

FCC CFR47 PART 15 SUBPART C

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n/ac, ANT+ & NFC

FCC ID: PY7PM-0812

REPORT NUMBER: 14U17927-3

ISSUE DATE: JULY 18, 2014

Prepared for

SONY MOBILE COMMUNICATIONS, INC. NYA VATTENTORNET MOBILVAGEN 10 LUND 22188 SWEDEN

Prepared by

UL VERIFICATION SERVICES INC. 1285 WALT WHITMAN RD MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577

NVLAP LAB CODE 200065-0

REPORT NO: 14U17927-3 DATE: JULY 18, 2014 FCC ID: PY7PM-0812

Revision History

Rev.	Issue Date	Revisions	Revised By
	7/18/14	Initial Issue	D. Coronia

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. CA	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. EQ	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	MAXIMUM OUTPUT POWER	6
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
<i>5.4.</i>	WORST-CASE CONFIGURATION AND MODE	6
5.5.	DESCRIPTION OF TEST SETUP	7
6. TE	ST AND MEASUREMENT EQUIPMENT	9
7. SU	JMMARY	11
8. AN	ITENNA PORT TEST RESULTS	11
8.1.	6 dB BANDWIDTH	12
8.2.	99% BANDWIDTH	15
8.3.	OUTPUT POWER	18
8.4.	AVERAGE POWER	21
8.5.	POWER SPECTRAL DENSITY	22
8.6.	CONDUCTED SPURIOUS EMISSIONS	25
9. RA	ADIATED TEST RESULTS	29
9.1.	LIMITS AND PROCEDURE	29
9.2.	TRANSMITTER ABOVE 1 GHz	30
9.3.	WORST-CASE BELOW 1 GHz	35
10.	AC POWER LINE CONDUCTED EMISSIONS	36
11.	SETUP PHOTOS	40

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SONY MOBILE COMMUNICATIONS, INC.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n/ac,

ANT+ & NFC

SERIAL NUMBER: 1906287

DATE TESTED: JULY 2 – 7, 2014

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

DAN CORONIA
CONSUMER TECHNOLOGY DIVISION
PROJECT LEAD

UL Verification Services Inc.

MIKE ANTOLA CONSUMER TECHNOLOGY DIVISION PROJECT LEAD

Mirtal /2

UL Verification Services Inc.

DATE: JULY 18, 2014

Pass

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

All antenna port conducted tests and AC line conducted emissions were performed at the UL-Fremont locations. All radiated testing was performed at the UL-Melville facility.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + Bluetooth, DTS/UNII a/b/g/n/ac + ANT+ & NFC.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402-2480	BLE	2.20	1.66

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna for BLE mode with a maximum peak gain of -1.4dBi.

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

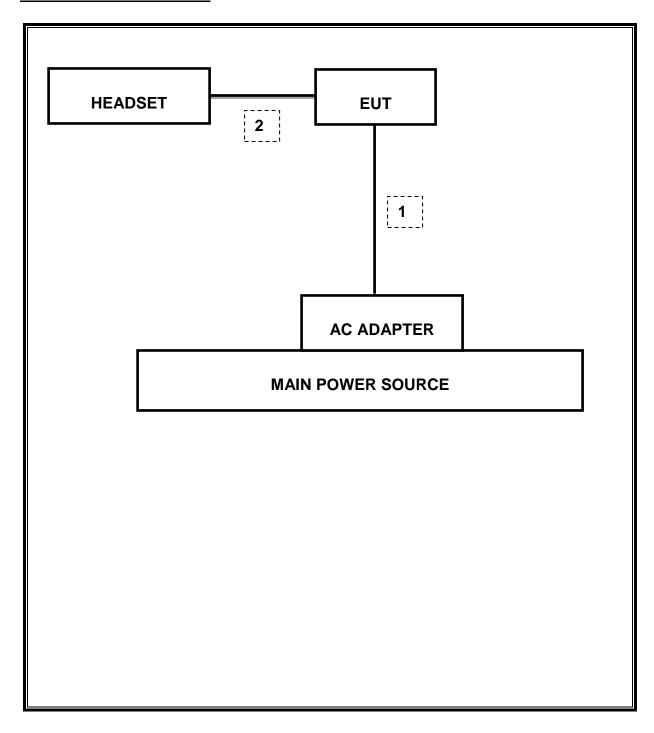
The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

REPORT NO: 14U17927-3 DATE: JULY 18, 2014 FCC ID: PY7PM-0812

DESCRIPTION OF TEST SETUP 5.5.

