PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

HEARING AID COMPATIBILITY CERTIFICATE

Applicant Name:

SONY ERICSSON MOBILE COMMUNICATION INC. 7001 Development Drive

Research Triangle Park, NC 27709

USA

Date of Testing: June 24 - 28, 2008 Test Site/Location:

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.: 0806230910.PY7

FCC ID: PY7A3252041

SONY ERICSSON MOBILE COMMUNICATION APPLICANT:

INC.

Application Type: Class II Permissive Change FCC Rule Part(s): § 20.19(b), §6.3(v), §7.3(v)

HAC Standard: ANSI C63.19-2007;

FCC Classification: Licensed Transmitter Held to Ear (PCE)

EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth

Model(s): W760a

824.20 - 848.80 MHz (Cellular GSM) Tx Frequency:

1850.20 - 1909.80 MHz (GSM PCS) 826.40 - 846.60 MHz (Cellular WCDMA) 1852.4 - 1907.6 MHz (PCS WCDMA)

Test Device Serial No.: Pre-Production Sample [S/N: BD33000QJE]

Class II Permissive Change(s): Adding HAC Rating

C63.19-2007 HAC Category: M3 (RF EMISSIONS CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2007 and had been tested in accordance with the specified measurement procedures. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: PY7A3252041	PCTEST*	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 1 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone wi	850/1900 GSM/WCDMA Phone with Bluetooth	

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	TEST SITE LOCATION	4
3.	EUT DESCRIPTION	5
4.	ANSI/IEEE C63.19 PERFORMANCE CATEGORIES	6
5.	SYSTEM SPECIFICATIONS	7
6.	TEST PROCEDURE	13
7.	SYSTEM CHECK	15
8.	MODULATION FACTOR	18
9.	FCC 3G MEASUREMENT PROCEDURES	20
10.	OVERALL MEASUREMENT SUMMARY	21
11.	EQUIPMENT LIST	26
12.	MEASUREMENT UNCERTAINTY	27
13.	TEST DATA	28
14.	CALIBRATION CERTIFICATES	41
15.	CONCLUSION	74
16.	REFERENCES	75
17.	TEST PHOTOGRAPHS	77

FCC ID: PY7A3252041	PCTEST' ENGINEERING LABORATORY, INC.	- HAC (RF EMISSIONS) IEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 2 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		raye 2 01 /9

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- RF Magnetic-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 3 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Fage 3 01 79

2. TEST SITE LOCATION

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

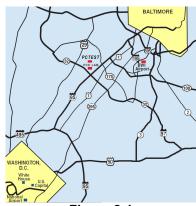
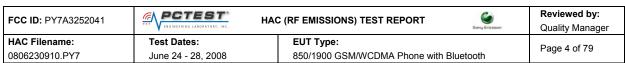


Figure 2-1
Map of the Greater Baltimore and Metropolitan
Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 Test Facility / Accreditations:


Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).

- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA)
 Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS
 (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data.

© 2008 PCTEST Engineering Laboratory, Inc.

3. EUT DESCRIPTION

FCC ID: PY7A3252041

Manufacturer: SONY ERICSSON MOBILE COMMUNICATION INC.

7001 Development Drive

Research Triangle Park, NC 27709

USA

Trade Name: Sony Ericsson

Model(s): W760a

Serial Number: BD33000QJE

Tx Frequencies: 824.20 - 848.80 MHz (Cellular GSM)

1850.20 - 1909.80 MHz (GSM PCS) 826.40 - 846.60 MHz (Cellular WCDMA) 1852.4 - 1907.6 MHz (PCS WCDMA)

Antenna Configurations: Internal Antenna

Maximum Conducted 32.1 dBm GSM850, 30.0 dBm GSM1900, 23.1 dBm

Power (EMC/SAR): WCDMA850, 22.9 dBm WCDMA1900

Maximum Conducted 32.2 dBm GSM850, 29.8 dBm GSM1900, 23.4 dBm

Power (HAC): WCDMA850, 23.06 dBm WCDMA1900

HAC Test Configurations: GSM850, 128, 190, 251, BT Off

GSM 1900, 512, 661, 810, BT Off

WCDMA 850, 4132, 4183, 4233, BT Off WCDMA 1900, 9262, 9400, 9538, BT Off

FCC Classification: Licensed Transmitter Held to Ear (PCE)

EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth

Figure 3-1 HAC Assessment System

FCC ID: PY7A3252041	PCTEST HA	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 5 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		raye Juli 19

4. ANSI/IEEE C63.19 PERFORMANCE CATEGORIES

I. RF EMISSIONS

The ANSI Standard presents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

Category	Telephone RF Parameters				
Near field Category	E-field emissions CW CW CW dB(V/m) CW dB(A/m)				
	f < 960 MHz				
M1	56 to 61 + 0.5 x AWF	5.6 to 10.6 +0.5 x AWF			
M2	51 to 56 + 0.5 x AWF	0.6 to 5.6 +0.5 x AWF			
M3	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF			
M4	< 46 + 0.5 x AWF < -4.4 + 0.5 x AWF				
	f > 960 MHz				
M1	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF			
M2	41 to 46 + 0.5 x AWF	−9.4 to −4.4 +0.5 x AWF			
M3	36 to 41 + 0.5 x AWF	-14.4 to -9.4 +0.5 x AWF			
M4	< 36 + 0.5 x AWF	< -14.4 + 0.5 x AWF			
Table 4-1 Hearing aid and WD near-field categories as defined in ANSI C63.19-2007 [2]					

II. ARTICULATION WEIGHTING FACTOR (AWF)

Standard	Technology	Articulation Weighing Factor (AWF)		
T1/T1P1/3GPP	UMTS (WCDMA)	0		
TIA/EIA/IS-2000	CDMA	0		
iDEN™	TDMA (22 and 11 Hz)	0		
J-STD-007	-5			
Table 4-2 Articulation Weighting Factors				

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 6 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		raye o ol 19

5. SYSTEM SPECIFICATIONS

ER3DV6 E-Field Probe Description

Construction: One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

Calibration: In air from 100 MHz to 3.0 GHz

(absolute accuracy ±6.0%, k=2)

Frequency: 100 MHz to > 6 GHz;

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity $\pm 0.2 \text{ dB}$ in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m

(M3 or better device readings fall well below diode

compression point)

Linearity: $\pm 0.2 \, dB$

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Figure 5-1
E-field Free-space
Probe

H3DV6 H-Field Probe Description

Construction: Three concentric loop sensors with 3.8 mm loop diameters

Resistively loaded detector diodes for linear response

Built-in shielding against static charges

Frequency: 200 MHz to 3 GHz (absolute accuracy ± 6.0%, k=2);

Output linearized

Directivity: ± 0.25 dB (spherical isotropy error)

Dynamic Range: 10 mA/m to 2 A/m at 1 GHz

(M3 or better device readings fall well below diode

compression point)

Dimensions: Overall length: 330 mm (Tip: 40 mm)

Tip diameter: 6 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 3 mm

E-Field < 10% at 3 GHz (for plane wave)

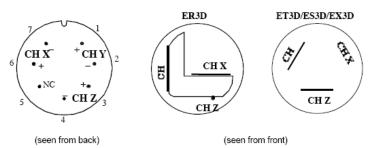
Interference:

Figure 5-2 H-Field Free-space Probe

Probe Tip Description

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm).

