.000	52.6	36.1	33.4	49.9	74.0	-24.1
Vertical	*7440.000	46.9	36.2	38.2	48.9	74.0	-25.1

Polarization	Frequency	Reading	Pre-	Antenna	Average	Net	Average Limit	Margin
	(MHz)	(dBµV)	Amp	Factor	Factor	at 3m	at 3m	(dB)
			Gain	(dB)	(-dB)	(dBµV/m)	(dBµV/m)	
			(dB)					
Vertical	*4960.000	52.6	36.1	33.4	22.5	27.4	54.0	-26.6
Vertical	*7440.000	46.9	36.2	38.2	22.5	26.4	54.0	-27.6

NOTES: 1. Peak detector is used except for others stated.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Test Engineer: Leo Lai

3.2 Conducted Emission at Mains Terminal

3.2.1 Conducted Emissions and Data Configuration Photograph

Worst Case Conducted Configuration at 4.230 MHz

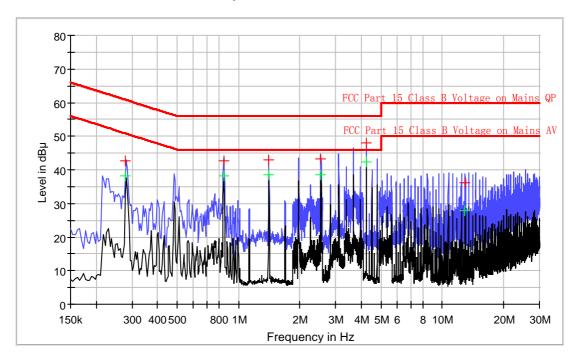
Judgement: Passed by 3.5 dB

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

TEST PERSONNEL: Sign on file Leo Lai, Project Engineer Typed/Printed Name March 7, 2014

TRF No.: FCC 15C_TX_b FCC ID: PYAMD-12

Date


Company: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Worst Case Operating Mode: BT Link With Cell Phone + AC-50U

Conducted Emission Test – FCC

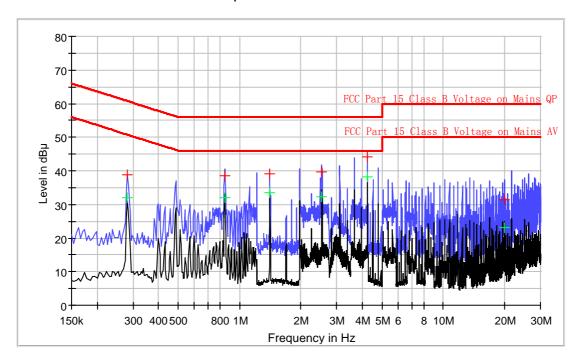
Pursuant to 15.207 Emissions Requirement

Result Table QP

Frequency (MHz)	QuasiPeak (dB µ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.278000	42.8	L1	9.7	18.1	60.9
0.846000	42.7	L1	9.7	13.3	56.0
1.410000	43.1	L1	9.8	12.9	56.0
2.538000	43.4	L1	9.8	12.6	56.0
4.230000	48.0	L1	9.9	8.0	56.0
12.974000	36.0	L1	10.2	24.0	60.0

Result Table AV

Frequency (MHz)	Average (dB μ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.278000	38.2	L1	9.7	12.7	50.9
0.846000	38.3	L1	9.7	7.7	46.0
1.410000	38.6	L1	9.8	7.4	46.0
2.538000	38.4	L1	9.8	7.6	46.0
4.230000	42.5	L1	9.9	3.5	46.0
12.974000	27.7	L1	10.2	22.3	50.0


Company: Nokia Corporation Date of Test: March 7, 2014

Model: MD-12 (Mech: 1.0, HW: 1.1, SW: 1.0)