SUPPORT EQUIPMENT

Support Equipment List					
Description Manufacturer Model Serial Number FCC ID					
AC Adapter	Sony	EP880	3514W01 S08489 SEM 060	DoC	
Earphone Sony MH410c 14071EB60060A84 Doc					


I/O CABLES

	I/O Cable List					
Cable No	Port	# of identical ports	Connector Type	• •	Cable Length (m)	Remarks
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A
2	Audio	1	Mini-Jack	Unshielded	1m	N/A

TEST SETUP

The EUT is a stand-alone unit during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

UL – Melville Equipment

Radiated Emissions						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
30-1000MHz						
EMI Receiver	Rohde & Schwarz	ESCI7	75141	2014-01-29		
Hybrid Antenna	Sunol	JB-1	84106	2014-02-19		
Switch Driver	HP	11713A	ME7A-627	N/A	N/A	
System Controller	Sunol Sciences	SC99V	44396	N/A N/A	N/A N/A	
Camera Controller RF Switch Box	Panasonic UL	WV-CU254	44395 44398	N/A N/A	N/A	
	UL	Version 9.5	44740	N/A N/A	N/A	
Measurement Software Multimeter	Fluke	87V	44547		2015-01-31	
Above 1GHz (Band Optimized Sy		07 V	44547	2014-01-29	2015-01-31	
Spectrum Analyzer	Agilent	E4446A	72823	2014-06-12	2015 06 12	
Horn Antenna (2-4 GHz)	ETS	3161-02 (22°)**	48107	2007-09-27	See * below	
Horn Antenna (4-8 GHz)	ETS	3161-03 (22°)**	48106	2007-09-27	See * below	
Horn Antenna (8-12 GHz)	ETS	3160-07 (26°)**	8933		See * below	
Horn Antenna (12-18 GHz)	ETS	3160-08 (26°)**	8932	2007-09-27	See * below	
Horn Antenna (18-26.5 GHz)	ETS	3160-09 (27°)**	8947	2007-09-26	See * below	
Horn Antenna	EMCO	3115	ME5A-766			
Signal Path Controller	HP	11713A	50250	N/A	N/A	
Gain Controller	HP	11713A	50251	N/A	N/A	
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A	
System Controller	UL	BOMS2	50252	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	
Multimeter	Fluke	87V	44547	2014-01-29	2015-01-31	

^{* -} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

^{** -} Number in parentheses denotes antenna beam width.

UL – Fremont Equipment

Test Equipment List					
Description	Manufacturer	Model	Asset	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/14	
Spectrum Analyzer,9KHz-40GHz	HP	8564E	C00986	04/01/15	
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	1000741	08/13/14	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	08/18/14	
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/14	
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/14	
Antenna, Horn, 1-18 GHz	ETS	3117	C01022	02/21/15	
Antenna, Horn,18- 26 GHz	ARA	MWH-1826/B	C00946	11/12/14	
Antenna, Horn, 26-40 GHz	ARA	MWH-2640	C00891	06/28/15	
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	T243	03/06/15	
RF Preamplifier, 100KHz -> 1300MHz	HP	TBD	C00825	06/01/15	
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/15	
RF Preamplifier, 1GHz - 26.5GHz	HP	8449B	F00351	06/27/15	
AC Power Supply, 2,500VA 45-500Hz	Elgar-Ametek	CW2501M	F00013	CNR	
RF Preamplifier, 1GHz - 40GHz	Miteq	NSP4000-SP2	C00990	08/20/14	
Attenuator / Switch driver	HP	11713A	F00204	CNR	
Low Pass Filter 3GHz	Micro-Tronics	LPS17541	F00219	05/23/15	
High Pass Filter 5GHz	Micro-Tronics	HPS17542	F00222	05/22/15	
High Pass Filter 6GHz	Micro-Tronics	HPM17543	F00224	05/22/15	

7. SUMMARY TABLE

The model FCC ID: PY7PM-0812 shares the same enclosure and circuit board as mode FCC ID: PY7PM-0810. The WLAN/Bluetooth circuitry and layout, including antenna, are almost identical between the two units. The WLAN/Bluetooth antenna and surrounding circuitry is the same between these two units.

