

FCC PART 15C ANT+ TEST REPORT No. 2013TAR901

for

Sony Mobile Communications (China) Co. Ltd

GSM/WCDMA/LTE Mobile Phone

Type: PM-0764-BV

FCC ID: PY7PM-0764

with

Hardware Version: A

Software Version: s_atp_tianchi_us_1_0_14_6

Issued Date: 2014-03-03

DAR accreditation (DIN EN ISO/IEC 17025): No. D-PL-12123-01-01 FCC 2.948 Listed: No.733176

Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No.18A, Kangding Street, Beijing Economical Development Area, Beijing, China 100176
Tel:+86(0)10-67857376, Fax:+86(0)10-67857376 Email:welcome@emcite.com. www.emcite.com

CONTENTS

CONT	ENTS	2
1. TI	EST LABORATORY	3
1.1.	TESTING LOCATION	3
1.2.	TESTING ENVIRONMENT	
1.3.	Project data	3
1.4.	SIGNATURE	3
2. CI	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	MANUFACTURER INFORMATION	4
3. E(QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (A	E)5
3.1.	ABOUT EUT	5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4.	GENERAL DESCRIPTION	6
4. RI	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. LA	ABORATORY ENVIRONMENT	8
6. SU	JMMARY OF TEST RESULTS	9
6.1.	SUMMARY OF TEST RESULTS	9
6.2.	STATEMENTS	10
6.3.	TEST CONDITIONS	10
7. TI	EST EQUIPMENTS UTILIZED	11
ANNE	X A: MEASUREMENT RESULTS	12
A.1.	MEASUREMENT METHOD	12
A.2.	OCCUPIED BANDWIDTH	13
A.3.	DUTY CYCLE CALCULATION	14
A.4.	FUNDAMENTAL FIELD STRENGTH LEVEL	16
A.5.	RADIATED EMISSION	17
A.6.	AC Powerline Conducted Emission	26
ANNE	X B: PHOTOGRAPHS OF THE TEST SET-UP	.错误!未定义书签。
A NINIE'	V.C. DUOTOCDADUS OF THE FUT	港 提上

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: No.18A, Kangding Street, Beijing Economical Development Area,

Beijing, China

Postal Code: 100176

Telephone: 00861067857376 Fax: 00861067857376

1.2. Testing Environment

Normal Temperature: 15-35 $^{\circ}$ C Extreme Temperature: -20/+55 $^{\circ}$ C Relative Humidity: 30-60%

Air Pressure 990hPa-1040hPa

Note: The climatic requirements above are general exclude the special requirements for dedicated test environments listed in section 5 and some specific test cases in other parts of this report.

1.3. Project data

Project Leader: Zi Xiaogang
Testing Start Date: 2014-02-08
Testing End Date: 2014-02-28

1.4. Signature

Zi Xiaogang

登晚刚

(Prepared this test report)

Sun Xiangqian

(Reviewed this test report)

路城村

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Sony Mobile Communications (China) Co. Ltd

Sony Mobile R&D Center, No. 16, Guangshun South Street, Address /Post:

Chaoyang District

City: Beijing
Postal Code: 100102
Country: China
Contact Person: Ma, Gang

Telephone: +86-10-58656312 Fax: +86-10-58659049

2.2. Manufacturer Information

Company Name: Sony Mobile Communications AB Address /Post: Mobilvägen, 22188 Lund, Sweden

City: Lund
Postal Code: 22188
Country: Sweden

Contact Person: Nilsson, Mikael
Telephone: +46 703 227503
Fax: +46 706 127385

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM 850/900/1800/1900 quad bands, GPRS, EDGE,