Worst Case Operating Mode: BT Link With Cell Phone + AC-50U

Conducted Emission Test – FCC

Pursuant to 15.207 Emissions Requirement

Result Table QP

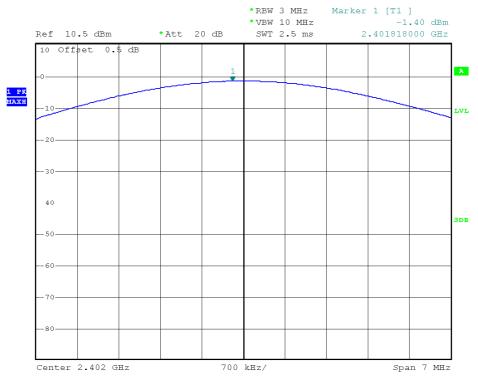
Frequency (MHz)	QuasiPeak (dB μ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ
0.282000	38.8	N	10.2	22.0	60.8
0.846000	38.4	N	10.3	17.6	56.0
1.410000	39.2	N	10.4	16.8	56.0
2.538000	39.6	N	10.4	16.4	56.0
4.230000	44.1	N	10.4	11.9	56.0
20.030000	31.3	N	10.7	28.7	60.0

Result Table AV

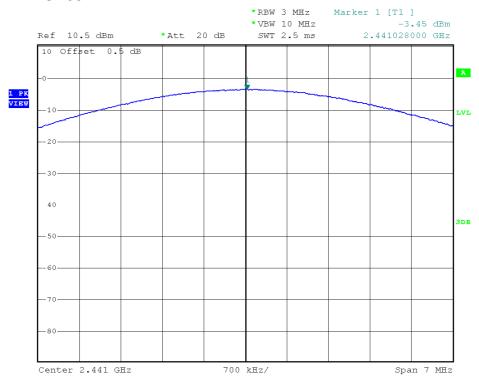
Frequency (MHz)	Average (dB μ V)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.282000	32.0	N	10.2	18.8	50.8
0.846000	31.9	N	10.3	14.1	46.0
1.410000	33.5	N	10.4	12.5	46.0
2.538000	32.4	N	10.4	13.6	46.0
4.230000	38.2	N	10.4	7.8	46.0
20.030000	23.2	N	10.7	26.8	50.0

3.3 Peak Power

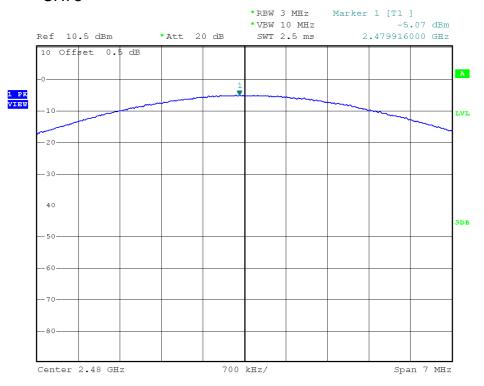
Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1)


The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm.

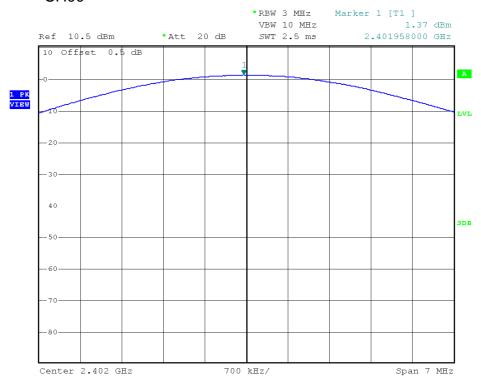
Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

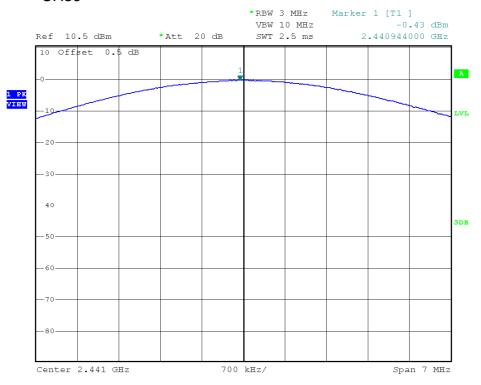

	Antenna Ga	ain = 2.49dBi		
Modulation Type	Frequency	Output Power	Output Power	
	(MHz)	(dBm)	(mW)	
	2402	-1.40	0.72	
GFSK	2441	-3.45	0.45	
	2480	-5.07	0.31	
	2402	1.37	1.37	
π/4-DQPSK	2441	-0.43	0.91	
	2480	-3.23	0.48	
	2402	0.40	1.10	
8DPSK	2441	-1.43	0.72	
	2480	-2.32	0.59	