After confirming through preliminary radiated emissions that the performance of the PY7PM-0812 BLE remains representative of this model (FCC ID: PY7PM-0810) test data for FCC ID: PY7PM-0810 is being submitted for this application.

Radiated emissions were fully re-evaluated against FCC Part 15B requirements for digital devices and results indicated no significant differences between the two versions. Other differences between the two FCC IDs are in the WWAN. WWAN. SAR and EMC have been fully retested for FCC ID: PY7PM-0812.

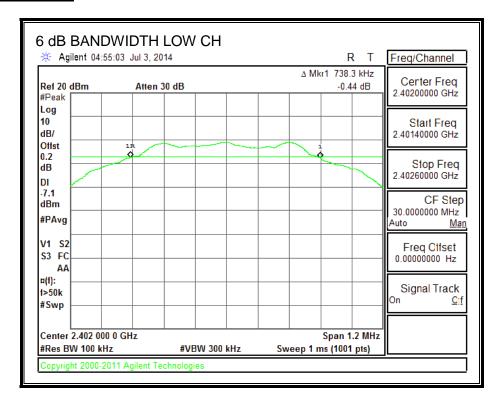
FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	RSS-210 A8.2(a)	Occupied Band width (6dB)	>500KHz		Pass	728.7KHz
2.1051, 15.247 (d)	RSS-210 A8.5	Band Edge / Conducted Spurious Emission	1 -200BC 1		Pass	-53.26dBm
15.247	RSS-210 A8.4	TX conducted output power	<30dBm	Conducted	Pass	2.2dBm
15.247	RSS-210 A8.2	PSD	<8dBm		Pass	-12.08dBm
15.207 (a)	RSS-GEN 7.2.2	AC Power Line conducted emissions	Section 10		Pass	39.67dBuV
15.205, 15.209	RSS-210 Clause 2.6, RSS-210 Clause 6	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass	No emissions detected above system noise floor

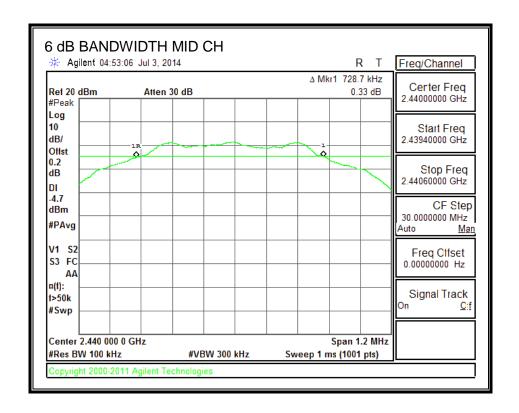
8. ANTENNA PORT TEST RESULTS 8.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

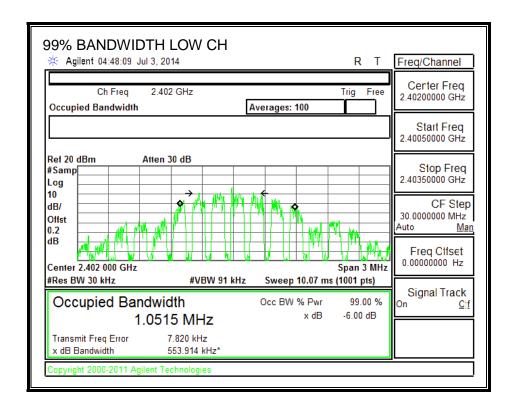
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7383	0.5
Middle	2440	0.7287	0.5
High	2480	0.7403	0.5

