

TEST REPORT

Test report no.: 1-6965/13-05-05-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com ict@cetecom.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Area of Testing:

Frequency:

Radio Communications & Compatibility Testing (RCT)

Applicant

Sony Mobile Communications AB

Nva Vattentornet 22188 Lund / SWEDEN +46 46 19 30 00 Phone: Fax: -/-

Contact: Mikael Nilsson

Micke.nilsson@sonymobile.com e-mail:

Phone: +46 7 03 22 75 03

Manufacturer

Sony Mobile Communications AB

Nya Vattentornet 22188 Lund / SWEDEN

Test standard/s

47 CFR Part 27 Title 47 of the Code of Federal Regulations; Chapter I; Part 27 - Miscellaneous

wireless communications services

For further applied test standards please refer to section 3 of this test report.

Test Item

Tablet PC GPRS/EGPRS 850/900/1800/1900; UMTS HSPA FDDI/II/IV/V/VIII; LTE Kind of test item:

FDD1/2/3/4/5/7/8/13/17/20; WLAN b/g/n/a/ac; BT 4.0; RFID; A-GPS

Type name: TM-0040-BV FCC ID: PY7TM-0040

> LTE FDD 4: 1710 MHz to 1755 MHz LTE FDD 7: 2500 MHz to 2570 MHz LTE FDD 13: 777 MHz to 787 MHz

LTE FDD 17: 704 MHz to 716 MHz

Technology tested: LTE FDD

Antenna: Integrated antenna

3.7V DC by Li - polymer battery Power supply:

Temperature range: -30°C to +60°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Marco Bertolino Testing Manager	Andreas Luckenbill Expert

2014-01-22 Page 1 of 190

Table of contents

1	Tab	le of co	ontents	
2			formation	
2	Gei			
	2.1		es and disclaimer	
	2.2	App	lication details	4
3	Tes	t stand	ard/s	
4			onment	
5				
•	5.1		itional information	
_	•			
6			atories sub-contracted	
7	Sun	-	of measurement results	
	7.1		- Band 4	
	7.2		- Band 7	
	7.3		- Band 13	
	7.4		- Band 17	
8	RF :	measur	rements	8
	8.1	Desc	cription of test setup	\$
	0. .	8.1.1	Radiated measurements	
		8.1.2	Conducted measurements	
	8.2	LTE	technologies supported by EUT	
	8.3		ults LTE – Band 4	
		8.3.1	RF output power	
		8.3.2	Frequency stability	
		8.3.3	Spurious emissions radiated	
		8.3.4	Spurious emissions conducted	
		8.3.5	Block edge compliance	
		8.3.6	Occupied bandwidth	
	8.4	8.4.1	ults LTE - Band 7	
		8.4.2	RF output powerFrequency stability	
		8.4.3	Spurious emissions radiated	
		8.4.4	Spurious emissions radiated	
		8.4.5	Block edge compliance	
		8.4.6	Occupied bandwidth	
	8.5	-	ults LTE – Band 13	
		8.5.1	RF output power	
		8.5.2	Frequency stability	
		8.5.3	Spurious emissions radiated	129
		8.5.4	Spurious emissions conducted	
		8.5.5	Block edge compliance	
		8.5.6	Occupied bandwidth	
	8.6		ults LTE - Band 17	
		8.6.1	RF output power	
		8.6.2	Frequency stability	
		8.6.3 8.6.4	Spurious emissions radiated	
		8.6.4	Spurious emissions conducted	
		8.6.6	Occupied bandwidth	
0	T		·	
9	res		ment and ancillaries used for tests	
10		Observ	vations	188

Annex A	Document history	189
Annex B	Further information	189
Annex C	Accreditation Certificate	190

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:2013-12-09Date of receipt of test item:2013-12-09Start of test:2013-12-09End of test:2013-12-20

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 27	01.10.2012	Title 47 of the Code of Federal Regulations; Chapter I; Part 27 - Miscellaneous wireless communications services

2014-01-22 Page 4 of 190

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: T_{max} +60 °C during high temperature tests

 T_{min} -30 °C during low temperature tests

Relative humidity content: 32 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 3.7 V DC by Li - polymer battery

Power supply: V_{max} 4.4 V

 V_{min} 3.3 V

5 Test item

Kind of test item	:	Tablet PC GPRS/EGPRS 850/900/1800/1900; UMTS HSPA FDDI/II/IV/V/VIII; LTE FDD1/2/3/4/5/7/8/13/17/20; WLAN b/g/n/a/ac; BT 4.0; RFID; A-GPS
Type name	:	TM-0040-BV
S/N serial number	:	Rad. CB51267Q33, CB51267Q2U Cond. CB51267QSY, CB51267QP1
HW hardware status	:	AP1
SW software status	:	17.0.A.0.274
Frequency band [MHz]	:	LTE FDD 4: 1710 MHz to 1755 MHz LTE FDD 7: 2500 MHz to 2570 MHz LTE FDD 13: 777 MHz to 787 MHz
Type of modulation		LTE FDD 17: 704 MHz to 716 MHz
Type of modulation	<u>:</u>	QPSK, 16-QAM
Antenna	:	Integrated antenna
Power supply	:	3.7 V DC by Li - polymer battery
Temperature range	:	-30°C to +60 °C

5.1 Additional information

Test setup- and EUT-photos are included in test report: 1-6965/13-05-01_AnnexA

1-6965/13-05-01_AnnexB 1-6965/13-05-01_AnnexC

6 Test laboratories sub-contracted

None

2014-01-22 Page 5 of 190

7	Summary	of	measurement	results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 27	passed	2014-01-22	-/-

7.1 LTE - Band 4

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

7.2 LTE - Band 7

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

2014-01-22 Page 6 of 190

7.3 LTE - Band 13

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

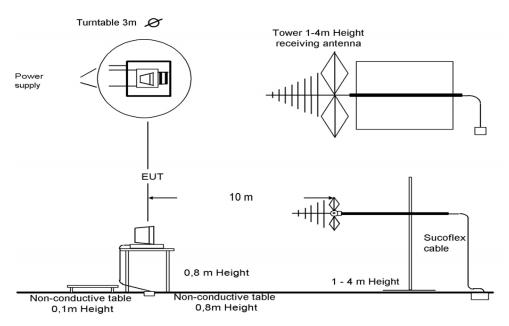
7.4 LTE - Band 17

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

2014-01-22 Page 7 of 190

8 RF measurements


8.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

8.1.1 Radiated measurements

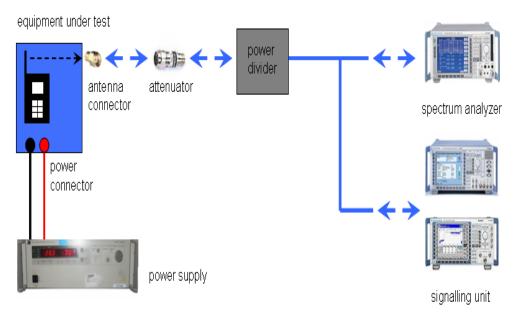
The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz - 1 GHz: tri-log antenna


> 1 GHz: horn antenna

2014-01-22 Page 8 of 190

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the signalling unit (AP or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm. If special software is used, there is no power divider necessary.

Picture 2: Diagram conducted measurements

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser.

Frequency being measured	Measuring receiver bandwidth	Spectrum analyser bandwidth			
f	6 dB	3dB			
f < 150 kHz	200 Hz or	300 Hz			
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz			
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz			
1000 MHz ≤ f					
NOTE: Specific requirements in CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.					

2014-01-22 Page 9 of 190

8.2 LTE technologies supported by EUT

Channel bandwidth

	Band 4	Band 7	Band 13	Band 17
[MHz]				
1.4				
3				
5			\boxtimes	
10	\boxtimes	\boxtimes	\boxtimes	\boxtimes
15				
20				

2014-01-22 Page 10 of 190

8.3 Results LTE - Band 4

The EUT was set to transmit the maximum power.

8.3.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector:	Peak and RMS (Power in Burst)		
Sweep time:	Auto		
Video bandwidth:	Depends on Channel Bandwidth		
Resolution bandwidth:	Depends on Channel Bandwidth		
Span:	Zero Span		
Trace-Mode:	Max Hold		

Limits:

FCC	-/-	
Average E.I.R.P. Output Power		
+30.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.		