Magnetic field sensors are measuring the integral of the H-field across their sensor area surrounded by the loop. They are calibrated in a precise, homogeneous field. When measuring a gradient field, the result will be very close to the field in the center of the loop which is equivalent to the value of a homogeneous field equivalent to the center value. But it will be different from the field at the border of the loop.


FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 7 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		raye / Ul /9

Consequently, two sensors with different loop diameters - both calibrated ideally - would give different results when measuring from the edge of the probe sensor elements. The behavior for electrically small E-field sensors is equivalent.

The magnetic field loops of the H3D probes are concentric, with the center 3mm from the tip for H3DV6. Their radius is 1.9mm.

The electric field probes have a more irregular internal geometry because it is physically not possible to have the 3 orthogonal sensors situated with the same center. The effect of the different sensor centers is accounted for in the HAC uncertainty budget ("sensor displacement"). Their geometric center is at 2.5mm from the tip, and the element ends are 1.1mm closer to the tip.

Connector Plan

The antistatic shielding inside the probe is connected to the probe connector case.

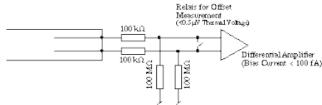
Instrumentation Chain

Equation 1

Conversion of Connector Voltage u, to E-Field E,

$$E_i = \sqrt{\frac{u_i + (u_i^2 \cdot CF)/(DCP)}{Norm_i \cdot ConvF}}$$

whereby


E_i: electric field in V/m

 u_i : voltage of channel i at the connector in μV $Norm_i$: sensitivity of channel i in $\mu V/(V/m)^2$

ConvF: enhancement factor in liquid (ConvF=1 for Air)
DCP: diode compression point in µV

CF: signal crest factor (peak power/average power)

Conditions of Calibration

Please note:

- a lower input impedance of the amplifier will result in different sensitivity factors Norm, and DCP
- · larger bias currents will cause higher offset

FCC ID: PY7A3252041	PCTEST*	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 8 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone wi	850/1900 GSM/WCDMA Phone with Bluetooth	

Probe Response to Frequency

The E-field sensors have inherently a very flat frequency response. They are calibrated with a number of frequencies resulting in a common calibration factor, with the frequency behavior documented in the calibration certificate (See also below).

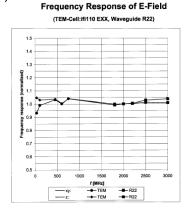


Figure 5-3 E-Field Probe Frequency Response

H-field sensors have a frequency dependent sensitivity which is evaluated for a series of frequencies also visible in the probe calibration certificate. The calibration factors result from a fitting algorithm. The proper conversion is calculated by the DASY4 software depending on the frequency setting in the procedure. See below for H-field frequency response:

Figure 5-4 H-Field Probe Frequency Response

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 9 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		raye a ol 19

Conversion to Peak

Peak is defined as Peak Envelope Power. All raw measurements from the HAC measurement system are RMS values. The DASY4 system incorporates the crest factor of the signal in the computation of the RMS values (See Equation 1). Although the software also has capability to estimate the peak field by applying a square root of crest factor value to the readings, the probe modulation factor was applied manually instead per C63.19 in the measurement tables in this report. The equation to convert the raw measurements in the data tables are:

Peak Field = 20·log (Raw · PMF)

Where:

Peak Field = Peak field (in dBV/m or dBA/m)

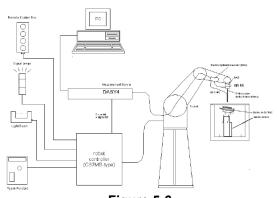
Raw = Raw field measurement from the measurement system (in V/m or A/m).

PMF = Probe Modulation Factor (in linear units).

SPEAG Robotic System

E-field and H-field measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the HAC phantom. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

Figure 5-5 SPEAG Robotic System


System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and RF Measurement Software DASY4 v4.5 (with HAC Extension), A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

FCC ID: PY7A3252041	PETEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 10 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		rage 10 01 79

System Electronics

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Figure 5-6 SPEAG Robotic System Diagram

DASY4 Instrumentation Chain

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$\begin{aligned} V_i &= U_i + U_i^2 \cdot \frac{cf}{dcp_i} \\ \text{with} \quad V_i &= \text{compensated signal of channel i} & (i = x, y, z) \\ U_i &= \text{input signal of channel i} & (i = x, y, z) \\ cf &= \text{crest factor of exciting field} & (DASY parameter) \\ dcp_i &= \text{diode compression point} & (DASY parameter) \end{aligned}$$

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 11 of 70
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 11 of 79

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H$$
 – field
probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with
$$V_i$$
 = compensated signal of channel i (i = x, y, z)
 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

= sensor sensitivity of channel i $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

The measurement/integration time per point, as specified by the system manufacturer is >500 ms.

The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

FCC ID: PY7A3252041	PCTEST' ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogg 12 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 12 of 79	

6. TEST PROCEDURE

I. RF EMISSIONS

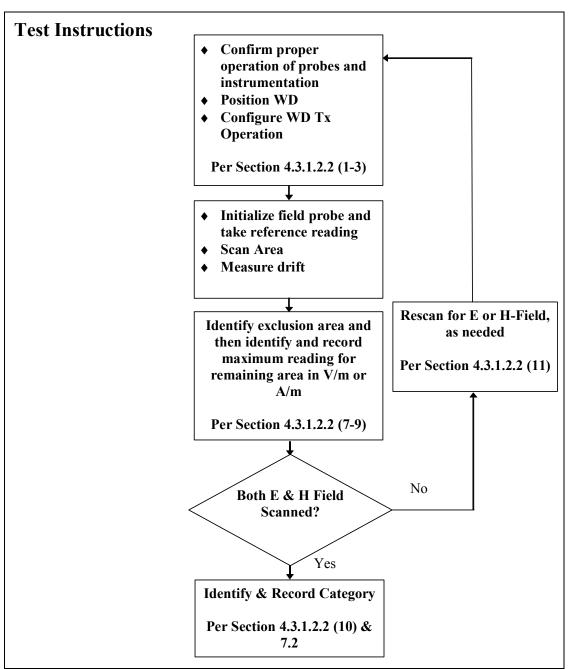


Figure 6-1 RF Emissions Flow Chart

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogo 12 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 13 of 79	

Test Setup

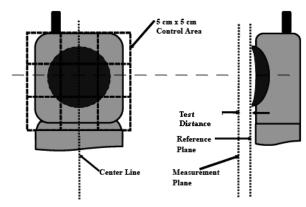


Figure 6-2
E/H-Field Emissions Test Setup Diagram (See Test Photographs for actual WD scan grid overlay)

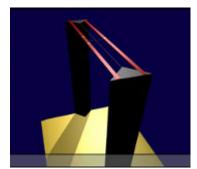
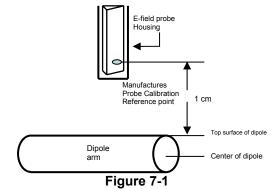


Figure 6-3 HAC Phantom

RF Emissions Test Procedure:

The following illustrate a typical RF emissions test scan over a wireless communications device:

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- 5. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- 6. The measurement system measured the field strength at the reference location.
- 7. Measurements at 2mm increments in the 5 x 5 cm region were performed at a distance 15 mm from the center point of the probe measurement element to the WD. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- 8. The system performed a drift evaluation by measuring the field at the reference location.
- 9. Steps 1-8 were done for both the E and H-Field measurements.


FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogo 14 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 14 of 79	

7. SYSTEM CHECK

I. System Check Parameters

The input signal was an un-modulated continuous wave. The following points were taken into consideration in performing this check:

- Average Input Power P = 100mW RMS (20dBm RMS) after adjustment for return loss
- The test fixture must meet the 2 wavelength separation criterion
- The proper measurement of the 1 cm probe to dipole separation, which is measured from top surface
 of the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is
 shown in the following diagram:

Separation Distance from Dipole to Field Probe

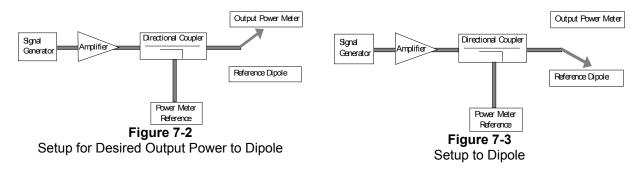
RF power was recorded using both an average reading meter and a peak reading meter. Readings of the probe are provided by the measurement system.

To assure proper operation of the near-field measurement probe the input power to the dipole shall be commensurate with the full rated output power of the wireless device (e.g. - for a cellular phone wireless device the average peak antenna input power will be on the order of 100mW (i.e. - 20dBm) RMS after adjustment for any mismatch.

II. Validation Procedure

A dipole antenna meeting the requirements given in C63.19 was placed in the position normally occupied by the WD.

The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recorded.

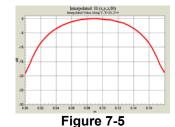

Measurement of CW

Using the near-field measurement system, scan the antenna over the radiating dipole and record the greatest field reading observed. Due to the nature of E-fields about free-space dipoles, the two E-field peaks measured over the dipole are averaged to compensate for non-parallelity of the setup (

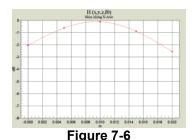
FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 15 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	850/1900 GSM/WCDMA Phone with Bluetooth	

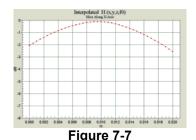
see manufacturer method on dipole calibration certificates, page 2). Field strength measurements shall be made only when the probe is stationary.

RF power was recorded using both an average and a peak power reading meter.



Using this setup configuration, the signal generator was adjusted for the desired output power (100mW) at a specified frequency. The reference power from the coupled port of the directional coupler is recorded. Next, the output cable is connected to the reference dipole, as shown in Figure 7-3.


The input signal level was adjusted until the reference power from the coupled port of the directional coupler was the same as previously recorded, to compensate for the impedance mismatch between the output cable and the reference dipole. To assure proper operation of the near-field measurement probe the input power to the reference dipole was verified to the full rated output power of the wireless device. The dipole was secured in a holder in a manner to meet the 20 dB reflection. The near-field measurement probe was positioned over the dipole. The antenna was scanned over the appropriate sized area to cover the dipole from end to end. SPEAG uses 2D interpolation algorithms between the measured points. Please see below two dimensional plots showing that the interpolated values interpolate smoothly between 5mm steps for a free-space RF dipole:


Figure 7-4
2-D Raw Data from scan along dipole axis

2-D Interpolated points from scan along dipole axis

2-D Raw Data from scan along transverse axis

2-D Interpolated points from scan along transverse axis

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 16 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	850/1900 GSM/WCDMA Phone with Bluetooth	

III. System Check Results

Validation Results

Frequency (MHz)	Input Power (dBm)	E-field Result (V/m)	Target Field (V/m)	% Deviation
835	20.0	158.6	167.3	-5.2%
1880	20.0	133.9	134.6	-0.5%

Frequency (MHz)	Input Power (dBm)	H-field Result (A/m)	Target Field (A/m)	% Deviation
835	20.0	0.424	0.454	-6.6%
1880	20.0	0.478	0.451	6.0%

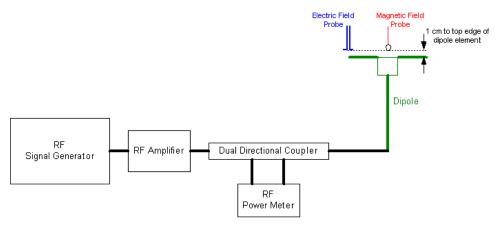


Figure 7-8 System Check Setup

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogg 17 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 17 of 79	

8. MODULATION FACTOR

A calibration was made of the modulation response of the probe and its instrumentation chain. This calibration was performed with the field probe, attached to its instrumentation. The response of the probe system to a CW field at the frequency of interest is compared to its response to a modulated signal with equal peak amplitude to that of a CW signal. The field level of the test signals are ensured to be more than 10 dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated reading was applied to the DUT measurements.

All voice modes for this device have been investigated in this section of the report. According to the FCC 3G Measurement Procedures, May 2006 for RF Emissions, variations in peak field and power readings.

This was done using the following procedure:

- 1. The probe was illuminated with a CW signal at the intended measurement frequency and wireless device power.
- 2. The probe was positioned at the field maxima over the dipole antenna (determined after an area scan over the dipole) illuminated with the CW signal.
- 3. The reading of the probe measurement system of the CW signal at the maximum point was recorded.
- 4. Using a Spectrum Analyzer, the modulated signal adjusted with the same peak level of the CW signal was determined.
- 5. The probe measurement system reading was recorded with the modulated signal. The appropriate system crest factors for the modulation type were configured in the software to the system measurements.
- 6. The ratio of the CW reading to modulated signal reading is the probe modulation factor (PMF) for the modulation and field probe combination. This was repeated for 80% AM.
- 7. Steps 1-6 were repeated at all frequency bands and for both E and H field probes.