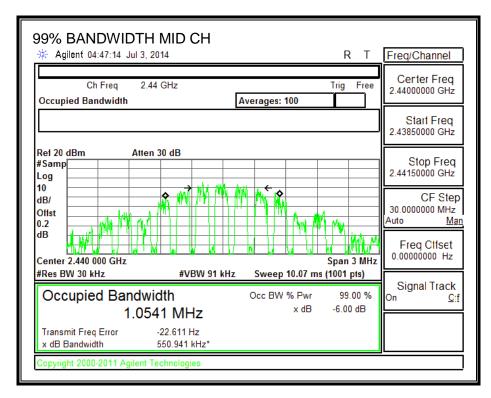
6 dB BANDWIDTH

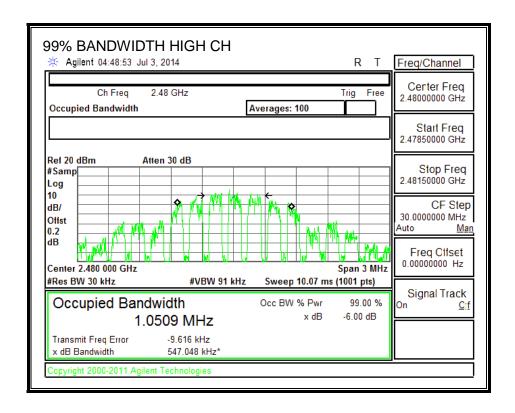
8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


Reference to KDB558074 D01 DTS Meas Guidance v03r02: The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0515
Middle	2440	1.0541
High	2480	1.0509

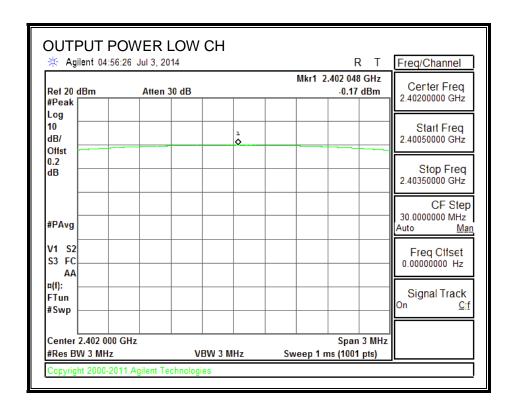
99% BANDWIDTH

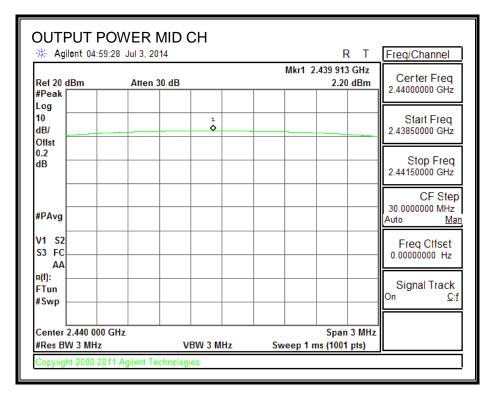
8.3. OUTPUT POWER

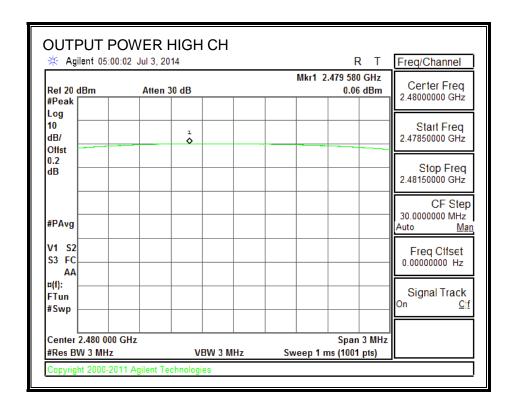
LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using KDB558074 D01 DTS Meas Guidance v03r02 June 5, 2014 under section 9.1.1 utilizing spectrum analyze.


RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-0.170	30	-30.170
Middle	2440	2.200	30	-27.800
High	2480	0.060	30	-29.940

OUTPUT POWER

8.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

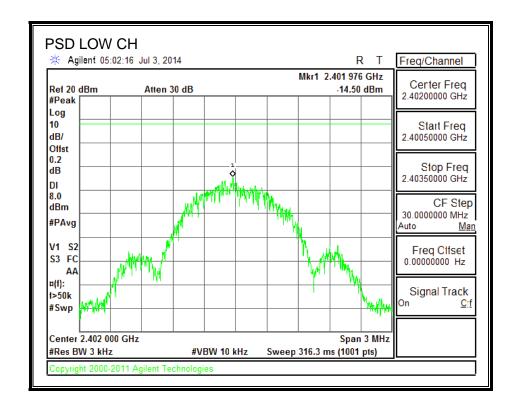
Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	-1.6
Middle	2440	-1.5
High	2480	-1.4

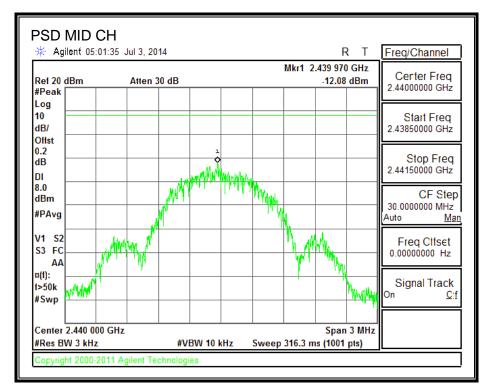
POWER SPECTRAL DENSITY 8.5.

LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Power Spectral Density was performed utilizing the "Method PKPSD (Peak PSD)" under KDB558074 D01 DTS Meas Guidance v03r02, June 5, 2014

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-14.50	8	-22.50
Middle	2440	-12.08	8	-20.08
High	2480	-14.28	8	-22.28

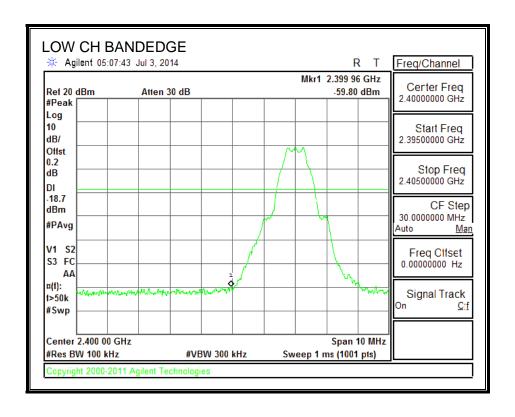
POWER SPECTRAL DENSITY

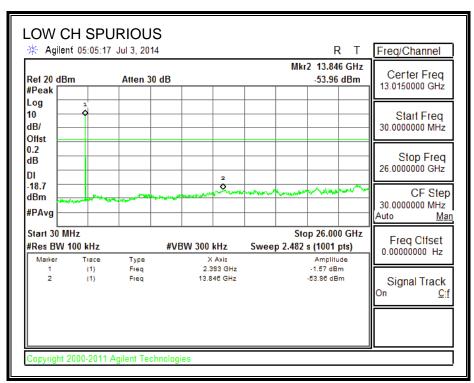
8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

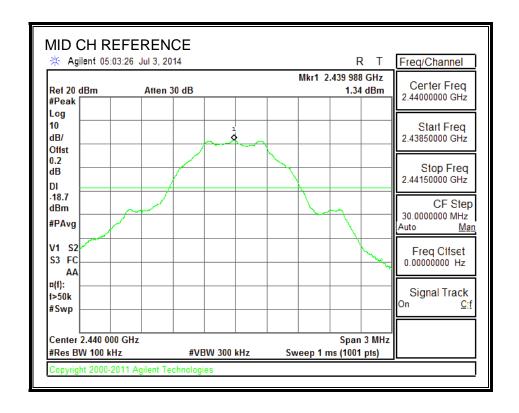
FCC §15.247 (d)

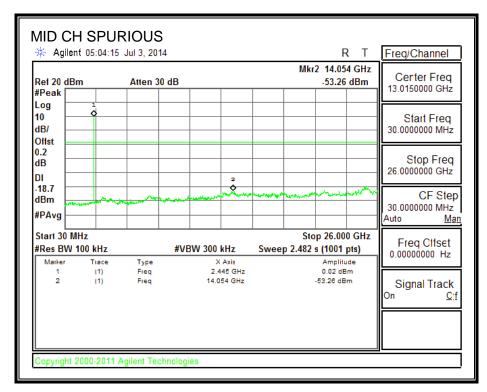
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