WCDMA FDD bands 1/2/4/5, HSDPA, HSUPA,

LTE FDD bands 2/4/17,

Bluetooth (EDR and 4.0), ANT+, WLAN (802.11 a/ac/b/g/n),

NFC, FM, GPS mobile phone

Type PM-0764-BV FCC ID PY7PM-0764

Frequency Range ISM 2400MHz~2483.5MHz

Number of Channels 79

GSM Frequency Band GSM 850/900/1800/1900

UMTS Frequency Band FDD Band 1 / FDD Band 2 / FDD Band 4 / FDD Band 5

LTE Frequency Band FDD Band 2 / FDD Band 4 / FDD Band 17

Antenna Integrated Antenna

Power Supply 3.7VDC

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
N03	004402451862738	Α	s_atp_tianchi_us_1_0_14_6
N24	004402451863314	Α	19.0.B.0.232

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Revision
AE2	USB Cable	132907DD00F432C	1
AE4	Embedded Battery	/	1C
AE3			
Commerci	ial name	EC801	
Type		AI-0401	
Manufactu	ırer	Sony Mobile	
Length of	cable	98.5 cm	
AE4			
Model nan	ne	1277-4767	
Manufactu	ırer	Sony Mobile	
Minimum (Capacitance	3000mAh	
Nominal V	'oltage	3.8V	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) is a model of GSM/WCDMA/LTE Mobile Phone with integrated antenna and embedded battery.

The EUT supports GSM 850/900/1800/1900MHz bands, WCDMA FDD bands 1/2/4/5 and LTE FDD bands 2/4/17. It supports GPRS service with multi-slots class 12 and EGPRS service with multi-slots class 12. The HSDPA and HSUPA (Cat 4) features are also supported.

It has MP3, camera, USB memory, FM radio, GPS receiver, NFC, Bluetooth (EDR), ANT+, WLAN (802.11 a/ac/b/g/n) and Wi-Fi hotspot functions. For WLAN 802.11n, it supports 20MHz and 40MHz bandwidths on both 2.4GHz band and 5GHz/5.8GHz bands. For WLAN 802.11ac, it supports 20MHz, 40MHz and 80MHz bandwidths on both 2.4GHz band and 5GHz/5.8GHz bands. It includes normal option: USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

ino ionoving accamo	no noted in the decitor are referred for teeting.	
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	Edition
2400-2483.5 MHz, and 5725-5850 MHz.		
F00 D 0	Frequency Allocations and Radio Treaty Matters;	10-1-13
FCC Part 2	General Rules and Regulations	Edition
ANOLOGO 40	American National Standard for Testing Unlicensed	0000
ANSI C63.10	Wireless Devices	2009

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber (23 meters × 17meters × 10meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω
Normalised site attenuation (NSA)	$<\pm3.2$ dB, 10 m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 2000 MHz

Control room/ conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.8 meters × 3.08 meters × 3.53 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Fully-anechoic chamber2 (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C	
Relative humidity	Min. = 35 %, Max. = 60 %	
Shielding effectiveness	> 110 dB	
Electrical insulation	> 2 MΩ	
Ground system resistance	<1 Ω	
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz	

Fully-anechoic chamber3 (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz

Additional Humidity Requirements for Electrostatic Discharge Test: Min. = 30%, Max. = 60%.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- F Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by TMC

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Occupied Bandwidth	2.1049	Р
Duty Cycle Calculation	15.35	Р
Fundamental Field Strength Level	15.249	Р
Radiated Emission	15.205, 15.209,15.249	Р
AC Powerline Conducted Emission	15.207	Р

Please refer to ANNEX A for detail.

6.2. Statements

TMC has evaluated the test cases requested by the applicant /manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

The EUT met all requirements of the standards or reference documents.

This report only deals with the ANT+ functions among the features described in section 3.