The modulation factors obtained were applied to readings taken of the actual wireless device, in order to obtain an accurate peak field reading using the formula:

 $Peak = 20 \cdot log (Raw \cdot PMF)$

Modulation Factors:

f (MHz)	Protocol	E-Field (V/m)	H-Field (A/m)	E-Field Modulation Factor	H-Field Modulation Factor	f (MHz)	Protocol	Ave. E-Field (V/m)	Avg. H-Field (A/m)	E-Field Modulation Factor	H-Field Modulation Factor
835	AM	629.3	2.212	1.290	0.910	835	AM	201.60	0.5502	1.393	1.274
835	GSM	287	1.033	2.829	1.948	835	WCDMA	289.40	0.7509	0.971	0.933
835	CW	811.8	2.012			835	CW	280.90	0.7009		
1880	AM	390.8	1.215	1.319	1.115	1880	AM	182.40	0.6057	1.395	1.117
1880	GSM	184.8	0.5843	2.790	2.319	1880	WCDMA	261.10	0.7612	0.974	0.889
1880	CW	515.6	1.355			1880	CW	254.40	0.6767		

Figure 8-1
Modulation Factors

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogg 19 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 18 of 79	

Spectrum Analyzer Plots of ESG-D Signal used for PMF measurements:

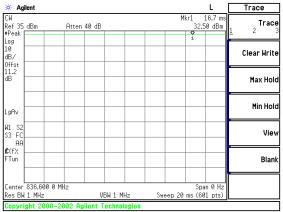


Figure 8-2 GSM850 CW Signal

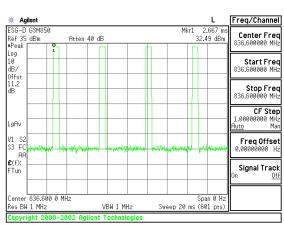


Figure 8-4 GSM850 Signal

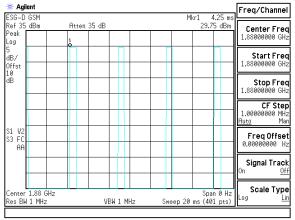


Figure 8-6 PCS GSM Signal

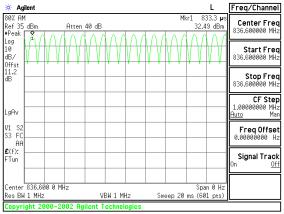


Figure 8-3 GSM850 80% AM Signal

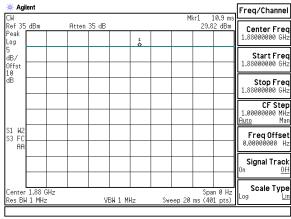


Figure 8-5 PCS CW Signal

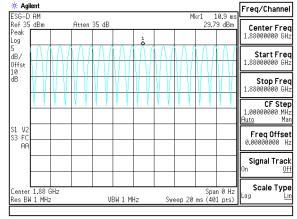


Figure 8-7 PCS 80% AM Signal

FCC ID: PY7A3252041	PCTEST' ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogg 10 of 70	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 19 of 79	

9. FCC 3G MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

I. Procedures Used to Establish RF Signal for HAC Testing

The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing HAC and are recommended for evaluating HAC. Measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The HAC measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

II. HAC Measurement Conditions for UMTS

Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

HAC Measurements

HAC is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". HAC in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, HAC is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the configuration that results in the highest HAC for that RF channel in 12.2 RMC.

UMTS RF Conducted Power Table								
		HSDPA	Inactive	HSDPA	A Active			
Band	Channel	12.2 kbps RMC [dBm]	12.2 kbps AMR [dBm]	12.2 kbps RMC [dBm]	12.2 kbps AMR [dbm]			
	4132	22.95	22.86	22.96	22.9			
Cellular	4183	23.39	23.31	23.4	23.32			
	4233	22.83	22.8	22.85	22.81			
	9262	22.29	23.02	22.28	22.98			
PCS	9400	22.75	22.69	22.74	22.75			
	9538	23.04	23.03	23.05	23.06			

Figure 9-1
Conducted Power Measurements for W760a

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 20 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 20 01 79

10. OVERALL MEASUREMENT SUMMARY

FCC ID:	PY7A3252041
Model:	W760a
S/N:	BD33000QJE

I. E-FIELD EMISSIONS:

Table 10-1
HAC Data Summary for E-field

	HAC Data Summary for E-field										
Mode	Channel	Backlight	Scan Center	Configuration	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
E-field Emi	ssions										
GSM850	128	off	Acoustic	Slide Closed	32.20	40.19	41.11	48.50	-7.39	M4	none
GSM850	190	off	Acoustic	Slide Closed	32.20	36.74	40.33	48.50	-8.17	M4	none
GSM850	251	off	Acoustic	Slide Closed	32.20	36.64	40.31	48.50	-8.19	M4	none
GSM1900	512	off	Acoustic	Slide Closed	29.80	28.03	37.86	38.50	-0.64	M3	none
GSM1900	661	off	Acoustic	Slide Closed	29.80	24.58	36.72	38.50	-1.78	M3	none
GSM1900	810	off	Acoustic	Slide Closed	29.80	22.74	36.05	38.50	-2.45	M3	none
GSM850	128	off	Acoustic	Slide Open	32.20	57.39	44.21	48.50	-4.29	M3	none
GSM850	190	off	Acoustic	Slide Open	32.20	54.90	43.82	48.50	-4.68	M3	none
GSM850	251	off	Acoustic	Slide Open	32.20	53.74	43.64	48.50	-4.86	М3	none
GSM1900	512	off	Acoustic	Slide Open	29.80	27.80	37.79	38.50	-0.71	M3	2, 3, 6
GSM1900	661	off	Acoustic	Slide Open	29.80	26.90	37.51	38.50	-0.99	M3	2, 3, 6
GSM1900	810	off	Acoustic	Slide Open	29.80	26.77	37.47	38.50	-1.03	М3	none
GSM1900	512	on	Acoustic	Slide Open	29.80	26.88	37.50	38.50	-1.00	M3	2, 3, 6
GSM1900	512	off	T-coil	Slide Open	29.80	24.90	36.84	38.50	-1.66	M3	2, 3, 6

Mode	Channel	Backlight	Configuration	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.3.1.2.2
E-field Emission	IS										
WCDMA850	4132	off	Slide Closed	Acoustic	22.90	44.08	32.6	51.0	-18.37	M4	none
WCDMA850	4183	off	Slide Closed	Acoustic	22.60	37.69	31.3	51.0	-19.73	M4	none
WCDMA850	4233	off	Slide Closed	Acoustic	22.35	39.67	31.7	51.0	-19.29	M4	none
WCDMA1900	9262	off	Slide Closed	Acoustic	22.28	33.82	30.4	41.0	-10.64	M4	none
WCDMA1900	9400	off	Slide Closed	Acoustic	22.52	33.58	30.3	41.0	-10.70	M4	none
WCDMA1900	9538	off	Slide Closed	Acoustic	22.45	31.10	29.6	41.0	-11.37	M4	none
WCDMA850	4132	off	Slide Open	Acoustic	22.90	60.96	35.4	51.0	-15.56	M4	none
WCDMA850	4183	off	Slide Open	Acoustic	22.60	53.04	34.2	51.0	-16.77	M4	none
WCDMA850	4233	off	Slide Open	Acoustic	22.35	54.30	34.4	51.0	-16.56	M4	none
WCDMA1900	9262	off	Slide Open	Acoustic	22.28	38.04	31.4	41.0	-9.62	M4	none
WCDMA1900	9400	off	Slide Open	Acoustic	22.52	38.70	31.5	41.0	-9.47	M4	none
WCDMA1900	9538	off	Slide Open	Acoustic	22.45	34.56	30.5	41.0	-10.45	M4	none
WCDMA1900	9400	off	Slide Open	T-coil	22.52	39.61	31.7	41.0	-9.27	M4	none

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 21 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	luetooth	Faye 210179