Modulation Type: GFSK

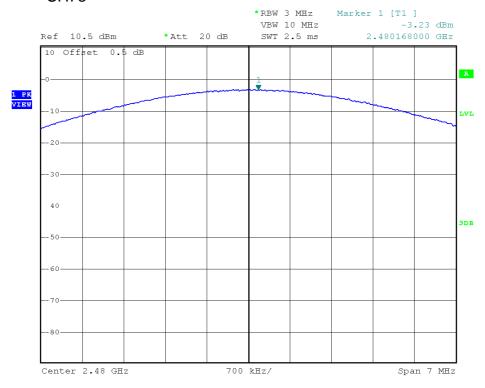

CH00

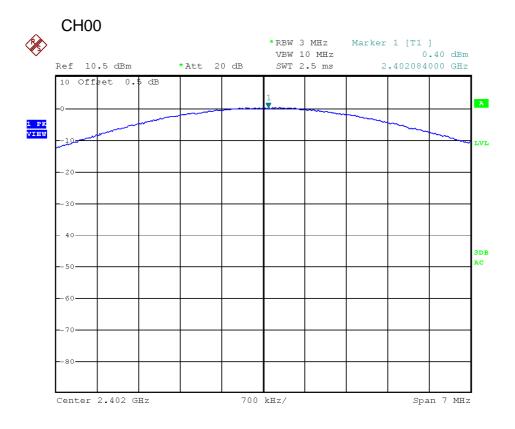
CH39

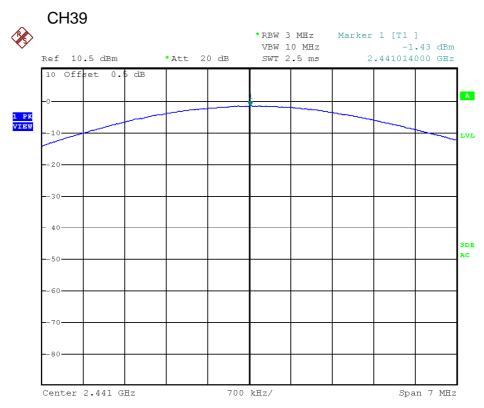


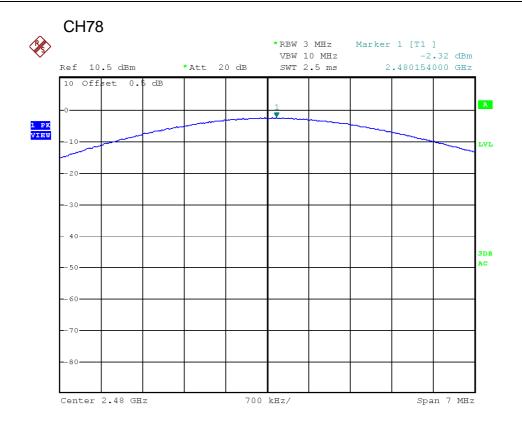


Modulation Type: $\pi/4$ –DQPSK


CH00


CH39



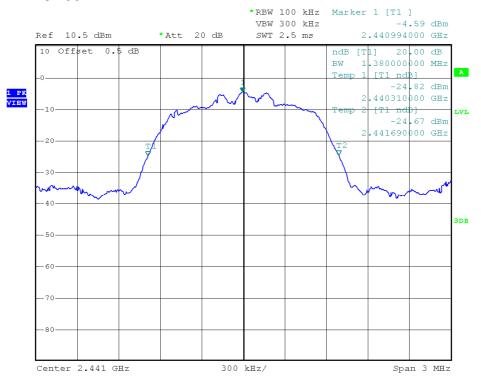

CH78

Modulation Type: 8DPSK

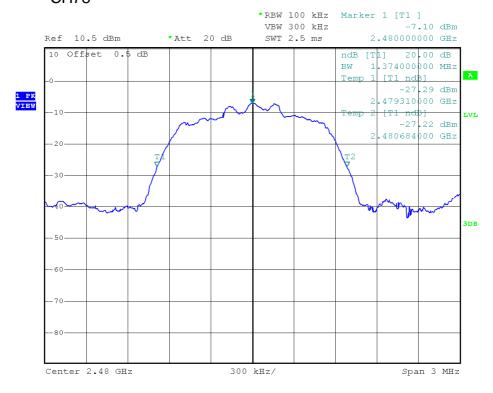
3.4 **20dB Bandwidth**

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a) (1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.