6.3. Test Conditions

T nom	Normal Temperature
T min	Low Temperature
T max	High Temperature
V nom	Normal Voltage
V min	Low Voltage
V max	High Voltage
H nom	Norm Humidity
A nom	Norm Air Pressure

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	T nom	25 ℃
Voltage	V nom	3.7V
Humidity	H nom	37%
Air Pressure	A nom	1010hPa

7. Test Equipments Utilized

Conducted test system

No.	No. Equipment		Serial Number	Manufacturer	Calibration Due date
1	Vector Signal Analyzer	FSU26	200030	Rohde & Schwarz	2014-06-12

Radiated emission test system

No.	Equipment	Model Serial Number		Manufacturer	Calibration Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	2014-11-05
2	EMI Antenna	ntenna VULB 9163 175 Schwarzbeck		Schwarzbeck	2014-07-13
3	EMI Antenna 3117		00119021	ETS-Lindgren	2014-04-19
4	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	2014-06-30
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	2014-06-30
6	LISN	ESH2-Z5	829991/012	Rohde & Schwarz	2014-03-17
7	Pre-amplifier(18GHz)	SCU18	1005277	Rohde & Schwarz	1
8	Pre-amplifier(26.5GHz)	SCU26	1006788	Rohde & Schwarz	/

Anechoic chamber

Fully anechoic chamber by Frankonia German.

Note: The pre amplifiers is calibrated with routes calibration every time before test, therefore no need for the calibration date.

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

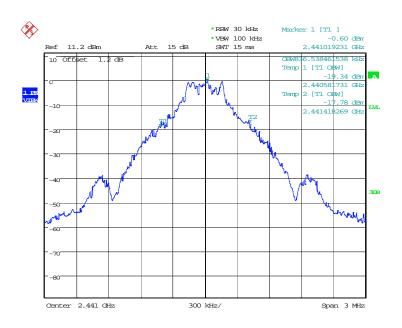
Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Occupied Bandwidth

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 2.1049	N/A


Measurement Condition:

RBW=30KHz; VBW=100KHz; SPAN=3MHz; Detector: peak

Measurement Result:

Channel	Channel Occupied Bandwidth(KH		Conclusion
39 Fig.1		836.54	Р

Conclusion: PASS
Test graphs as below

Date: 8.FEB.2014 09:26:30

Fig.1. Occupied Bandwidth: Channel39

A.3. Duty Cycle Calculation

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.35	N/A

An average radiated field strength can be determined by applying a duty cycle correction factor to a measured peak radiated field strength level. The duty cycle correction factor is determined based on the worst case operation over a 100ms time period on any given channel.

Measurement Results:

Channel	pulse wid	Conclusion	
39	Fig.2	192.31	Р

Channel operation time over a		100ms time period	Conclusion
39 Fig.3		27	Р

DCCF = $20lg(number of hits \times (worst case 100ms operation / 100ms))$ = $20lg(27 \times (0.19231ms / 100ms)) = -25.69dB$

Test graphs as below

Date: 8.FEB.2014 09:30:36

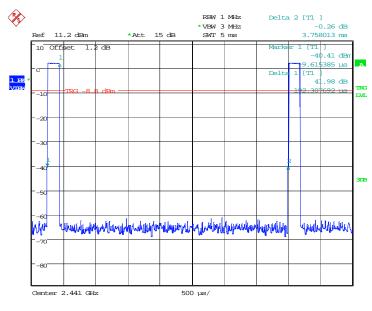
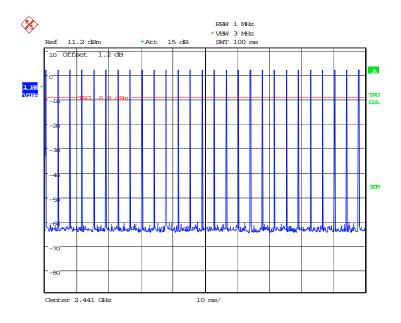



Fig.2. pulse width: Channel 39

Date: 8.FEB.2014 09:35:25

Fig.3. Worst Case 100ms Operation: Channel 39

A.4. Fundamental Field Strength Level

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.249	Average field strength< 50mV/m (94.0dBµV/m)	
FCC 47 CFR Pait 15.249	Peak field strength< 500mV/m (114.0dBµV/m)	

Measurement is made while the EUT is operating in non-hopping transmission mode. The field strengths shown below are measured using a spectrum analyzer. Peak field strength measurements are performed in the analyzer's swept spectrum mode using a peak detector with RBW=3MHz and VBW ≥ RBW. Average field strength data is determined by applying the duty cycle correction factor (DCCF).