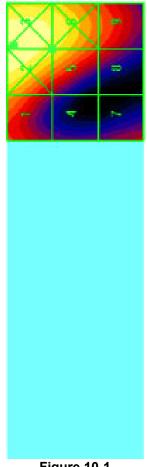


Figure 10-1
Sample E-field Scan Overlay
(See Test Setup Photographs for actual WD overlay)

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 22 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	uetooth	Faye 22 01 79

FCC ID:	PY7A3252041
Model:	W760a
S/N:	BD33000QJE

II. H-FIELD EMISSIONS:

Table 10-2 HAC Data Summary for H-field

	TIAC Data Sulfilliary for 11-field										
Mode	Channel	Backlight	Scan Center	Configuration	Conducted Power at BS (dBm)	Time Avg. Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
H-field Em	issions										
GSM850	128	off	Acoustic	Slide Closed	32.20	0.0882	-15.3	-1.9	-13.40	M4	none
GSM850	190	off	Acoustic	Slide Closed	32.20	0.0859	-15.5	-1.9	-13.63	M4	none
GSM850	251	off	Acoustic	Slide Closed	32.20	0.0933	-14.8	-1.9	-12.92	M4	none
GSM1900	512	off	Acoustic	Slide Closed	29.80	0.0891	-13.7	-11.9	-1.80	M3	none
GSM1900	661	off	Acoustic	Slide Closed	29.80	0.0762	-15.1	-11.9	-3.15	M3	none
GSM1900	810	off	Acoustic	Slide Closed	29.80	0.0706	-15.7	-11.9	-3.82	M3	none
GSM850	128	off	Acoustic	Slide Open	32.20	0.1124	-13.2	-1.9	-11.29	M4	none
GSM850	190	off	Acoustic	Slide Open	32.20	0.1106	-13.3	-1.9	-11.43	M4	none
GSM850	251	off	Acoustic	Slide Open	32.20	0.1174	-12.8	-1.9	-10.92	M4	none
GSM1900	512	off	Acoustic	Slide Open	29.80	0.1005	-12.7	-11.9	-0.75	M3	none
GSM1900	661	off	Acoustic	Slide Open	29.80	0.0946	-13.2	-11.9	-1.28	M3	none
GSM1900	810	off	Acoustic	Slide Open	29.80	0.0840	-14.2	-11.9	-2.30	M3	none

Mode	Channel	Backlight	Configuration	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.3.1.2.2
H-field Emission	IS										
WCDMA850	4132	off	Slide Closed	Acoustic	22.90	0.1017	-20.5	0.6	-21.05	M4	none
WCDMA850	4183	off	Slide Closed	Acoustic	22.60	0.0832	-22.2	0.6	-22.80	M4	none
WCDMA850	4233	off	Slide Closed	Acoustic	22.35	0.0949	-21.1	0.6	-21.65	M4	none
WCDMA1900	9262	off	Slide Closed	Acoustic	22.28	0.1069	-20.4	-9.4	-11.04	M4	none
WCDMA1900	9400	off	Slide Closed	Acoustic	22.52	0.1071	-20.4	-9.4	-11.03	M4	none
WCDMA1900	9538	off	Slide Closed	Acoustic	22.45	0.0982	-21.2	-9.4	-11.78	M4	none
WCDMA850	4132	off	Slide Open	Acoustic	22.90	0.1329	-18.1	0.6	-18.73	M4	none
WCDMA850	4183	off	Slide Open	Acoustic	22.60	0.1021	-20.4	0.6	-21.02	M4	none
WCDMA850	4233	off	Slide Open	Acoustic	22.35	0.1123	-19.6	0.6	-20.19	M4	none
WCDMA1900	9262	off	Slide Open	Acoustic	22.28	0.1161	-19.7	-9.4	-10.33	M4	none
WCDMA1900	9400	off	Slide Open	Acoustic	22.52	0.1206	-19.4	-9.4	-10.00	M4	none
WCDMA1900	9538	off	Slide Open	Acoustic	22.45	0.1084	-20.3	-9.4	-10.92	M4	none

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 23 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 23 01 79

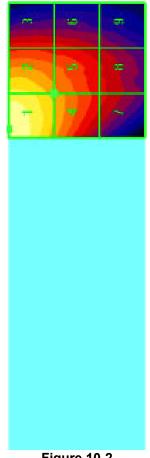
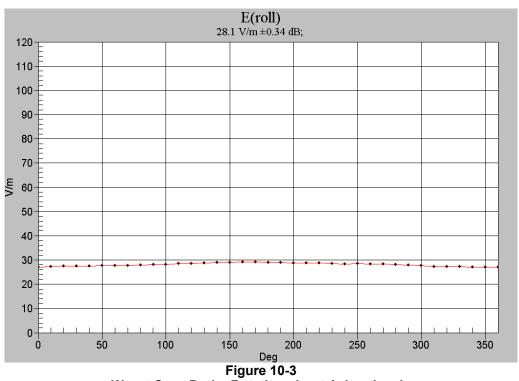


Figure 10-2
Sample H-field Scan Overlay
(See Test Setup Photographs for actual WD overlay)


FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 24 of 79		
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth			
O GOOD DOTEOTE : :				DE) (= 011		

FCC ID:	PY7A3252041
Model:	W760a
S/N:	BD33000QJE

III. Worst-case Configuration Evaluation

Table 10-3 Peak Reading 360° Probe Rotation at Azimuth axis

Mode	Channel	Backlight	Scan Center	Configuration	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)
Probe Rotation at Worst-Case									
GSM1900	512	off	Acoustic	Slide Open	29.80	29.16	38.21	38.50	-0.29

Worst-Case Probe Rotation about Azimuth axis

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 25 of 70
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 25 of 79

^{*} Note: Location of probe rotation is shown in Figure 10-1 or Figure 10-2

11. EQUIPMENT LIST

Manufacturer	Model	Description	Calibration Date	Cal Inerval	Calibration Due	Serial No.
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/11/07	Biennial	10/10/09	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	3/13/08	Annual	3/13/09	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	8/8/06	Biennial	8/8/08	US40053896
Agilent	E5515C	Wireless Communications Test Set	6/8/07	Biennial	6/8/09	GB46110872
Agilent	E5515C	Wireless Communications Test Set	6/8/07	Biennial	6/8/09	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/31/07	Biennial	8/31/09	GB41450275
Rohde & Schwarz	CMU200	Base Station Simulator	5/29/08	Annual	5/29/09	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	9/7/07	Annual	9/6/08	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	12/6/07	Annual	12/5/08	107826
Rohde & Schwarz	CMU200	Base Station Simulator	12/13/07	Annual	12/13/08	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	12/12/06	Biennial	12/11/08	101695
Rohde & Schwarz	NRVS	Single Channel Power Meter	7/3/07	Biennial	7/2/09	835360/0079
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/21/06	Biennial	12/20/08	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	11/28/06	Biennial	11/27/08	100004
Rohde & Schwarz	NRV-Z53	Power Sensor	7/3/07	Biennial	7/2/09	846076/0007
SPEAG	CD1880V3	Freespace 1880 MHz Dipole	1/16/07	Biennial	1/15/09	1002
SPEAG	CD1880V3	Freespace 1880 MHz Dipole	3/11/08	Biennial	3/11/10	1064
SPEAG	CD2450V3	Freespace 2450 MHz Dipole	7/18/06	Biennial	7/17/08	1062
SPEAG	CD835V3	Freespace 835 MHz Dipole	7/17/06	Biennial	7/16/08	1082
SPEAG	CD835V3	Freespace 835 MHz Dipole	1/16/07	Biennial	1/15/09	1003
SPEAG	DAE3	Dasy Data Acquisition Electronics	11/13/07	Annual	11/12/08	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/29/07	Annual	8/28/08	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/30/08	Annual	1/29/09	649
SPEAG	ER3DV6	Freespace E-field Probe	7/19/07	Annual	7/18/08	2353
SPEAG	ER3DV6	Freespace E-field Probe	11/20/07	Annual	11/19/08	2335
SPEAG	ER3DV6	Freespace E-field Probe	1/28/08	Annual	1/27/09	2332
SPEAG	H3DV6	Freespace H-field Probe	7/19/07	Annual	7/18/08	6207
SPEAG	H3DV6	Freespace H-field Probe	11/20/07	Annual	11/19/08	6170
SPEAG	H3DV6	Freespace H-field Probe	1/28/08	Annual	1/27/09	6180

