

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.32 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.63 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 $\mathrm{cm^3}$ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.4 \Omega + 0.6 j\Omega$
Return Loss	- 43.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 0.9 jΩ
Return Loss	- 28.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 30, 2008

DASY5 Validation Report for Head TSL

Date: 03.09.2013

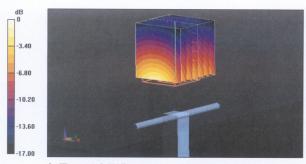
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1003

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.32$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

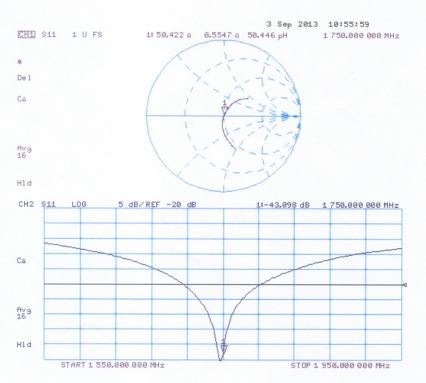
Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.18, 5.18, 5.18); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.265 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.84 W/kg Maximum value of SAR (measured) = 11.0 W/kg

0 dB = 11.0 W/kg = 10.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.09.2013

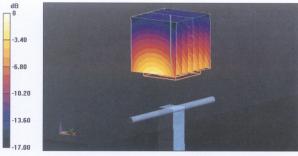
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1003

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

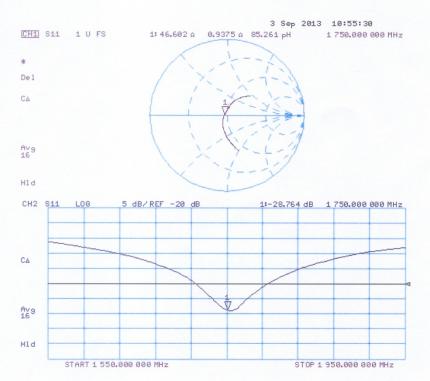
Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.83, 4.83, 4.83); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.265 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Calibration procedure for dipole validation kits	above 700 MHz
Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits	above 700 MHz
Calibration procedure for dipole validation kits	above 700 MHz
Calibration procedure for dipole validation kits	above 700 MHz
Calibration date: July 09, 2013	
Calibration Equipment used (M&TE critical for calibration)	
Primary Standards ID # Cal Date (Certificate No.)	Scheduled Calibration
Ower meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640)	Oct-13
ower sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640)	Oct-13
eference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736)	Apr-14
	Apr-14
Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12)	Apr-14 Dec-13 Apr-14
Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) SN: 601 25-Apr-13 (No. DAE4-601_Apr13)	Dec-13 Apr-14
SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Secondary Standards ID # Check Date (in house)	Dec-13 Apr-14 Scheduled Check
Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13)	Dec-13 Apr-14

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

F sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	Tarana in

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	41.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 6.0 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.7 \Omega + 6.5 j\Omega$
Return Loss	- 22.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL

Date: 09.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

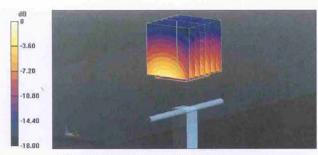
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;

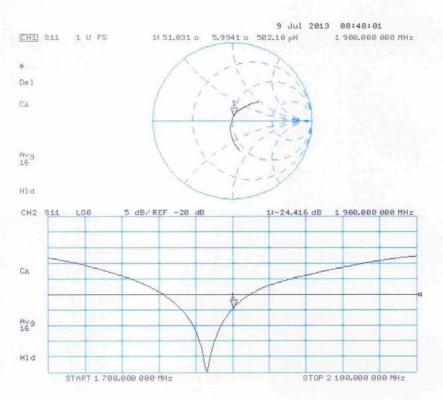
Sensor-Surface: 3mm (Mechanical Surface Detection)


Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.2 W/kg

0 dB = 12.2 W/kg = 10.86 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$

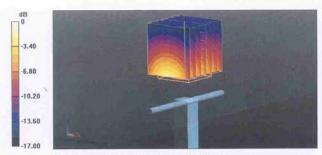
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

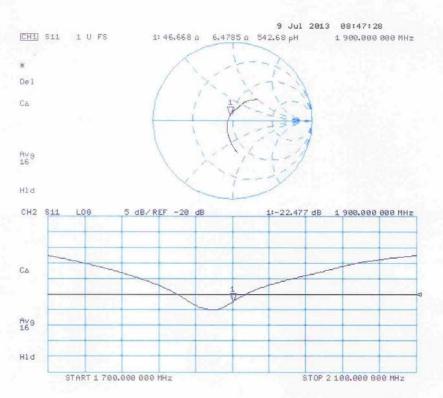
Sensor-Surface: 3mm (Mechanical Surface Detection)


Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.43 W/kg Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

Impedance Measurement Plot for Body TSL

2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

ALIBRATION C	CERTIFICATE		
Object	D2450V2 - SN: 8	53	
alibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	July 08, 2013		
Il calibrations have been conduc	cted in the closed laborator	y facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
alibration Equipment used (M&	TE critical for calibration)		
		y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	Scheduled Calibration Oct-13
alibration Equipment used (M& imary Standards ower meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
ulibration Equipment used (M& imary Standards wer meter EPM-442A wer sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	Scheduled Calibration Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	Scheduled Calibration Oct-13 Oct-13
imary Standards wer meter EPM-442A wer sensor HP 8481A oference 20 dB Attenuator pe-N mismatch combination oference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ope-N mismatch combination eference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
alibration Equipment used (M&	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
imary Standards ower meter EPM-442A ower sensor HP 8481A ofference 20 dB Attenuator ofference Probe ES3DV3 AE4 ocondary Standards ower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13

Certificate No: D2450V2-853_Jul13

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8