Frequency (MHz)	20 dB Bandwidth (MHz)
2402	1.392
2441	1.380
2480	1.374

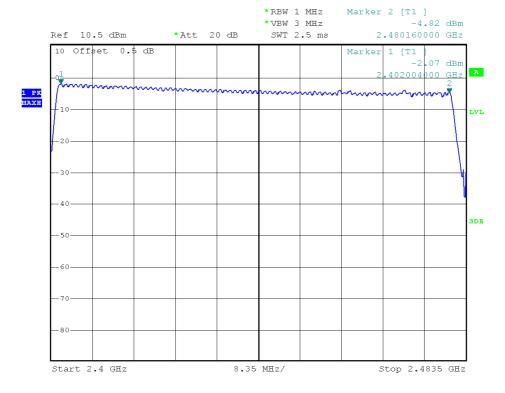
Modulation Type: 8DPSK


CH00

CH39

CH78

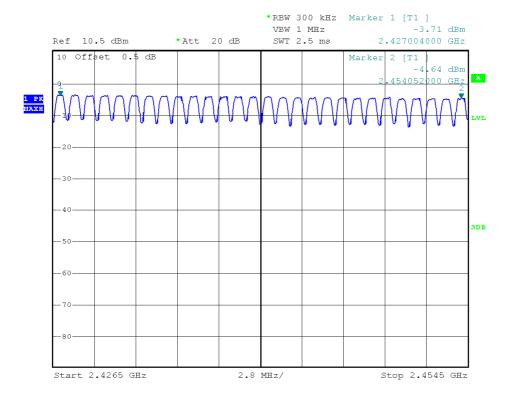
3.5 Channel Number (Number of Hopping Frequencies)

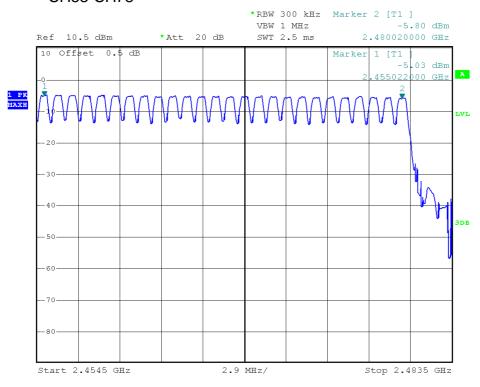

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a) (1) (iii):

The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2-3 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

Number of hopping channels =	79

Modulation Type: GFSK


CH00-CH78

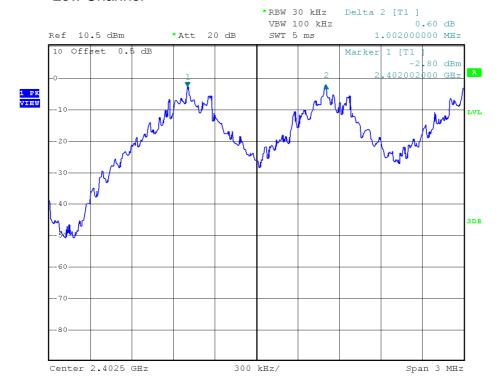

CH00-CH24

CH25-CH52

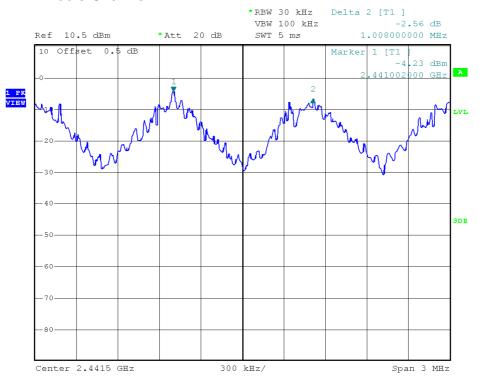
CH53-CH78

3.6 Channel Separation (Carrier Frequency Separation)

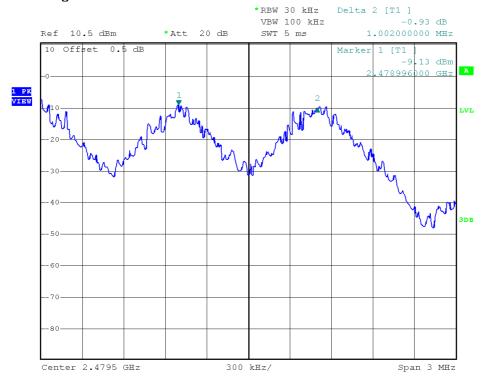
Minimum Hopping Channel Carrier Frequency Separation, FCC Ref: 15.247(a)(1):


Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit:

Not less than 2/3 of 20dB bandwidth of hopping channel: 1.392 \times 2/3 = 0.928 MHz


Channel Separation	1.002 MHz

Modulation Type: GFSK


Low Channel

Middle Channel

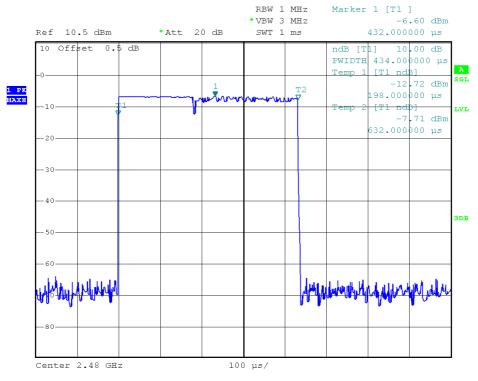
High Channel

3.7 <u>Dwell Time (Time of Occupancy)</u>

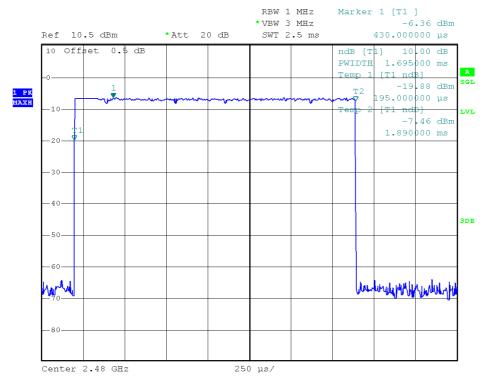
Average Channel Occupancy Time, FCC Ref: 15.247(a)(1)(iii):

The spectrum analyzer center frequency was set to one of the known hopping channels. The SWEEP was set to 10ms, the SPAN was set to ZERO SPAN, and the TRGGER was set to VIDEO. The time duration of the transmissions so captured was measured with the MARKER DELTA function.

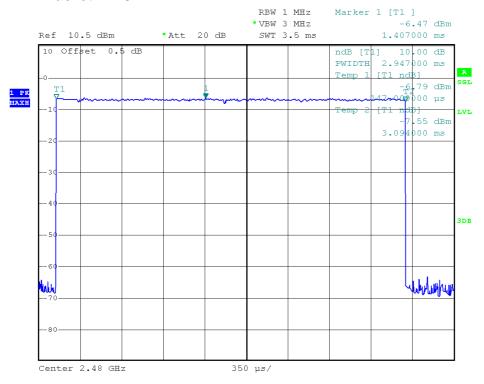
The maximum number of hopping channels in 31.6s for DH1 =1600 / 2 / 79 *31.6=320


The maximum number of hopping channels in 31.6s for DH3 =1600 / 4 / 79 *31.6=160

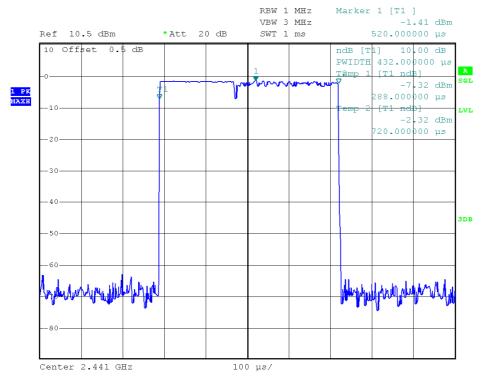
The maximum number of hopping channels in 31.6s for DH5 =1600 / 6 / 79 *31.6=107