2014-01-22 Page 11 of 190

Results:

	Output Power (conducted)					
Bandwidth (MHz)	Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)
		1 RB low	23.0	3.68	22.1	4.48
	1710.7	1 RB high	23.0	3.76	22.1	4.56
	1710.7	50% RB mid	22.9	3.88	21.9	4.79
		100% RB	21.9	5.11	20.8	6.13
		1 RB low	23.1	5.69	21.9	4.80
1.4	1732.5	1 RB high	23.0	5.73	22.0	4.82
1.4	1732.5	50% RB mid	22.9	5.63	22.1	4.88
		100% RB	22.0	6.11	21.1	5.57
		1 RB low	23.0	4.15	22.1	5.14
	1754.3	1 RB high	23.2	4.58	22.1	5.43
	1754.5	50% RB mid	23.1	4.78	21.9	5.02
		100% RB	22.1	5.71	21.2	6.11
		1 RB low	23.0	4.53	22.1	3.71
	1711.5	1 RB high	22.8	4.87	22.0	4.09
	1/11.5	50% RB mid	21.9	5.90	20.7	4.71
		100% RB	21.8	5.98	20.9	5.15
		1 RB low	23.0	4.81	21.8	5.71
2	1720 F	1 RB high	23.0	4.81	21.6	5.43
3	1732.5	50% RB mid	22.0	4.83	21.0	5.62
		100% RB	21.9	5.92	20.9	6.62
		1 RB low	23.1	4.97	21.9	3.71
	1753.5	1 RB high	23.2	5.29	21.8	4.71
	1755.5	50% RB mid	22.0	5.59	21.0	4.59
		100% RB	22.0	6.06	21.1	4.98
		1 RB low	22.9	3.77	21.9	4.78
	1712.5	1 RB high	22.8	4.22	21.9	5.23
	1712.5	50% RB mid	21.9	4.95	20.8	5.96
		100% RB	21.8	5.31	20.8	6.32
	4700 5	1 RB low	22.9	4.55	22.3	4.79
E		1 RB high	22.9	4.68	22.4	4.82
5	1732.5	50% RB mid	22.0	5.86	20.9	5.04
		100% RB	21.9	6.55	20.9	5.60
		1 RB low	23.0	4.03	21.8	5.25
	1750 5	1 RB high	23.0	4.53	21.9	5.20
	1752.5	50% RB mid	22.0	4.78	21.1	5.72
		100% RB	22.0	5.15	21.2	6.09

2014-01-22 Page 12 of 190

		1 RB low	23.0	4.64	22.1	3.84
	1715.0	1 RB high	22.9	4.93	22.1	4.12
		50% RB mid	21.9	6.00	20.9	5.02
		100% RB	21.9	6.32	20.9	5.43
	_	1 RB low	23.0	4.66	21.7	5.24
4.0	4700.5	1 RB high	23.0	4.67	21.8	5.23
10	1732.5	50% RB mid	22.0	5.08	21.1	5.85
		100% RB	22.0	5.88	21.0	6.68
		1 RB low	22.9	5.59	21.6	4.31
	4750.0	1 RB high	23.2	5.16	21.9	4.52
	1750.0	50% RB mid	22.0	5.95	21.1	4.95
		100% RB	22.0	6.03	21.1	5.03
		1 RB low	22.9	3.89	22.1	4.65
	4747.5	1 RB high	22.9	4.12	22.0	4.36
	1717.5	50% RB mid	21.9	5.02	20.9	6.01
		100% RB	22.0	5.08	21.0	6.03
		1 RB low	23.0	5.32	22.5	4.59
15	1732.5	1 RB high	22.9	4.84	22.3	4.01
15	1732.5	50% RB mid	22.0	6.07	20.9	5.13
		100% RB	22.0	6.49	21.1	5.60
		1 RB low	22.9	3.94	21.7	4.88
	1747.5	1 RB high	23.1	4.49	21.9	5.23
	1747.5	50% RB mid	21.9	5.03	20.9	6.03
	100% RB	22.0	5.10	21.0	6.12	
		1 RB low	22.9	4.81	22.0	3.88
	1720.0	1 RB high	23.0	5.22	22.1	4.91
	1720.0	50% RB mid	21.9	5.86	20.9	4.85
	_	100% RB	21.8	6.13	20.8	5.03
		1 RB low	22.7	4.13	22.1	4.82
20	1732.5	1 RB high	22.8	3.99	22.0	4.78
	20 1732.3	50% RB mid	22.0	5.05	20.9	6.05
		100% RB	22.0	5.41	21.0	6.28
		1 RB low	22.9	4.71	21.9	4.90
	1745.0	1 RB high	22.9	4.49	22.1	4.48
		50% RB mid	21.8	5.86	21.0	4.90
		100% RB	22.0	5.94	21.0	4.97
Measuremer	nt uncertainty			± 0.	5 dB	

2014-01-22 Page 13 of 190

The output power radiated is measured with the mode wich have the highest conducted output power.

Output Power (radiated)				
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	
	1710.7	25.9	25.0	
1.4	1732.5	26.1	25.1	
	1754.3	26.5	25.4	
	1711.5	25.9	25.0	
3	1732.5	26.0	24.8	
	1753.5	26.5	25.2	
	1712.5	25.8	24.8	
5	1732.5	25.9	25.4	
	1752.5	26.3	25.2	
	1715.0	25.9	25.0	
10	1732.5	26.0	24.8	
	1750.0	26.5	25.2	
	1717.5	25.8	25.0	
15	1732.5	26.0	25.5	
	1747.5	26.4	25.2	
	1720.0	25.9	25.0	
20	1732.5	25.8	25.1	
	1745.0	26.2	25.4	
Measuren	nent uncertainty	± 3.0	0 dB	

Result: Passed

2014-01-22 Page 14 of 190

8.3.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMW500 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMW500 and in a simulated call on channel 1412 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

This measurement was performed with the highest channel bandwidth supported from the EUT on the middle channel

Measurement:

Measurement parameters		
Detector:		
Sweep time:		
Video bandwidth:	Measured with CMW500	
Resolution bandwidth:	Weasured with Civivy 500	
Span:		
Trace-Mode:		

Limits:

FCC	-/-	
Frequency Stability		
< 2.5 ppm		

2014-01-22 Page 15 of 190

Results:

FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	-2	-0.00000012	-0.0012
3.4	-11	-0.00000063	-0.0063
3.5	5	0.00000029	0.0029
3.6	-12	-0.00000069	-0.0069
3.7	-10	-0.00000058	-0.0058
3.8	3	0.0000017	0.0017
3.9	-10	-0.00000058	-0.0058
4.0	11	0.0000063	0.0063
4.1	-5	-0.00000029	-0.0029
4.2	13	0.0000075	0.0075
4.3	20	0.00000115	0.0115
4.4	27	0.00000156	0.0156

FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	7	0.00000040	0.0040
-20	10	0.0000058	0.0058
-10	11	0.0000063	0.0063
± 0	-12	-0.00000069	-0.0069
10	6	0.0000035	0.0035
20	-13	-0.0000075	-0.0075
30	-4	-0.00000023	-0.0023
40	-10	-0.00000058	-0.0058
50	-9	-0.00000052	-0.0052
60	7	0.0000040	0.0040

Result: Passed

2014-01-22 Page 16 of 190

8.3.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1755 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 4.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Span:	100 MHz Steps	
Trace-Mode:	Max Hold	

Limits:

FCC	-/-			
Spurious Emissions Radiated				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2014-01-22 Page 17 of 190

Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the LTE band 4 (1712.5 MHz, 1732.5 MHz and 1752.5 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE band 4 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case. The plots show only the middle channel with full resource blocks. If spurious were detected, the lowest and highest channel and all supported channel bandwidths were checked, too.

As can be seen from this data, the emissions from the test item were within the specification limit.