Table 11-1 Equipment List

 * Calibration traceable to the National Institute of Standards and Technology (NIST).

FCC ID: PY7A3252041	PCTEST' ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 26 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Faye 20 01 79

12. MEASUREMENT UNCERTAINTY

Wireless Communications Device Near-Field Measurement Uncertainty Estimation								
Uncertainty Component	Data (dB)	Data Type	Prob. Dist.	Divisor	Unc. (dB)	Notes/Comments		
Measurement System								
RF System Reflections	0.50	Tolerance	N	1.00	0.50	Refl. < -20 dB		
Field Probe Calibration	0.21	Tolerance	N	1.00	0.21			
Field Probe Isotropy	0.01	Tolerance	N	1.00	0.01			
Field Probe Frequency Response	0.135	Tolerance	N	1.00	0.14			
Field Probe Linearity	0.013	Tolerance	N	1.00	0.01			
Probe Modulation Factor	0.468	Accuracy	R	1.73	0.28			
Boundary Effects	0.105	Accuracy	R	1.73	0.06	*		
Probe Positioning Accuracy	0.20	Accuracy	R	1.73	0.12	*		
Probe Positioner	0.050	Accuracy	R	1.73	0.03	*		
Extrapolation/Interpolation	0.045	Tolerance	R	1.73	0.03	*		
System Detection Limit	0.05	Tolerance	R	1.73	0.03	*		
Readout Electronics	0.015	Tolerance	N	1.00	0.02	*		
Integration Time	0.11	Tolerance	R	1.73	0.06	*		
Response Time	0.033	Tolerance	R	1.73	0.02	*		
Phantom Thickness	0.10	Tolerance	R	1.73	0.06	*		
System Repeatability (Field x 2=power)	0.17	Tolerance	N	1.00	0.17			
Test Sample Related	•							
Device Positioning Vertical	0.2	Tolerance	R	1.73	0.12	*		
Device Positioning Lateral	0.045	Tolerance	R	1.73	0.03	*		
Device Holder and Phantom	0.1	Tolerance	R	1.73	0.06	*		
Power Drift	0.21	Tolerance	R	1.73	0.12			
Combined Standard Uncertainty (k=1)						16.6%		
Expanded Uncertainty [95% confidence] (k=2)						32.6%		
Expanded Uncertainty [95% confidence] on Field						16.3%		

Table 12-1

Uncertainty Estimation Table

Notes:

- Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297. All
 equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81
 and NIST Tech Note 1297 and UKAS M3003.
- 2. * Uncertainty specifications from Schmidt & Partner Engineering AG (not site specific)

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid immunity tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: PY7A3252041	PCTEST HA	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 27 of 70
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Page 27 of 79

13. TEST DATA

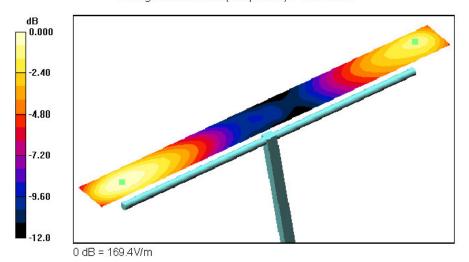
See following Attached Pages for Test Data.

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 28 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	850/1900 GSM/WCDMA Phone with Bluetooth	

DUT: CD835V3 - SN1082

Type: CD835V3 Serial: 1082 Backlight off Duty Oycle: 1:1

Communication System: CW; Frequency: 835 MHz;


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- · Measurement SW: DASY4, V4.7 Build 53;

835MHz, 100mW/20dBm/Hearing Aid Compatibility Test (41x361x1):

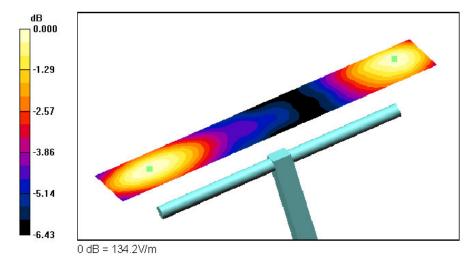
Measurement grid: dx=5mm, dy=5mm
Probe Modulation Factor = 1.00
Reference Value = 109.9 V/m; Power Drift = 0.005 dB
Average value of Total (interpolated) = 158.55 V/m

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 29 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth	

DUT: CD1880V3 - SN1064

Type: CD1880V3 Serial: 1064 Backlight off Duty Oycle: 1:1

Communication System: CW; Frequency: 1880 MHz;


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- · Measurement SW: DASY4, V4.7 Build 53;

1880MHz, 100mW/20dBm/Hearing Aid Compatibility Test (41x181x1):

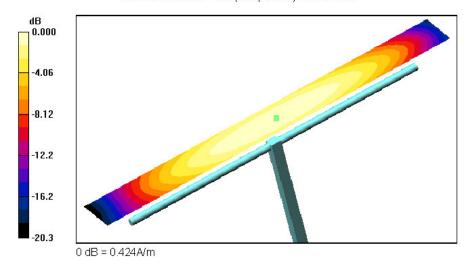
Measurement grid: dx=5mm, dy=5mm
Probe Modulation Factor = 1.00
Reference Value = 140.3 V/m; Power Drift = -0.017 dB
Average value of Total (interpolated) = 133.9 V/m

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 30 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth	

DUT: CD835V3 - SN1082

Type: CD835V3 Serial: 1082 Backlight off Duty Cycle: 1:1

Communication System: CW; Frequency: 835 MHz;


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- . Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- · Measurement SW: DASY4, V4.7 Build 53;

835MHz, 100mW/20dBm/Hearing Aid Compatibility Test (41x361x1):