Frequency (MHz)	Field Strength (dBµV/m)	Cable loss(dB)	AF (dB)	Pmea (dBµV/m)	Pol [H/V]	Detector	Duty Cycle(dB)	Corrected Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2402.020	74.2	-38.9	27.7	85.4	Н	Peak	0.00	74.2	114.0	39.8
2402.020	74.2	-38.9	27.7	85.4	Н	Peak	-25.69	48.5	94.0	45.5
2440.860	76.1	-39.0	27.7	87.4	Н	Peak	0.00	76.1	114.0	37.9
2440.860	76.1	-39.0	27.7	87.4	Н	Peak	-25.69	50.4	94.0	43.6
2479.980	75.4	-38.9	27.7	86.6	Н	Peak	0.00	75.4	114.0	38.6
2479.980	75.4	-38.9	27.7	86.6	Н	Peak	-25.69	49.7	94.0	44.3

Measurement Results:

Conclusion: PASS

A.5. Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.205, 15.209,15.249	Listed as follows

Frequency (MHz) Field	Field strength	Measurement distance
strength	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)					
(MHz)							
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)	
(MHz)			
0.009-30	100KHz/300KHz	5	
30-1000	100KHz/300KHz	5	
1000-4000	1MHz/1MHz	15	
4000-18000	1MHz/1MHz	40	
18000-26500	1MHz/1MHz	20	

Measurement Results:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable los.

The measurement results are obtained as described below:

Result= $P_{Mea}+A_{Rpl}$

Frequency	Frequency Range	Test Results	Conclusion
	30 MHz ~ 1 GHz	Fig.4	Р
2402MHz	1 GHz ~ 3 GHz	Fig.5	Р
2402111112	3 GHz ~ 18 GHz	Fig.6	Р
	18 GHz ~ 26 GHz	Fig.7	Р
	30 MHz ~ 1 GHz	Fig.8	Р
2440 MHz	1 GHz ~ 3 GHz	Fig.9	Р
2440 IVITIZ	3 GHz ~ 18 GHz	Fig.10	Р
	18 GHz ~ 26 GHz	Fig.11	Р
	30 MHz ~ 1 GHz	Fig.12	Р
2480 MHz	1 GHz ~ 3 GHz	Fig.13	Р
2400 IVII 12	3 GHz ~ 18 GHz	Fig.14	Р
	18 GHz ~ 26 GHz	Fig.15	Р
Power	2.38GHz~2.4GHzL	Fig.16	Р
Power	2.45GHz~2.5GHzH	Fig.17	Р

Note: Only worst case result is given.

Conclusion: PASS
Test graphs as below:

Normal RE_30M-1GHz_10m

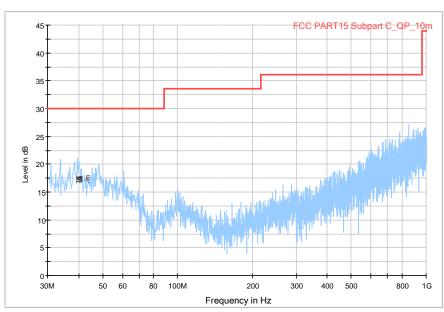


Fig.4. Radiated emission: Channel 0, 30 MHz - 1 GHz

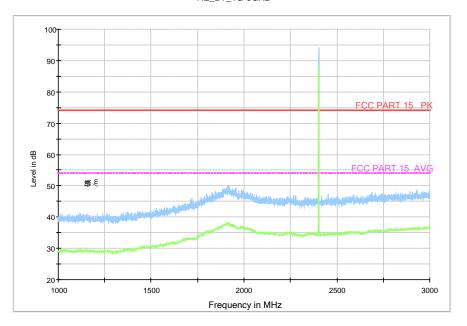


Fig.5. Radiated emission: Channel 0, 1 GHz - 3 GHz

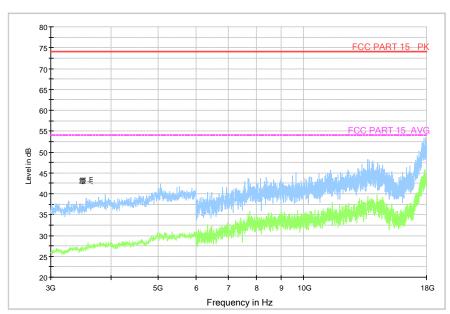
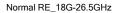