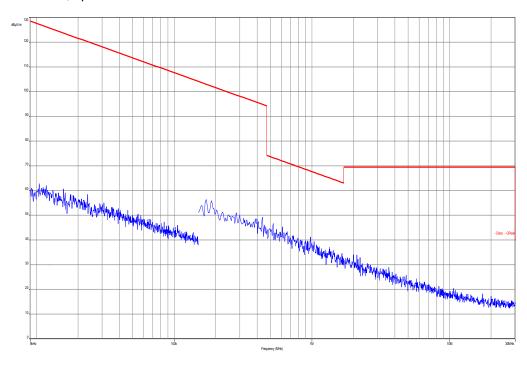
2014-01-22 Page 18 of 190

QPSK

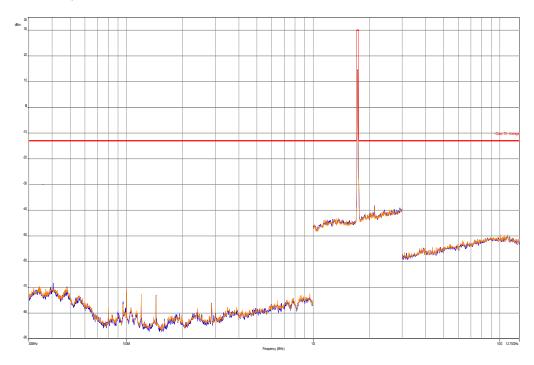
Spurious Emission Level (dBm)					
Lowest	hannel	Middle c	hannel	Highest of	channel
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No spurious emissions detected.		No spurious emissions detected.		No spurious emissions detected.
Mea	asurement uncerta	ainty		± 3dB	

<u>16-QAM</u>

Spurious Emission Level (dBm)						
Lowest	Lowest channel Middle c		hannel	Highest of	Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No spurious emissions detected.		No spurious emissions detected.		No spurious emissions detected.	
Mea	asurement uncerta	ainty		± 3dB		

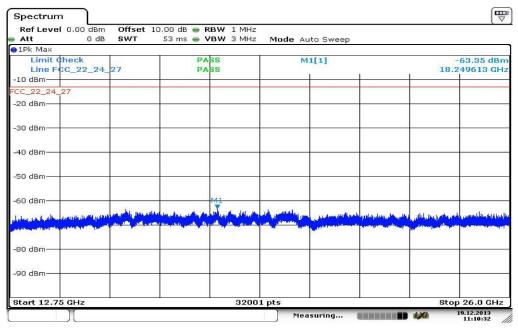

Result: Passed

2014-01-22 Page 19 of 190



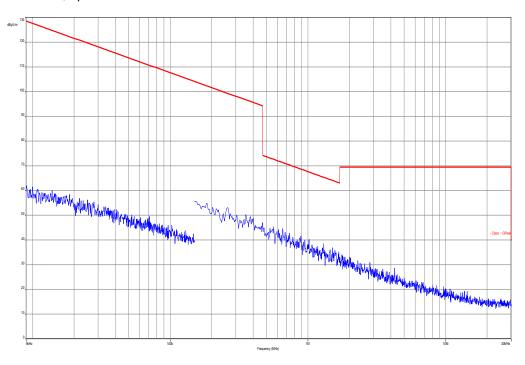
QPSK with 10 MHz channel bandwidth

Plot 1: Middle channel, up to 30 MHz

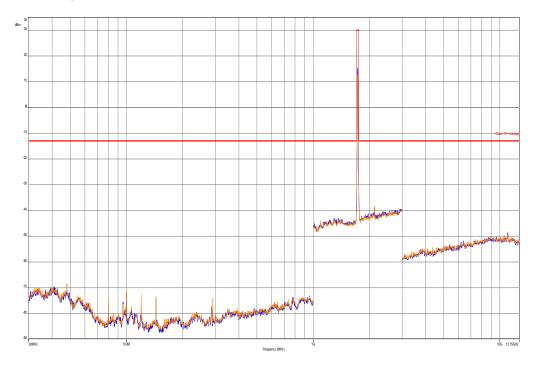

Plot 2: Middle channel, 30 MHz to 12.75 GHz

2014-01-22 Page 20 of 190

Plot 3: Middle channel, 12 GHz to 25 GHz

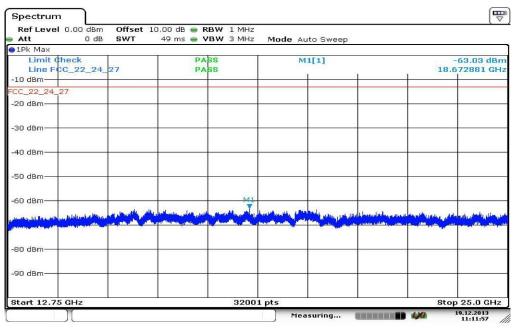

Date: 19.DEC.2013 11:10:32

2014-01-22 Page 21 of 190



16-QAM with 10 MHz channel bandwidth

Plot 4: Middle channel, up to 30 MHz


Plot 5: Middle channel, 30 MHz to 12.75 GHz

2014-01-22 Page 22 of 190

Plot 6: Middle channel, 12 GHz to 25 GHz

Date: 19.DEC.2013 11:11:56

2014-01-22 Page 23 of 190

8.3.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 17.6 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

For the measurement the lowest, middle and highest channel bandwidth was used. If spurious were found the other bandwidths were measured, too.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	10 MHz – 25 GHz			
Trace-Mode:	Max Hold			

Limits:

FCC	-/-		
Spurious Emissions Conducted			
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)			
-13 dBm			

2014-01-22 Page 24 of 190

Results: for 1.4 MHz channel bandwidth

QPSK

	Spurious Emission Level (dBm)					
Lowest	Lowest channel Middle cl		hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Mea	asurement uncerta	ainty		± 3dB		

16-QAM

Spurious Emission Level (dBm)					
Lowest channel Middle cl		hannel	hannel Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No peaks detected.		No peaks detected.		No peaks detected.
Mea	asurement uncerta	ainty		± 3dB	

Result: Passed

2014-01-22 Page 25 of 190

Results: for 3 MHz channel bandwidth

QPSK

Spurious Emission Level (dBm)					
Lowest	Lowest channel Middle cl		hannel	Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No peaks detected.		No peaks detected.		No peaks detected.
Mea	asurement uncerta	ainty		± 3dB	

<u>16-QAM</u>

	Spurious Emission Level (dBm)					
Lowest	Lowest channel Middle cl		hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Mea	asurement uncerta	ainty		± 3dB		

Result: Passed

2014-01-22 Page 26 of 190

Results: for 5 MHz channel bandwidth

QPSK

	Spurious Emission Level (dBm)					
Lowest	channel	Middle c	hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Mea	asurement uncerta	ainty		± 3dB		

<u>16-QAM</u>

	Spurious Emission Level (dBm)					
Lowest	Lowest channel Middle cl		hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Mea	asurement uncerta	ainty		± 3dB		

Result: Passed

2014-01-22 Page 27 of 190

Results: for 10 MHz channel bandwidth

QPSK

	Spurious Emission Level (dBm)					
Lowest	Lowest channel Middle cl		hannel	Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Mea	asurement uncerta	ainty		± 3dB		

16-QAM

Spurious Emission Level (dBm)					
Lowest channel		Middle channel		Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No peaks detected.		No peaks detected.		No peaks detected.
Measurement uncertainty			± 3dB		

Result: Passed

2014-01-22 Page 28 of 190

Results: for 15 MHz channel bandwidth

QPSK

Spurious Emission Level (dBm)						
Lowest channel		Middle channel		Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Measurement uncertainty			± 3dB			

<u>16-QAM</u>

Spurious Emission Level (dBm)					
Lowest channel		Middle channel		Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No peaks detected.		No peaks detected.		No peaks detected.
Measurement uncertainty			± 3dB		

Result: Passed

2014-01-22 Page 29 of 190

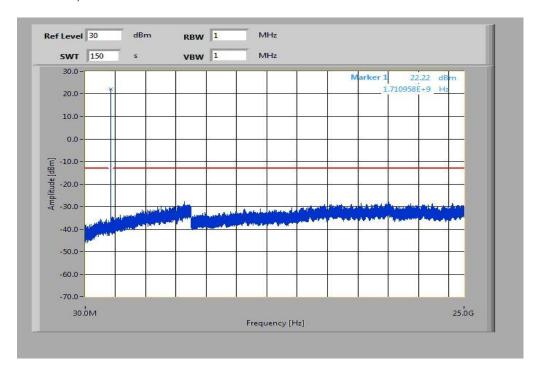
Results: for 20 MHz channel bandwidth

QPSK

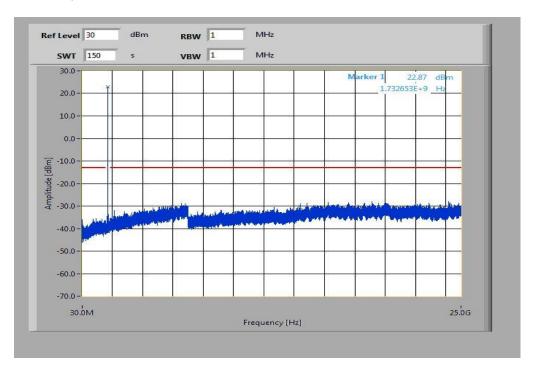
Spurious Emission Level (dBm)						
Lowest channel		Middle channel		Highest channel		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	
	No peaks detected.		No peaks detected.		No peaks detected.	
Measurement uncertainty			± 3dB			

16-QAM

Spurious Emission Level (dBm)					
Lowest channel		Middle channel		Highest channel	
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]
	No peaks detected.		No peaks detected.		No peaks detected.
Measurement uncertainty			± 3dB		