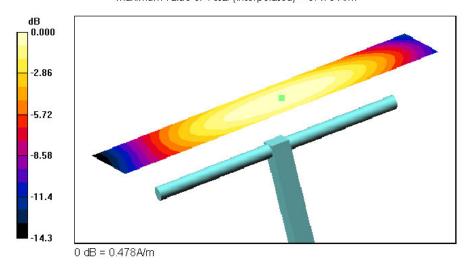
Measurement grid: dx=5mm, dy=5mm
Probe Modulation Factor = 1.00
Reference Value = 0.420 A/m; Power Drift = 0.012 dB
Maximum value of Total (interpolated) = 0.424 A/m

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 31 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth	

DUT: CD1880V3 - SN1064

Type: CD1880V3 Serial: 1064 Backlight off Duty Cycle: 1:1

Communication System: CW; Frequency: 1880 MHz;


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;

1880MHz, 100mW/20dBm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm Probe Modulation Factor = 1.00 Reference Value = 0.500 A/m; Power Drift = 0.019 dB Maximum value of Total (interpolated) = 0.478 A/m

FCC ID: PY7A3252041	PETEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 32 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Faye 32 01 79

DUT: W760a

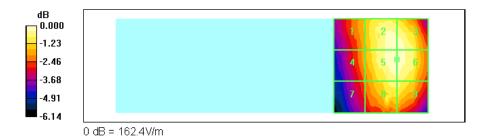
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:8.3

Communication System: GSM850; Frequency: 824.2 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Low.ch/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 162.4 V/m Probe Modulation Factor = 2.83 Reference Value = 64.9 V/m; Power Drift = -0.095 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
136.7	159.8	159.9
Grid 4 133.2		Grid 6 162.4
Grid 7	Grid 8	Grid 9
124.9	151.9	151.9

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 33 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 33 01 79

DUT: W760a

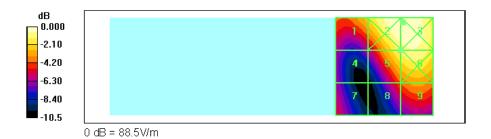
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:8.3

Communication System: GSM1900; Frequency: 1850.2 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Low.ch/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 77.7 V/m Probe Modulation Factor = 2.79 Reference Value = 18.5 V/m; Power Drift = 0.277 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
68.0	88.4	88.5
Grid 4	Grid 5	Grid 6
44.3	77.7	81.6

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 34 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 34 01 79

DUT: W760a

Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:8.3

Communication System: GSM850; Frequency: 848.8 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;

High.ch/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 0.229 A/m Probe Modulation Factor = 1.95 Reference Value = 0.073 A/m; Power Drift = 0.264 dB

Hearing Aid Near-Field Category: M4 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.229	0.174	0.112
Grid 4	Grid 5	Grid 6
0.224	0.173	0.114
Grid 7	Grid 8	Grid 9
0.224	0.173	0.113

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 35 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	luetooth	Faye 33 01 79

DUT: W760a

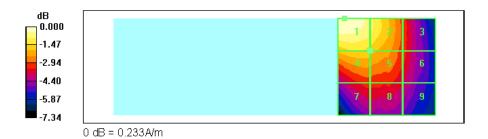
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:8.3

Communication System: GSM1900; Frequency: 1850.2 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Low.ch/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 0.233 A/m Probe Modulation Factor = 2.32 Reference Value = 0.079 A/m; Power Drift = -0.147 dB

Hearing Aid Near-Field Category: M3 (AWF -5 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.233	0.213	0.164
Grid 4	Grid 5	Grid 6
0.197	0.192	0.162
Grid 7	Grid 8	Grid 9
0.162	0.161	0.148

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT Song Efficieson		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 36 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Blue	tooth	Faye 30 01 79

Date: 6/25/2008

DUT: W760a

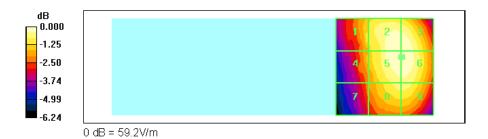
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:1

Communication System: WCDMA850; Frequency: 826.4 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Low.ch, WCDMA /Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 59.2 V/m Probe Modulation Factor = 0.971 Reference Value = 65.0 V/m; Power Drift = -0.010 dB

Hearing Aid Near-Field Category: W4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
52.8	58.9	58.9
Grid 4	Grid 5	Grid 6
50.4	59.2	59.2

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 37 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 37 01 79

Date: 6/26/2008

DUT: W760a

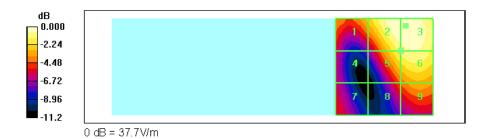
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:1

Communication System: WCDMA1900; Frequency: 1880 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Mid.ch, WCDMA II/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 37.7 V/m Probe Modulation Factor = 0.974 Reference Value = 21.6 V/m; Power Drift = 0.064 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
27.9	37.5	37.7
Grid 4	Grid 5	Grid 6
19.6	33.0	34.8

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 38 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 30 01 79

Date: 6/26/2008

DUT: W760a

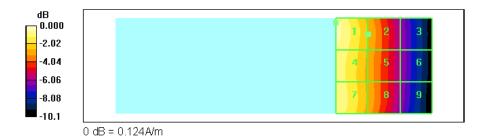
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:1

Communication System: WCDMA850; Frequency: 826.4 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Low.ch, WCDMA V/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 0.124 A/m Probe Modulation Factor = 0.933 Reference Value = 0.085 A/m; Power Drift = -0.182 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.124	0.091	0.062
Grid 4	Grid 5	Grid 6
0.115	0.090	0.062
Grid 7	Grid 8	Grid 9

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 39 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 39 01 79

Date: 6/27/2008

DUT: W760a

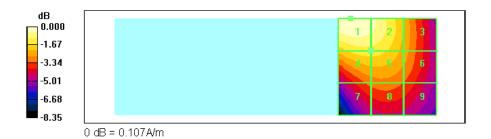
Type: 850/1900 GSM/WCDMA Phone w/ BT Serial: BD33000QJE Backlight off Duty Cycle: 1:1

Communication System: WCDMA1900; Frequency: 1880 MHz;

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 7/19/2007
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn665; Calibrated: 8/29/2007
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA;
- Measurement SW: DASY4, V4.7 Build 53;


Mid.ch, WCDMA II/Hearing Aid Compatibility Test (251x251x1): Measurement grid: dx=2mm, dy=2mm

Maximum value of peak Total field = 0.107 A/m Probe Modulation Factor = 0.889 Reference Value = 0.096 A/m; Power Drift = -0.033 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.107	0.103	0.083
Grid 4	Grid 5	Grid 6
0.092	0.092	0.081
Grid 7	Grid 8	Grid 9
0.075	0.076	0.073

FCC ID: PY7A3252041	PETEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 40 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	luetooth	Faye 40 01 79

14. CALIBRATION CERTIFICATES

The following pages include the probe calibration used to evaluate HAC for the DUT.