Fig.6. Radiated emission: Channel 0, 3 GHz - 18 GHz

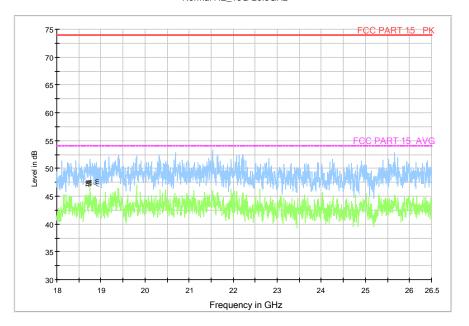
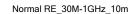



Fig.7. Radiated emission: Channel 0, 18 GHz ~ 26 GHz

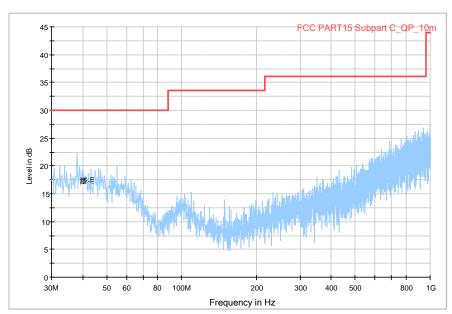


Fig.8. Radiated emission: Channel 39, 30 MHz - 1 GHz

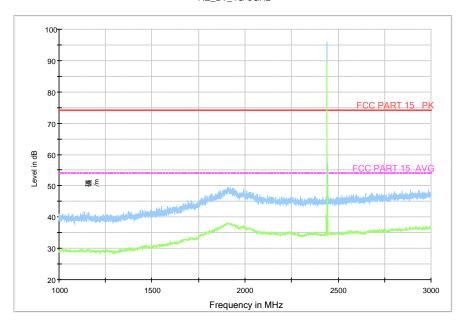
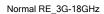



Fig.9. Radiated emission: Channel 39, 1 GHz - 3 GHz

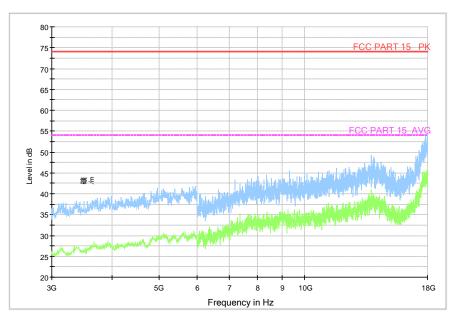
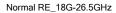



Fig.10. Radiated emission: Channel 39, 3 GHz - 18 GHz

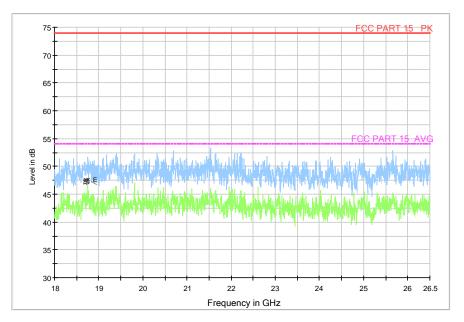
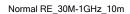