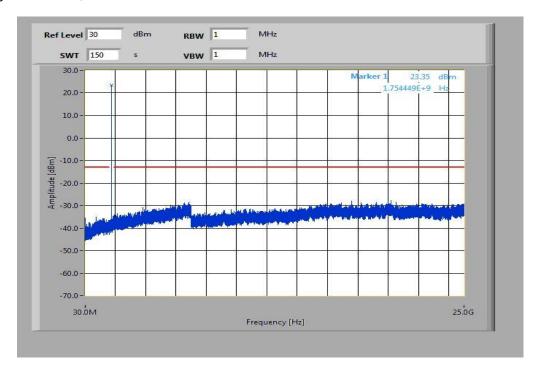

Result: Passed

2014-01-22 Page 30 of 190



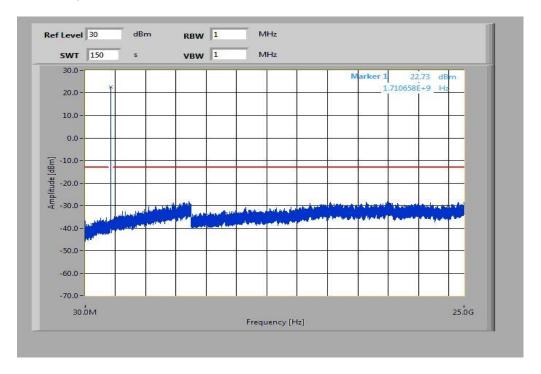
Plots for 1.4 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz

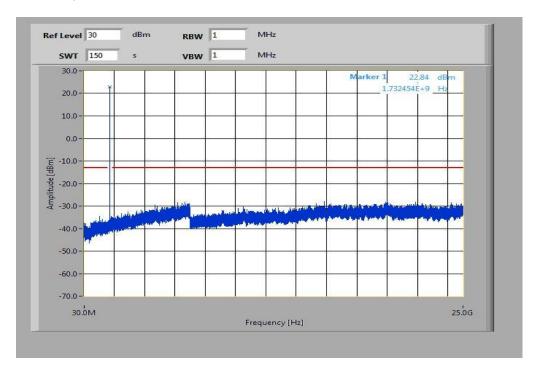

Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 31 of 190

Plot 3: Highest channel, 10 MHz to 25 GHz

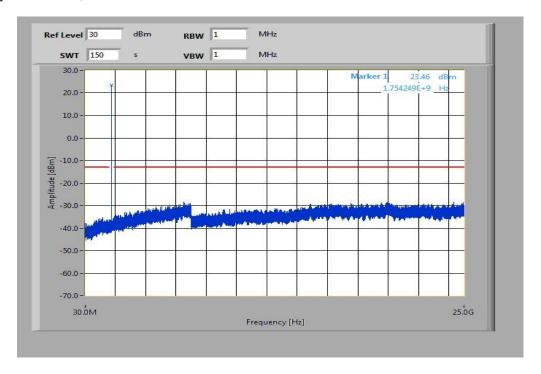


2014-01-22 Page 32 of 190



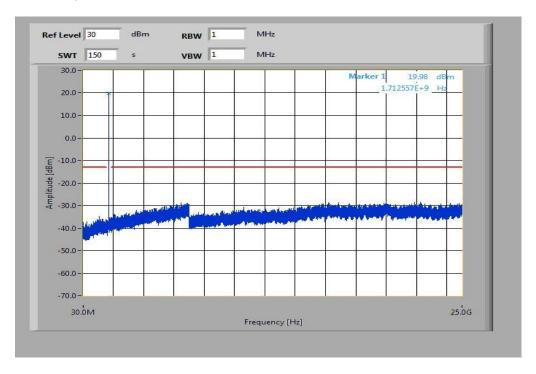
Plots for 1.4 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz

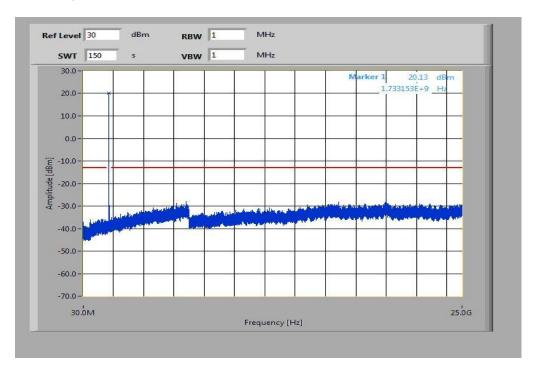

Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 33 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

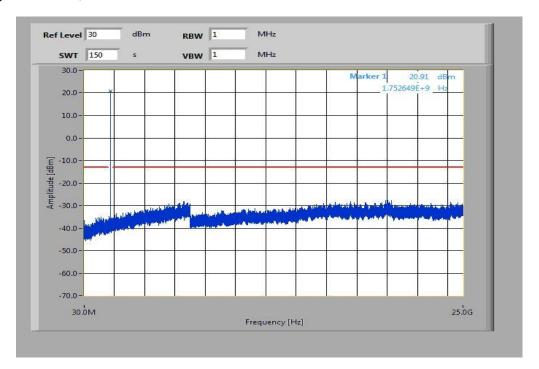


2014-01-22 Page 34 of 190



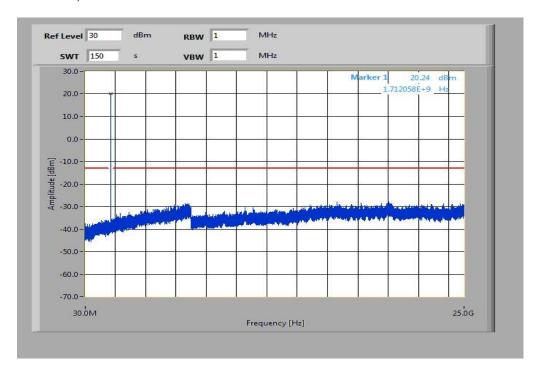
Plots for 3 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz

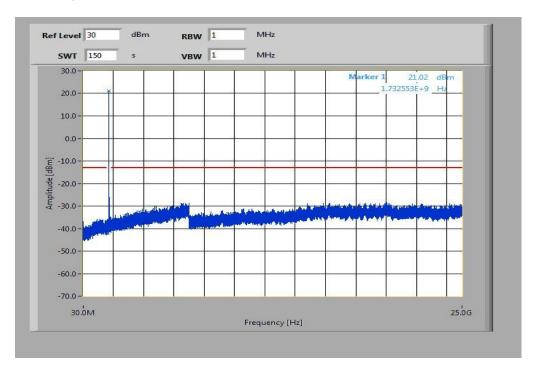

Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 35 of 190

Plot 3: Highest channel, 10 MHz to 25 GHz

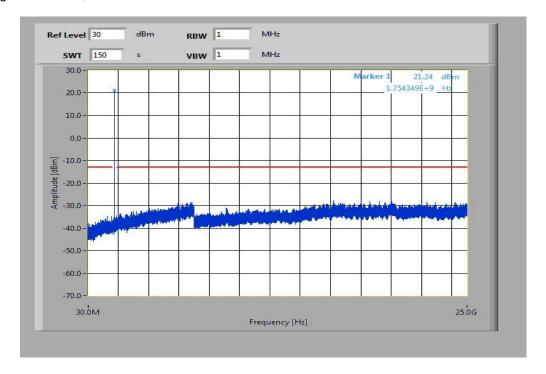


2014-01-22 Page 36 of 190



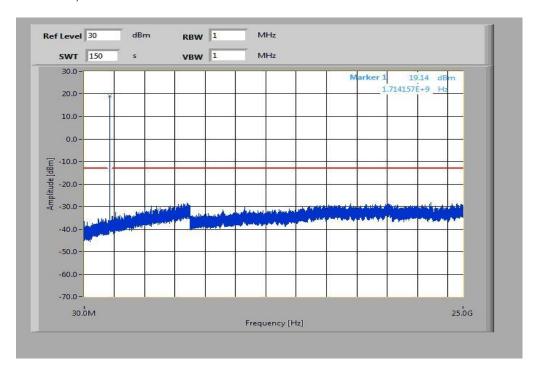
Plots for 3 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz

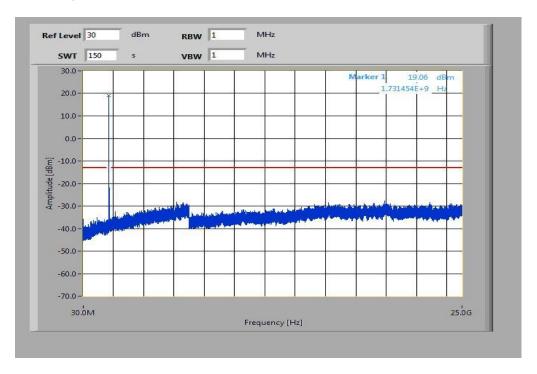

Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 37 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