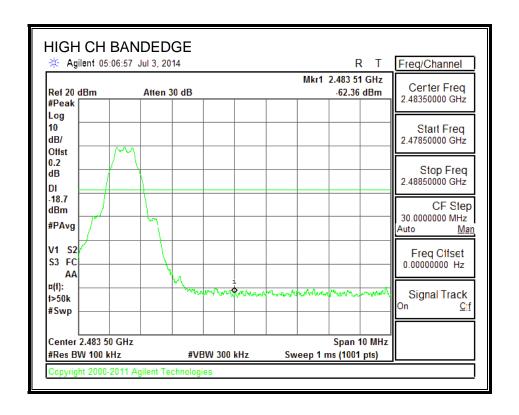

TEST PROCEDURE

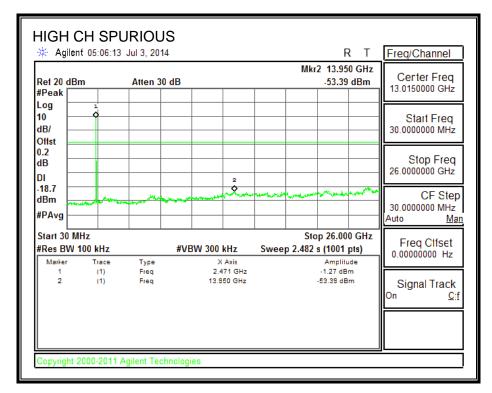

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

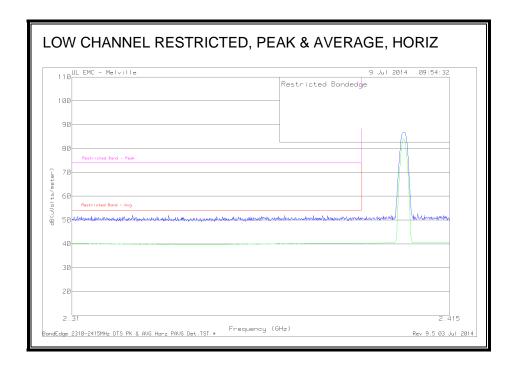
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

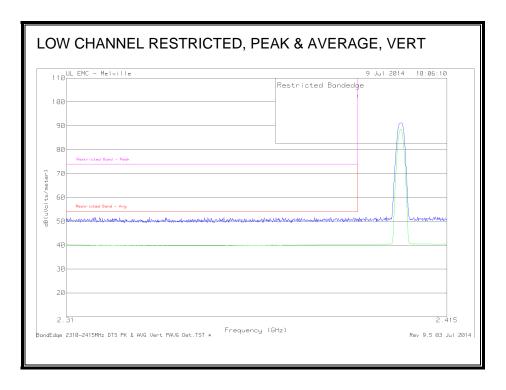
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4 - 2009. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

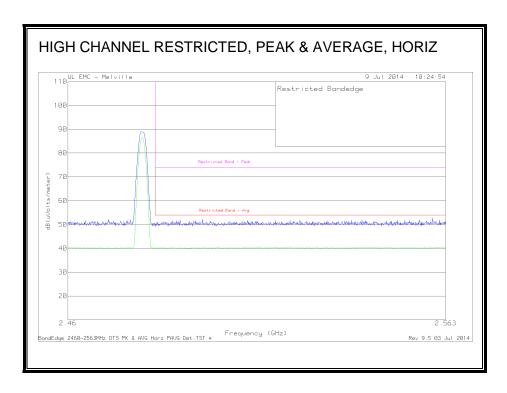
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements, which are derived by as calculated below:

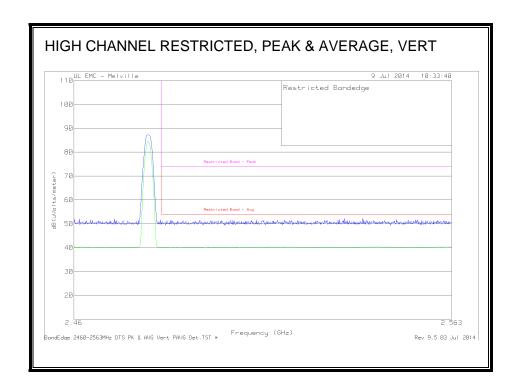

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE Mode	0.390	1	0.624	62.40%	4.10	N/A

The spectrum from 1GHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

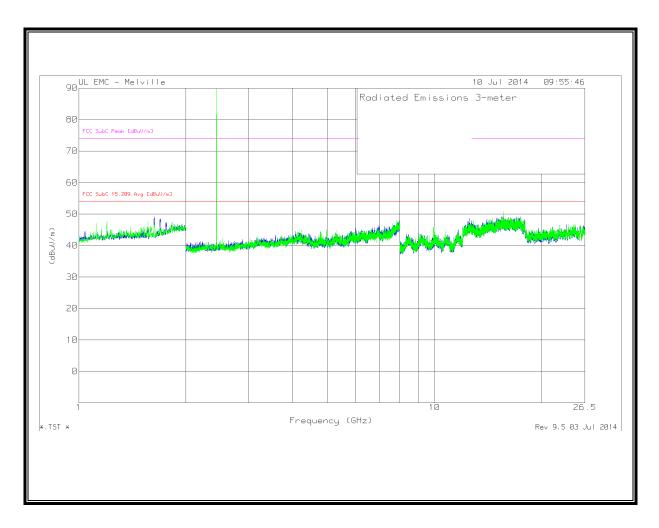
9.2. TRANSMITTER ABOVE 1 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