Fig.11. Radiated emission: Channel 39, 18 GHz ~ 26 GHz

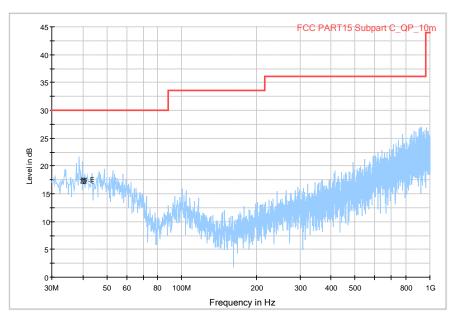


Fig.12. Radiated emission: Channel 78, 30 MHz - 1 GHz

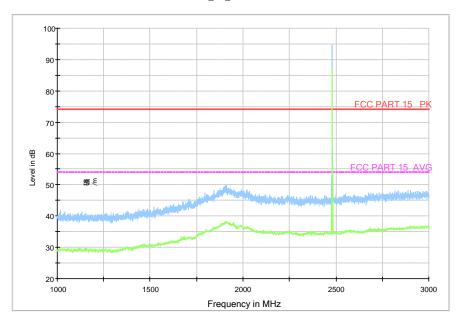
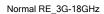



Fig.13. Radiated emission: Channel 78, 1 GHz - 3 GHz

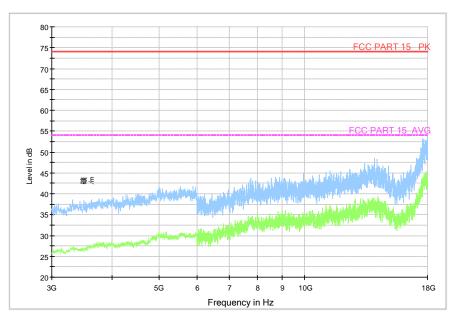
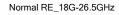



Fig.14. Radiated emission: Channel 78, 3 GHz - 18 GHz

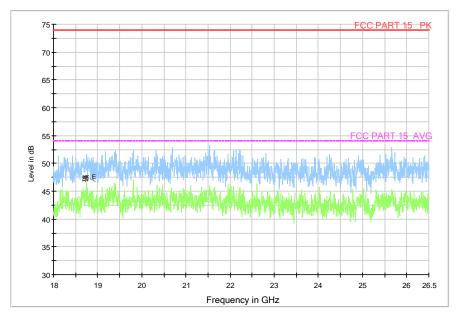
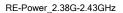



Fig.15. Radiated emission: Channel 78, 18 GHz \sim 26 GHz

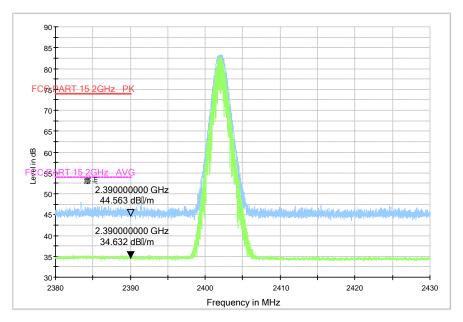


Fig.16. Radiated emission (Power): Low Channel

RE-Power_2.45G-2.5GHz

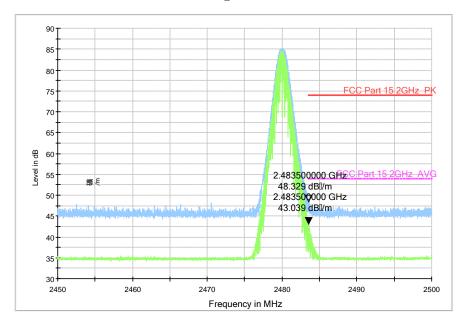


Fig.17. Radiated emission (Power): High Channel

A.6. AC Powerline Conducted Emission

Standard	Limit
FCC 47 CFR Part 15.207	See below

Test Condition

Voltage (V)	Frequency (Hz)	
120	60	

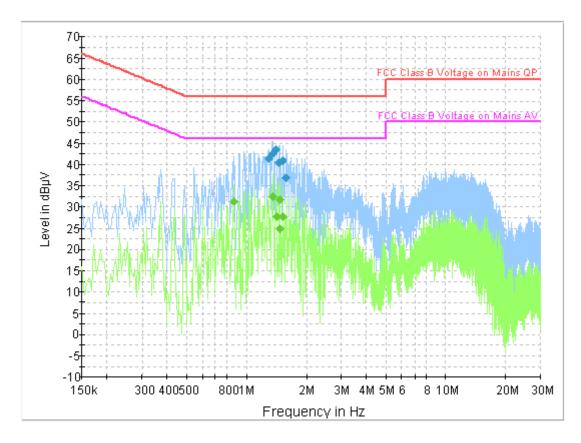
Measurement Result and limit:

Quasi-peak:

Frequency range	Quasi-peak	Result	Conclusion	
(MHz)	Limit (dBμV)	With C		
0.15 to 0.5	66 to 56	Fig 10	Fig 10	
0.5 to 5	56	Fig.18. (TX Mode)	Fig.19. (Idle Mode)	P
5 to 30	60	(17 Mode)	(lale Mode)	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Average:

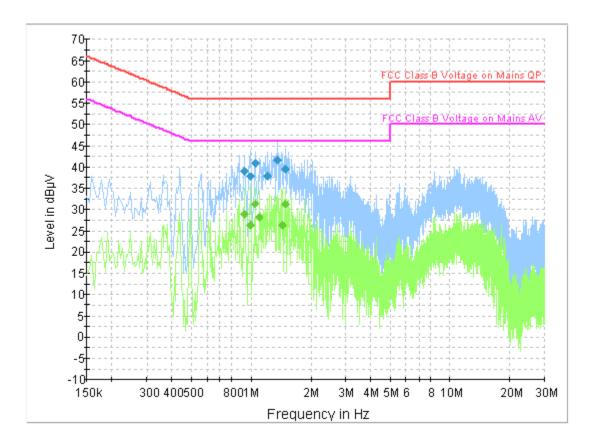

Frequency range	Average Limit	Result	Conclusion	
(MHz)	(dBμV)	With C	Conclusion	
0.15 to 0.5	56 to 46	Fig. 40	Fig. 40	
0.5 to 5	46		Fig.19.	Р
5 to 30	50	(1 × Iviode)	(Idle Mode)	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: the graphic result above is the maximum of the measurements for both phase line and neutral line.

Conclusion: PASS
Test graphs as below:

Final Result 1


Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
1.293000	41.4	GND	L1	9.7	14.6	56.0
1.356000	42.7	GND	L1	9.7	13.3	56.0
1.410000	43.6	GND	L1	9.7	12.4	56.0
1.459500	40.3	GND	N	9.7	15.7	56.0
1.513500	40.9	GND	N	9.7	15.1	56.0
1.576500	36.8	GND	N	9.7	19.2	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.861000	31.2	GND	L1	9.8	14.8	46.0
1.356000	32.5	GND	L1	9.7	13.5	46.0
1.419000	27.7	GND	L1	9.7	18.3	46.0
1.473000	31.7	GND	L1	9.7	14.3	46.0
1.482000	24.8	GND	L1	9.7	21.2	46.0
1.536000	27.8	GND	L1	9.7	18.2	46.0

Fig.18 AC Powerline Conducted Emission with charger-TX Mode

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.933000	39.1	GND	L1	9.7	16.9	56.0
0.996000	37.7	GND	L1	9.7	18.3	56.0
1.054500	40.9	GND	L1	9.7	15.1	56.0
1.212000	38.0	GND	L1	9.7	18.0	56.0
1.365000	41.7	GND	L1	9.7	14.3	56.0
1.491000	39.5	GND	L1	9.7	16.5	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.933000	29.0	GND	L1	9.7	17.0	46.0
0.996000	26.3	GND	L1	9.7	19.7	46.0
1.050000	31.2	GND	L1	9.7	14.8	46.0
1.104000	28.1	GND	L1	9.7	17.9	46.0
1.432500	26.1	GND	L1	9.7	19.9	46.0
1.486500	31.4	GND	L1	9.7	14.6	46.0

Fig.19 AC Powerline Conducted Emission with charger-Idle Mode

END OF REPORT