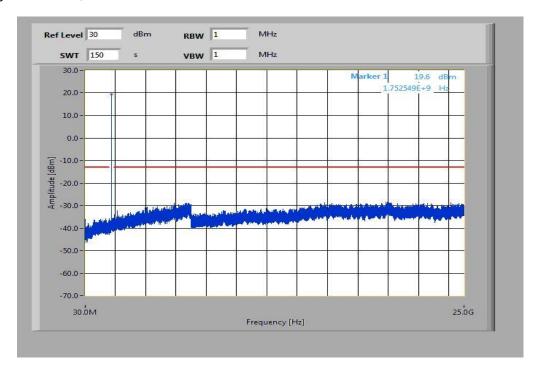


2014-01-22 Page 38 of 190



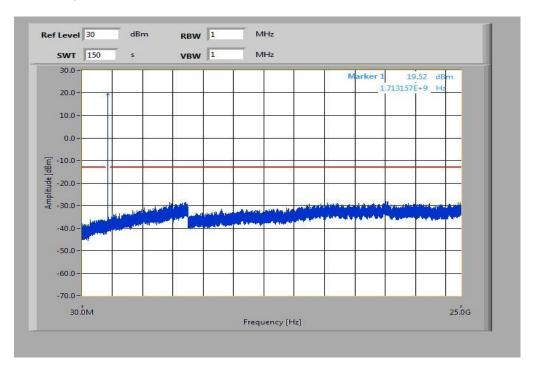
Plots for 5 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz

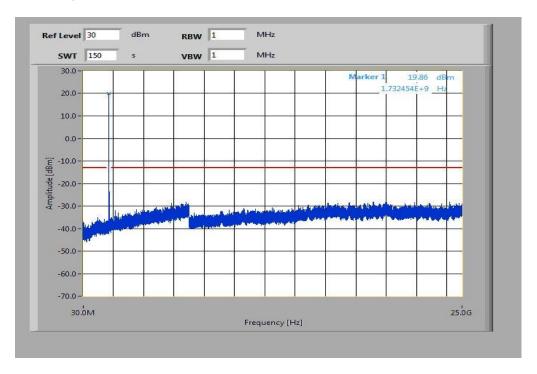

Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 39 of 190

Plot 3: Highest channel, 10 MHz to 25 GHz

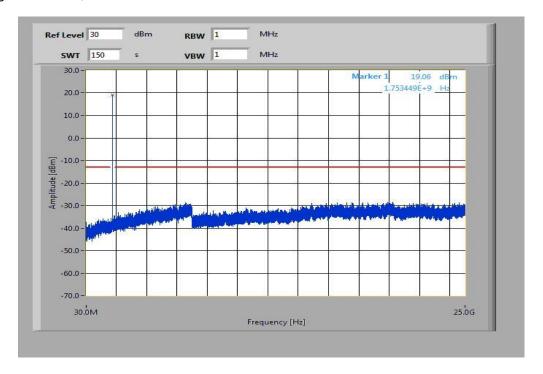


2014-01-22 Page 40 of 190



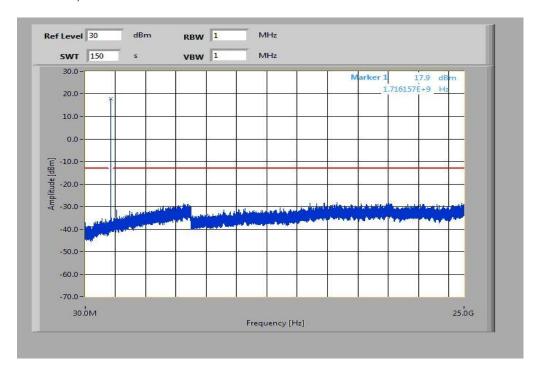
Plots for 5 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz

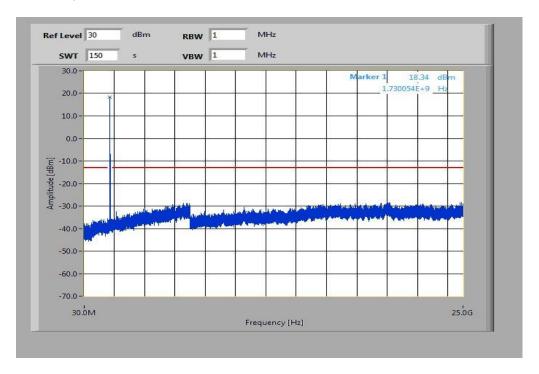

Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 41 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

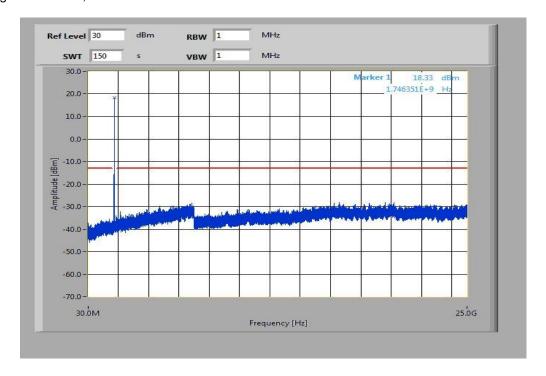


2014-01-22 Page 42 of 190



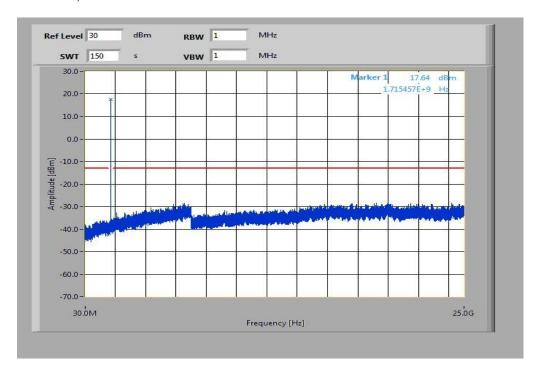
Plots for 10 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz


Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 43 of 190

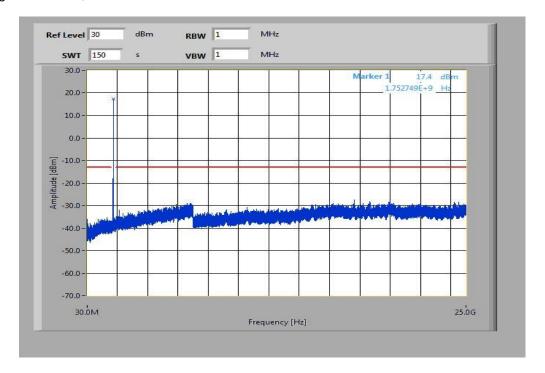
Plot 3: Highest channel, 10 MHz to 25 GHz



2014-01-22 Page 44 of 190

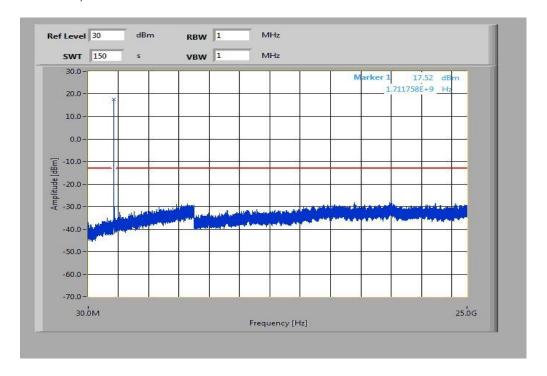
Plots for 10 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz

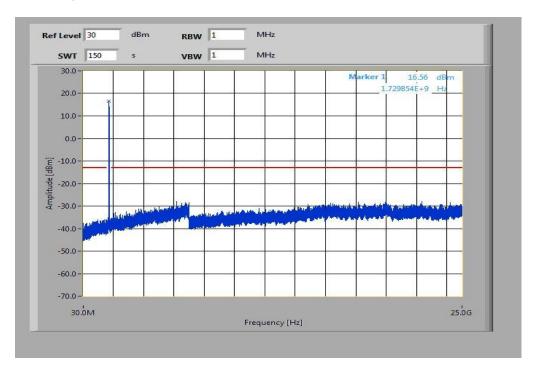

Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 45 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