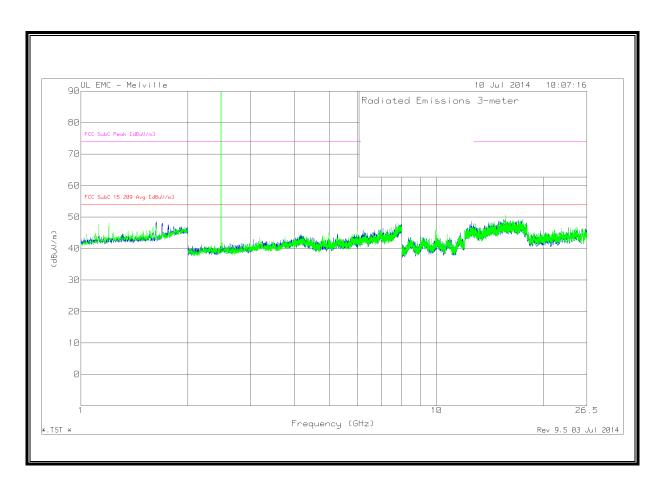

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

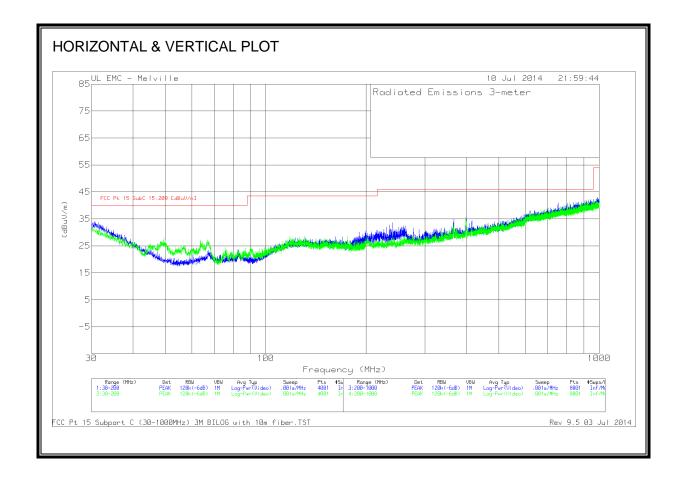

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL **HORIZONTAL & VERICAL**


Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor.

MID CHANNEL **HORIZONTAL & VERTICAL**

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor.


HIGH CHANNEL **HORIZONTAL & VERTICAL**

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor.