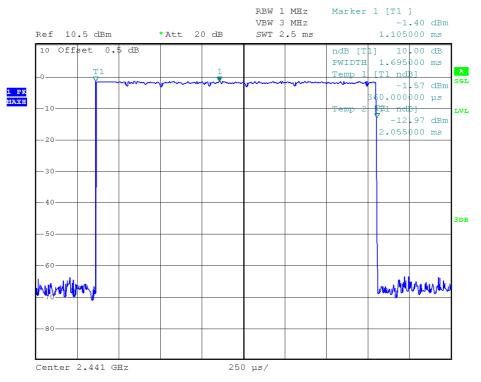

Modulation Type	Packet		Max Dwell	Limit (s)	Result		
	DH1	0.432	ms * 320=	138.2	ms	0.4	Pass
GFSK	DH3	1.695	ms * 160=	271.2	ms	0.4	Pass
	DH5	2.947	ms * 107=	315.3	ms	0.4	Pass
π/4-	DH1	0.432	ms * 320=	138.2	ms	0.4	Pass
DQPSK	DH3	1.695	ms * 160=	271.2	ms	0.4	Pass
DQF3K	DH5	2.947	ms * 107=	315.3	ms	0.4	Pass
	DH1	0.442	ms * 320=	141.4	ms	0.4	Pass
8DPSK	DH3	1.695	ms *160=	271.2	ms	0.4	Pass
	DH5	2.947	ms *107=	315.3	ms	0.4	Pass

Modulation Type: GFSK

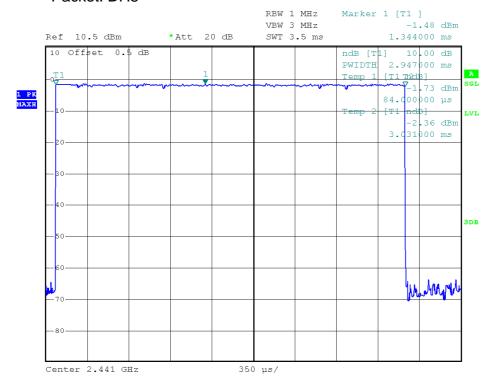

Packet: DH1

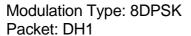
Packet: DH3

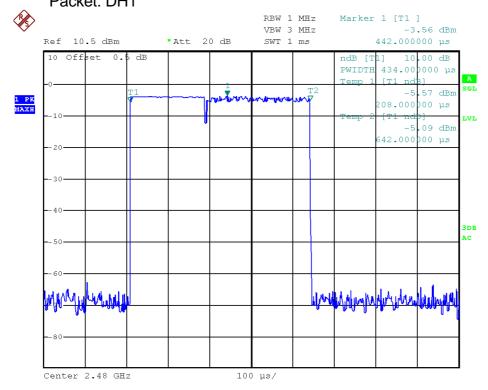


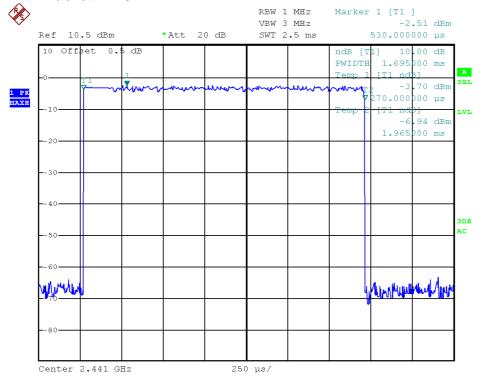


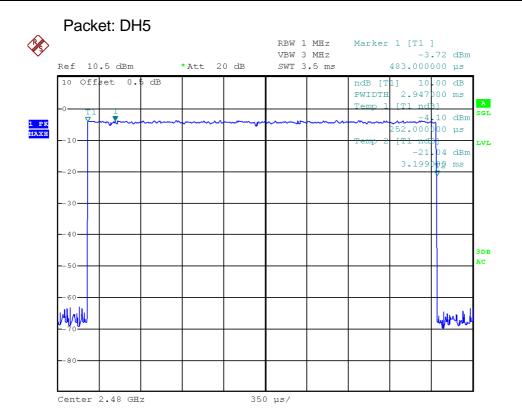
Modulation Type: π/4 –DQPSK








Packet: DH5



3.8 Band Edge

Out of Band Conducted Emissions, FCC Rule 15.247(d):