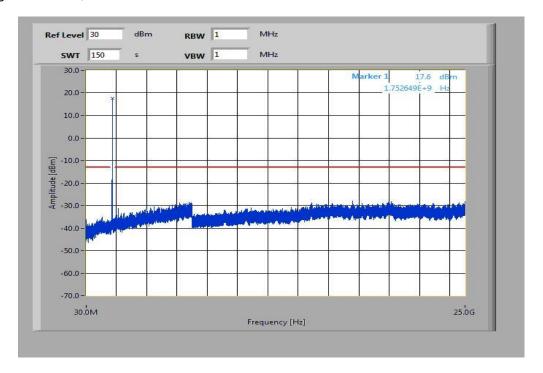


2014-01-22 Page 46 of 190



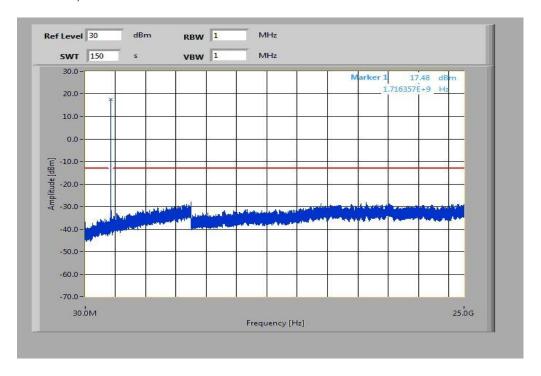
Plots for 15 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz

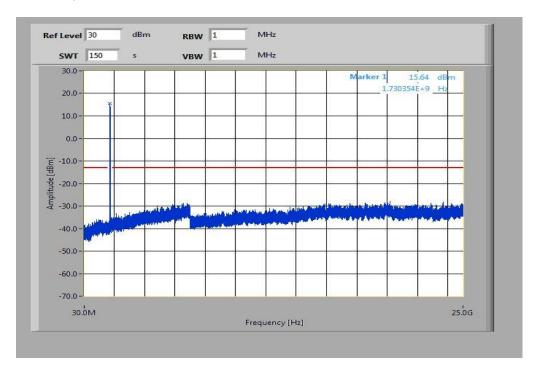

Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 47 of 190

Plot 3: Highest channel, 10 MHz to 25 GHz

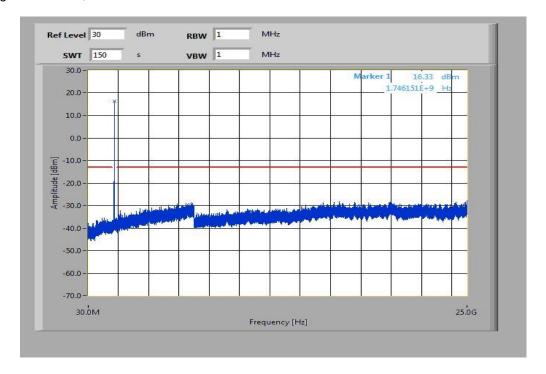


2014-01-22 Page 48 of 190



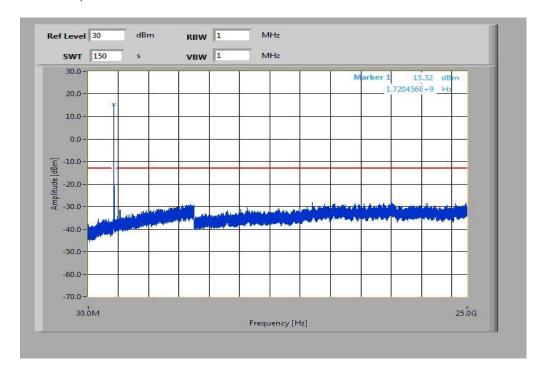
Plots for 15 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz

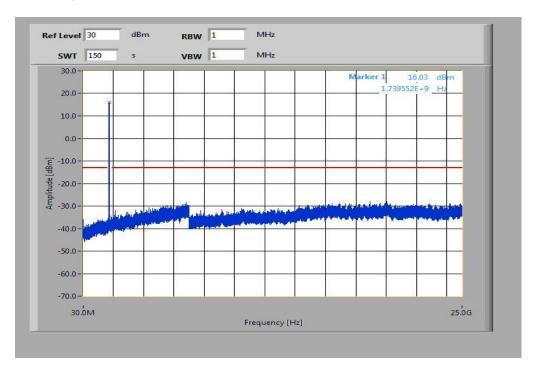

Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 49 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

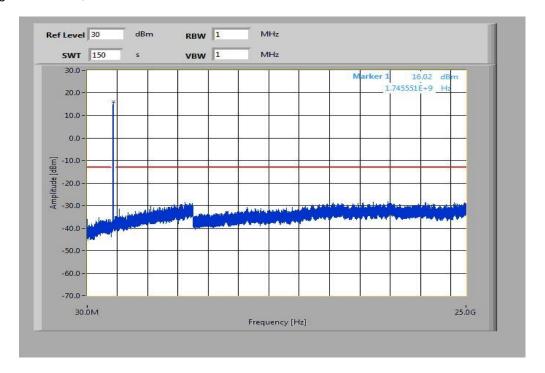


2014-01-22 Page 50 of 190



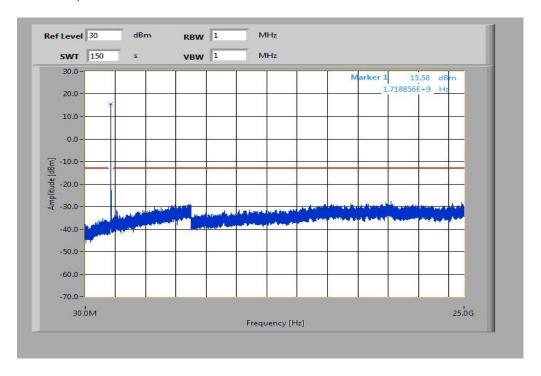
Plots for 20 MHz channel bandwidth, QPSK

Plot 1: Lowest channel, 10 MHz to 25 GHz

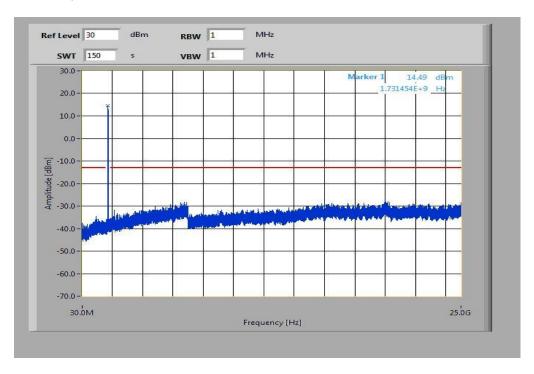

Plot 2: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 51 of 190

Plot 3: Highest channel, 10 MHz to 25 GHz

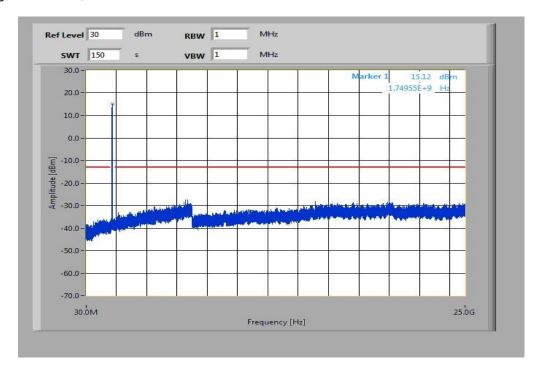


2014-01-22 Page 52 of 190



Plots for 20 MHz channel bandwidth, 16-QAM

Plot 4: Lowest channel, 10 MHz to 25 GHz


Plot 5: Middle channel, 10 MHz to 25 GHz

2014-01-22 Page 53 of 190

Plot 6: Highest channel, 10 MHz to 25 GHz

2014-01-22 Page 54 of 190

8.3.5 Block edge compliance

Description:

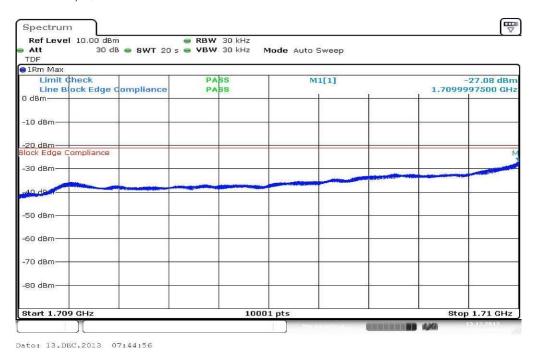
The spectrum at the band edges must comply with the spurious emissions limits.

For the measurement the lowest, middle and highest channel bandwidth was used. If spurious were found the other bandwidths were measured, too.