WORST-CASE BELOW 1 GHz 9.1.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

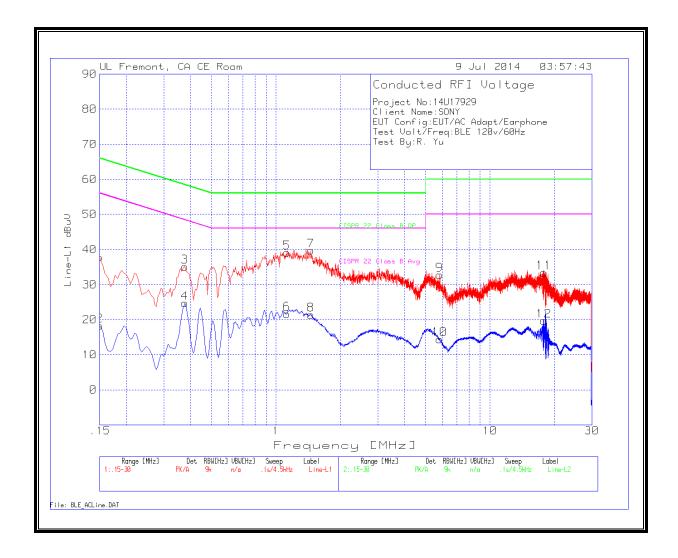
TEST PROCEDURE

ANSI C63.4 - 2009

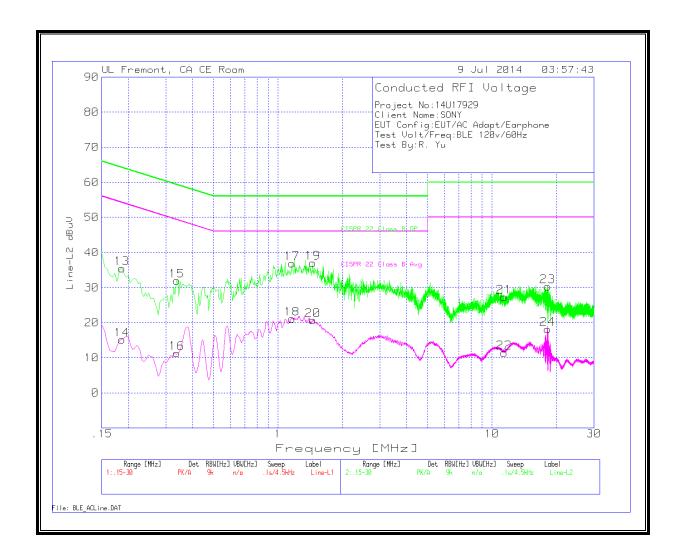
RESULTS

6 WORST EMISSIONS

Line-L1 .15 - 30MHz


Marker	Frequency	Meter	Det	T24 IL L1	LC Cables	Corrected	CISPR 22	Margin to	CISPR 22	Margin to
	(MHz)	Reading (dBuV)		(dB)	1&3 (dB)	Reading dBuV	Class B QP	Limit (dB)	Class B Avg	Limit (dB)
1	.15	36.38	PK	1.4	0	37.78	66	-28.22	-	-
2	.15	16.86	Av	1.4	0	18.26	-	-	56	-37.74
3	.375	34.63	PK	.4	0	35.03	58.4	-23.37	-	-
4	.375	24.29	Av	.4	0	24.69	-	-	48.4	-23.71
5	1.122	38.84	PK	.2	0	39.04	56	-16.96	-	-
6	1.122	21.48	Av	.2	0	21.68	-	-	46	-24.32
7	1.455	39.37	PK	.2	.1	39.67	56	-16.33	-	-
8	1.455	21.09	Av	.2	.1	21.39	-	-	46	-24.61
9	5.811	32.42	PK	.2	.1	32.72	60	-27.28	-	-
10	5.811	14.1	Av	.2	.1	14.4	-	-	50	-35.6
11	17.8665	32.94	PK	.3	.2	33.44	60	-26.56	-	-
12	17.8665	19.15	Av	.3	.2	19.65	-	-	50	-30.35

Line-L2 .15 - 30MHz


Marker	Frequency	Meter	Det	T24 IL L2	LC Cables	Corrected	CISPR 22	Margin to	CISPR 22	Margin to
	(MHz)	Reading (dBuV)		(dB)	2&3 (dB)	Reading dBuV	Class B QP	Limit (dB)	Class B Avg	Limit (dB)
13	.186	34.32	PK	1.1	0	35.42	64.2	-28.78	-	-
14	.186	14.03	Av	1.1	0	15.13	-	-	54.2	-39.07
15	.33675	31.42	PK	.5	0	31.92	59.3	-27.38	-	-
16	.33675	10.81	Av	.5	0	11.31	-	-	49.3	-37.99
17	1.1625	36.58	PK	.3	0	36.88	56	-19.12	-	-
18	1.1625	20.77	Av	.3	0	21.07	-	-	46	-24.93
19	1.455	36.68	PK	.2	.1	36.98	56	-19.02	-	-
20	1.455	20.38	Av	.2	.1	20.68	-	-	46	-25.32
21	11.3955	26.96	PK	.2	.2	27.36	60	-32.64	-	-
22	11.3955	11.05	Av	.2	.2	11.45	-	-	50	-38.55
23	18.249	29.78	PK	.3	.2	30.28	60	-29.72	-	-
24	18.249	17.62	Av	.3	.2	18.12	-	-	50	-31.88

PK - Peak detector Av - average detection

LINE 1 RESULTS

LINE 2 RESULTS