In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

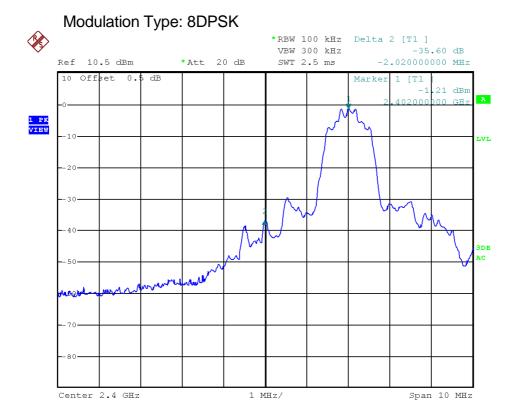
Furthermore, delta measurement technique for measuring bandage emissions was shown as below:

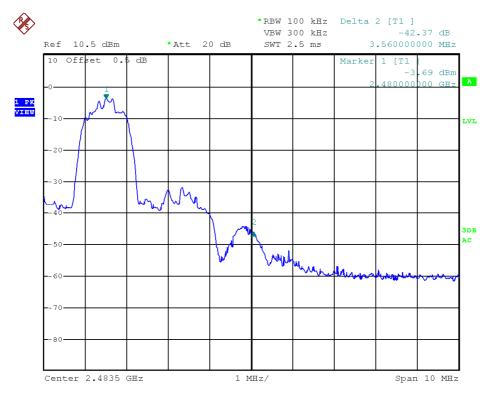
(i) Lower channel 2402MHz:

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot

 $= 98.2 dB\mu v/m-35.6 dB$ = $62.6 dB\mu v/m$

Average Resultant field strength = 62.6dBµv/m-22.5dB = 40.1dBµv/m

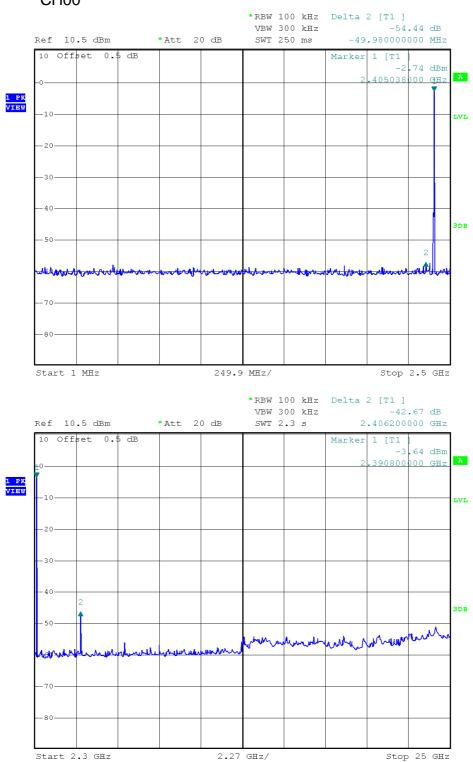

(ii) Upper channel 2480MHz:

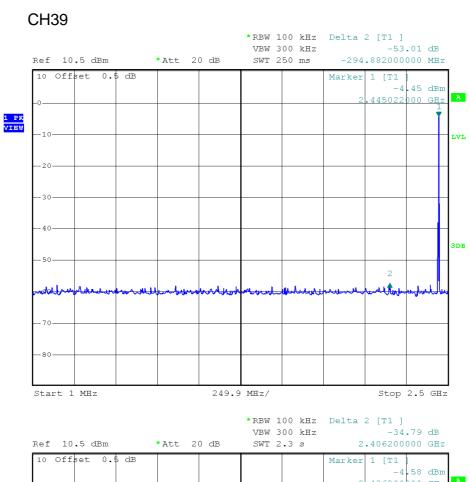

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot

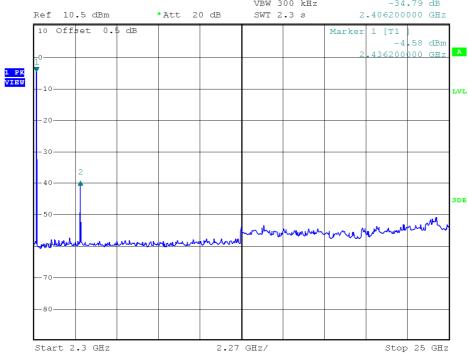
= 98.3dB μ v/m-42.3dB = 56.0dB μ v/m

Average Resultant field strength = $56.0 dB\mu v/m-22.5 dB$ = $33.5 dB\mu v/m$

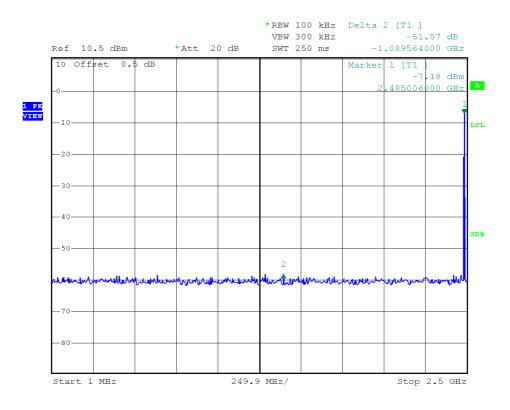
The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu\nu$ /m (Peak Limit) and 54dB $\mu\nu$ /m (Average Limit).

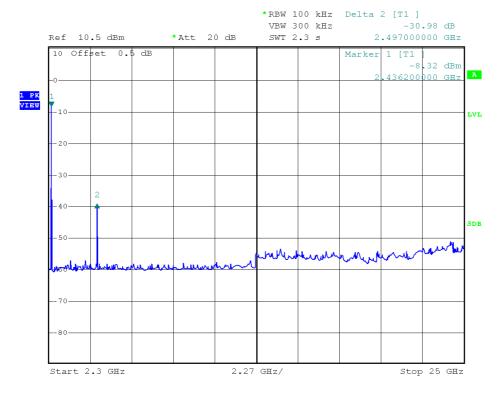

3.9 <u>Transmitter Spurious Emissions (Conducted)</u>


Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):


All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

Modulation Type: GFSK


CH00



CH78

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the measured bandedge, the test procedure and calculation of factor such as pulse desensitization.

8.1 <u>Discussion of Pulse Desensitization</u>

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 625µs for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

8.2 <u>Transmitter Duty Cycle Calculation, FCC Rule 15.35(b, c)</u>

Based on the Bluetooth Specification Version 3.0+EDR, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length

Channel hop rate = 800 hops/second (AFH Mode)

Adjusted channel hop rate for DH5 mode = 133.33 hops/second

Time per channel hop = 1 / 133.33 hops/second = 7.5 ms

Time to cycle through all channels = 7.5×20 channels = 150 ms

Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)

Worst case dwell time = 7.5 ms

Duty cycle connection factor = $20\log_{10}(7.5\text{ms} / 100\text{ms}) = -22.5 \text{ dB}$

8.3 **Emissions Test Procedures**

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4: 2009.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

Detector function for conducted emissions is in QP & AV mode and IFBW setting is 9 kHz from the frequency band 150 kHz to 30MHz.

8.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4: 2009.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

EXHIBIT 9

TEST EQUIPMENT LIST

9.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-03	BiConiLog Antenna	ETS	3142C	00066460	29-Jun-13	29-Jun-14
SZ185-01	EMI Receiver	R&S	ESCI	100547	12-Mar-13	12-Mar-14
SZ061-08	Horn Antenna	ETS	3115	00092346	26-Oct-13	26-Oct-14
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	12-Mar-13	12-Mar-14
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	13-May-13	13-May-14
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	12-Mar-13	12-Mar-14
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	18-Oct-13	18-Apr-14
SZ062-02	RF Cable	RADIALL	RG 213U		20-Jul-13	20-Jul-14
SZ062-12	RF Cable	RADIALL	R2885312 62		17-Oct-13	17-Apr-14
SZ062-19	RF Cable	HUBER+SUH NER	SF104	1	20-Jul-13	20-Jul-14
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		21-May-13	21-May-14
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	9-Nov-13	9-Nov-14
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	9-Nov-13	9-Nov-14
SZ187-02	Two-Line V- Network	R&S	ENV216	100073	9-Nov-13	9-Nov-14
SZ188-03	Shielding Room	ETS	RFD-100	4100	23-Aug-13	23-Aug-14

10.0 **Annex**

Document History

Report No.	Issue Date	Change
140220014SZN-001	March 31, 2014	Original