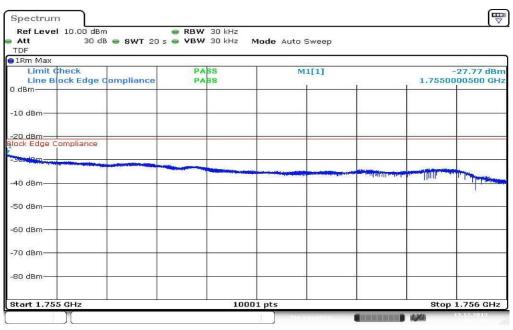
Measurement:

Measurement parameters	
Detector:	RMS
Sweep time:	20 sec.
Video bandwidth:	30 kHz
Resolution bandwidth:	30 kHz
Span:	1 MHz
Trace-Mode:	Max Hold

Limits:


FCC	-/-	
Block Edge Compliance		
Part 27.53 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."		
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:		
"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 log(P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."		
When using a 30 kHz bandwidth, this yields a -8.239 adjustment to the limit [10 log(30kHz/50kHz) = -8.239]. When this adjustment is applied to the limit, the limit becomes -21.24.		
-21.24 dBm		

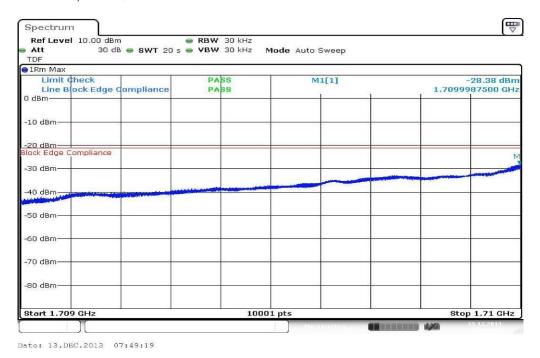
2014-01-22 Page 55 of 190



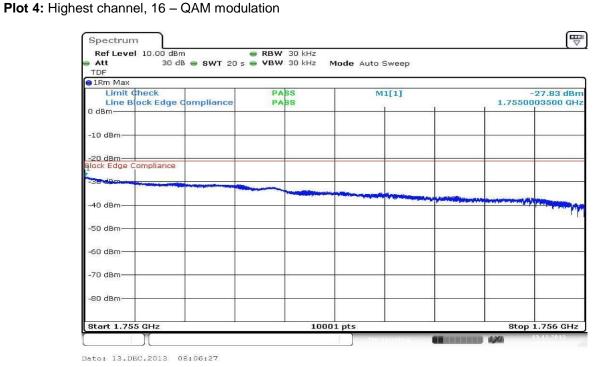
Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel, QPSK modulation

Plot 2: Highest channel, QPSK modulation

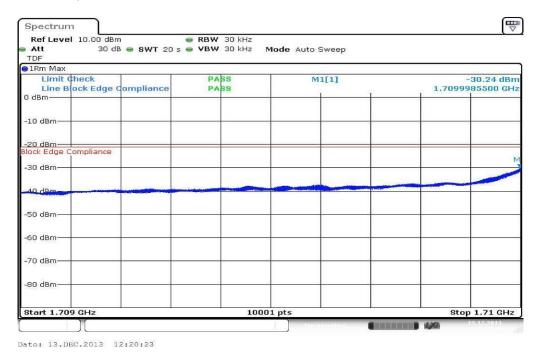


Date: 13.DEC.2013 08:02:05

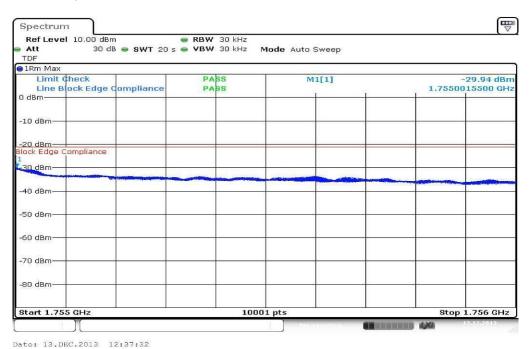

2014-01-22 Page 56 of 190

Plot 3: Lowest channel, 16 – QAM modulation

....

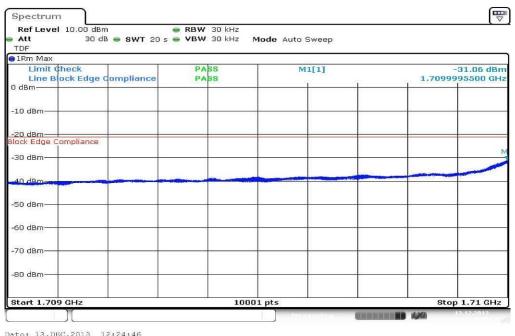


2014-01-22 Page 57 of 190

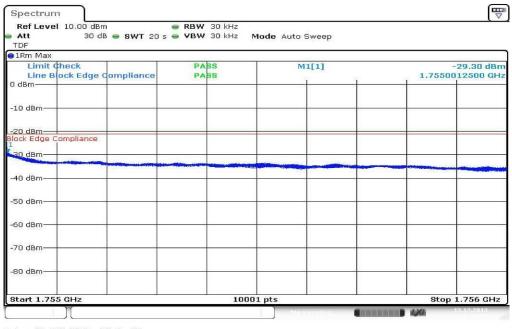


Results: 3 MHz channel bandwidth

Plot 1: Lowest channel, QPSK modulation


Plot 2: Highest channel, QPSK modulation

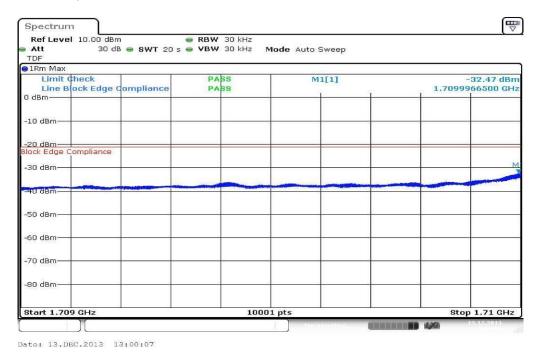
2014-01-22 Page 58 of 190



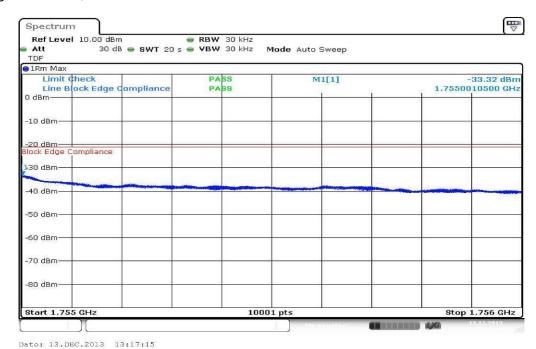
Plot 3: Lowest channel, 16 – QAM modulation

Date: 13.DEC.2013 12:24:46

Plot 4: Highest channel, 16 – QAM modulation

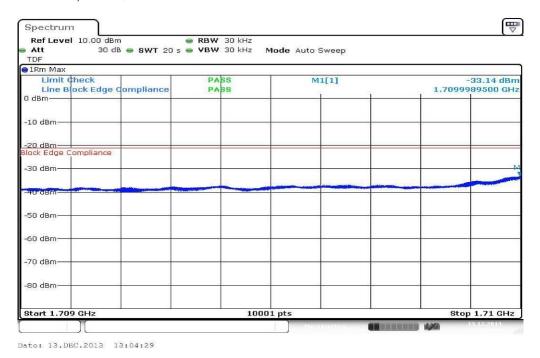

Date: 13.DEC.2013 12:41:55

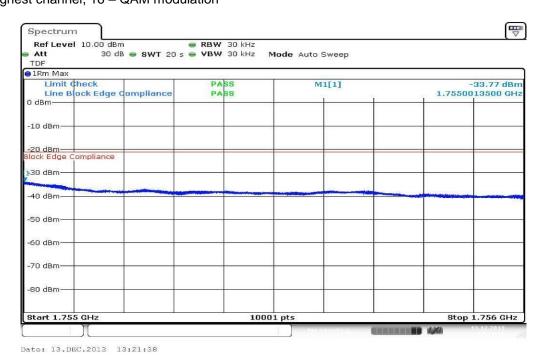
2014-01-22 Page 59 of 190



Results: 5 MHz channel bandwidth

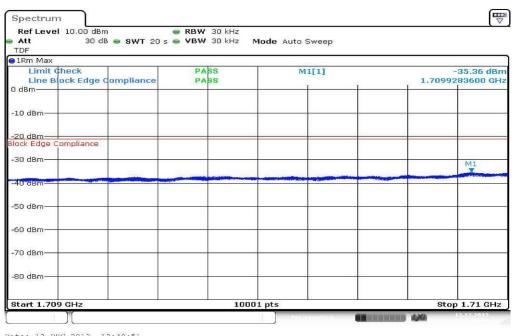
Plot 1: Lowest channel, QPSK modulation


Plot 2: Highest channel, QPSK modulation

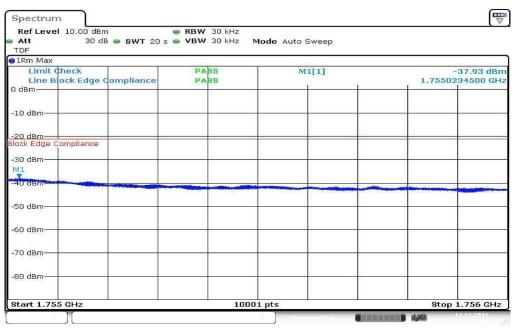

2014-01-22 Page 60 of 190

Plot 3: Lowest channel, 16 – QAM modulation

Plot 4: Highest channel, 16 - QAM modulation



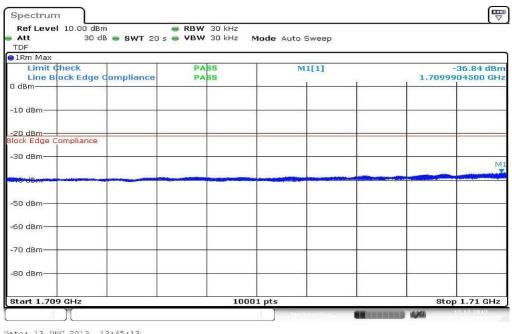
2014-01-22 Page 61 of 190


Results: 10 MHz channel bandwidth

Plot 1: Lowest channel, QPSK modulation

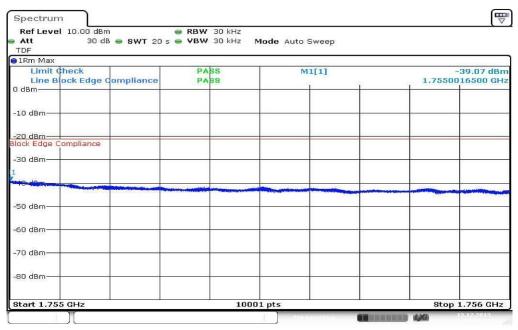
Date: 13.DEC.2013 13:40:51

Plot 2: Highest channel, QPSK modulation



Date: 13.DEC.2013 13:58:00

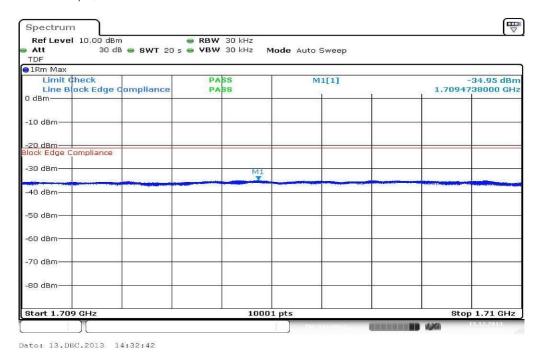
2014-01-22 Page 62 of 190



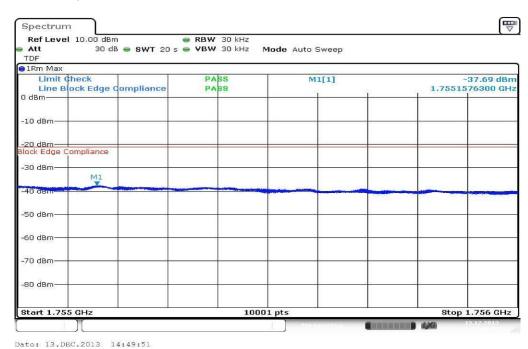
Plot 3: Lowest channel, 16 – QAM modulation

Date: 13.DEC.2013 13:45:13

Plot 4: Highest channel, 16 – QAM modulation

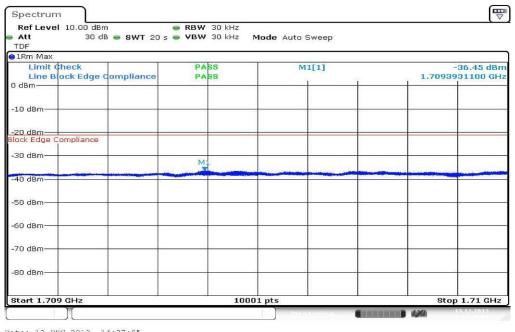

Date: 13.DEC.2013 14:02:22

2014-01-22 Page 63 of 190

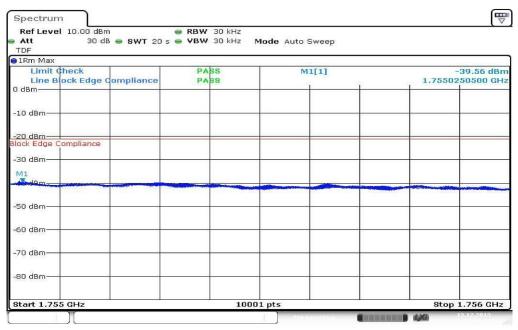


Results: 15 MHz channel bandwidth

Plot 1: Lowest channel, QPSK modulation


Plot 2: Highest channel, QPSK modulation

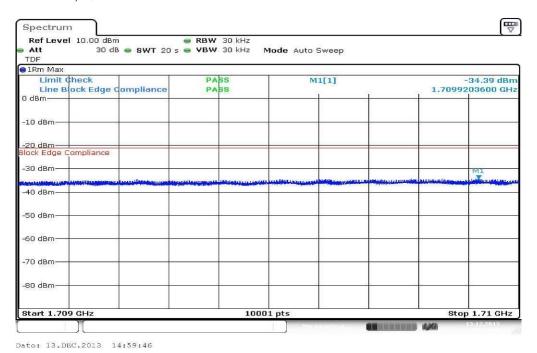
2014-01-22 Page 64 of 190



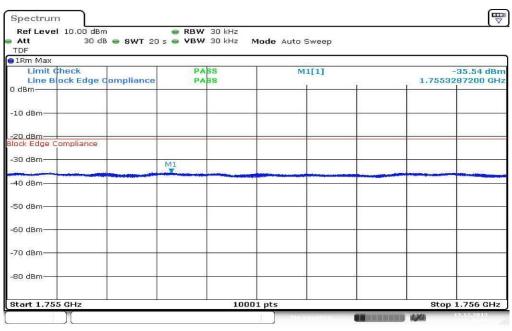
Plot 3: Lowest channel, 16 – QAM modulation

Date: 13.DEC.2013 14:37:05

Plot 4: Highest channel, 16 – QAM modulation


Date: 13.DEC.2013 14:54:14

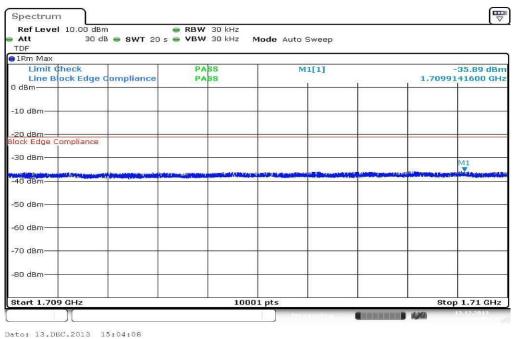
2014-01-22 Page 65 of 190



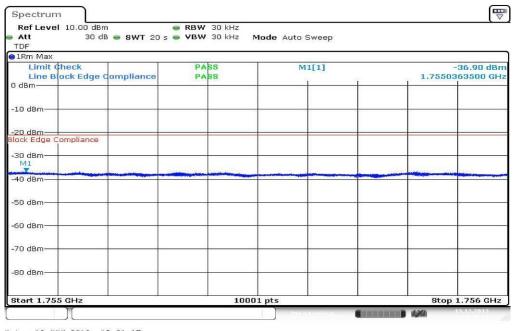
Results: 20 MHz channel bandwidth

Plot 1: Lowest channel, QPSK modulation

Plot 2: Highest channel, QPSK modulation



Date: 13.DEC.2013 15:16:55


2014-01-22 Page 66 of 190

Plot 3: Lowest channel, 16 – QAM modulation

Plot 4: Highest channel, 16 – QAM modulation

Date: 13.DEC.2013 15:21:17

Result: Passed

2014-01-22 Page 67 of 190