FCC ID: PY7A3252041	PCTEST' ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericeson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 41 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Fage 41 01 79

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Accreditation No.: SCS 108

Certificate No: ER3-2353_Jul07 **CALIBRATION CERTIFICATE**

Object	ER3DV6 - SN:2	353	
Calibration procedure(s)	QA CAL-02.v5 Calibration proc evaluations in a	edure for E-field probes optimized for ir	close near field
Calibration date:	July 19, 2007		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and	part of the certificate.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-37 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-37 (METAS, No. 217-00670)	Mar-08
	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A			men -oo
	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 3 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b)	10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671)	Aug-07 Mar-08
Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Aug-07 Mar-08 Aug-07
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probo ER3DVS	SN: S5086 (20b) SN: S5129 (30b) SN: 2328	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2326_Oct06)	Aug-07 Mar-08 Aug-07 Oct-07
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probo ER3DVS	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Aug-07 Mar-08 Aug-07
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4	SN: S5086 (20b) SN: S5129 (30b) SN: 2328	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2326_Oct06)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2328_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV5 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2328_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ERS-2328_Oct06) 20-Apr-07 (SPEAG, No. DAE4-054_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check In house check: Nov-07
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654 ID # U83642U01700 US37390585	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2328_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07
Power sensor E4412A Reference 3 dt 841tenuator Reference 20 dt 8 Attenuator Reference 30 dt 8 Attenuator Reference 30 dt 8 Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	SN: S5086 (20b) SN: S5129 (30b) SN: 2328 SN: 654 ID# US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. ER3-2328_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-08)	Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07 Signature

Cerlificate No: ER3-2353_Jul07

Page 1 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 42 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bl	uetooth	Fage 42 01 79

Calibration Laboratory of

Schmid & Partner Engineering AG Zoughausotrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst
Service suisse d'étaionnage

Servizio evizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service is one of the signaturies to the EA

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point Polarization φ rotation around probe axis

Multilateral Agreement for the recognition of calibration certificates

Polarization 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 43 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Fage 43 01 79

Probe ER3DV6

SN:2353

Manufactured: March 8, 2005
Last calibrated: October 13, 2006
Recalibrated: July 19, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ER3-2353_Jul07

Page 3 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 44 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Fage 44 01 79

DASY - Parameters of Probe: ER3DV6 SN:2353

Sensitivity in Free Space $[\mu V/(V/m)^2]$	Diode Compression ^a
---	--------------------------------

NormX	1.52 ± 10.1 % (k=2)	DCP X	95 mV
NormY	1.72 ± 10.1 % (k=2)	DCPY	95 mV
NormZ	1.87 ± 10.1 % (k=2)	DCP Z	96 mV

Frequency Correction

Х	0.0
Υ	0.0
Z	0.0

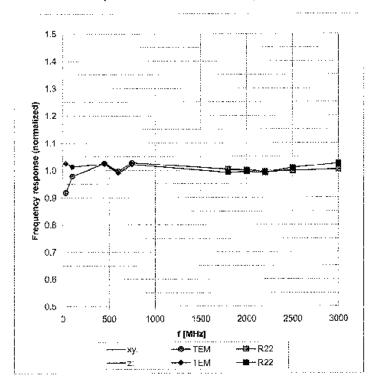
Sensor Offset (Probe Tip to Sensor Center)

X 2.5 mm Y 2.5 mm Z 2.5 mm

Connector Angle -219 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2353_Jul07

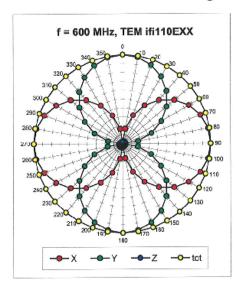

Page 4 of 9

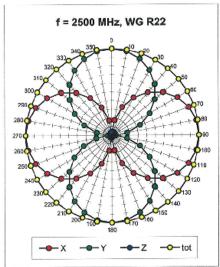
FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 45 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Faye 45 01 79

A numerical linearization parameter; uncertainty not required

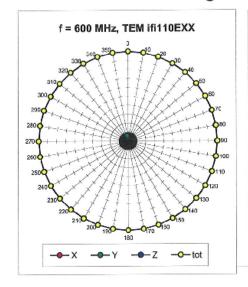
Frequency Response of E-Field

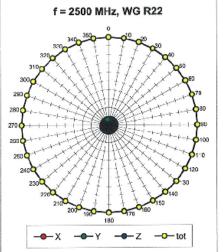
(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

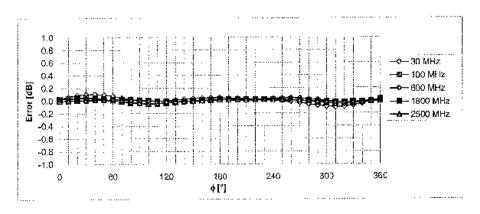

Certificate No: ER3-2353_Jui07

Page 5 of 9


FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 46 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 40 01 79

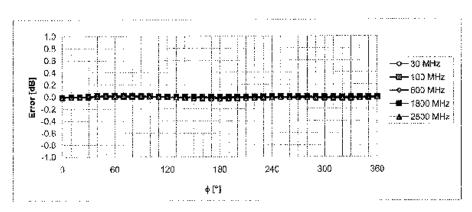

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°



Certificate No: ER3-2353_Jul07

Page 6 of 9

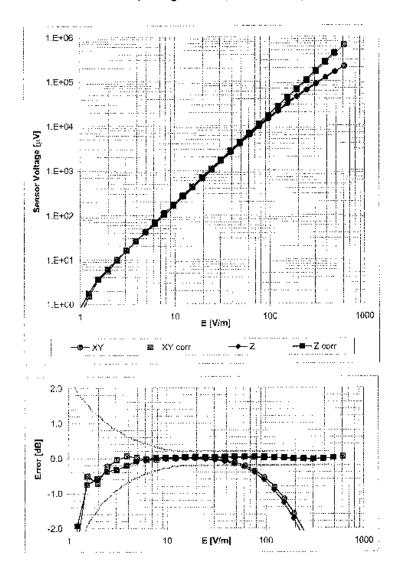

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 47 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 47 01 79

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

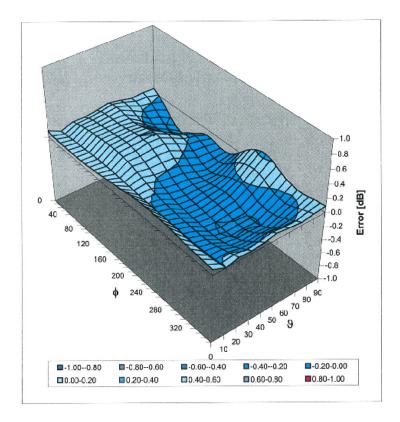

Certificate No: £R3-2353_Jul07

Page 7 of 9

FCC ID: PY7A3252041	PCTEST HA	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 48 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Blu	ietooth	Faye 40 01 79

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ER3-2353_Jul07 Page 8 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 49 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Fage 49 01 79

July 19, 2007

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2353_Jul07

Page 9 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Cricsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 50 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth	h	Faye 50 01 79

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibriordienst
C Service suisse d'étaionnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client PC Tests

Certificate No: H3-6207_Jul07

Object	H3DV6 - SN:62	07	
Calibration procedure(s)	QA CAL-03.v5 Calibration proc evaluations in a	edure for H-field probes optimized for ir	close near field
Calibration date:	July 19, 2007		
Condition of the calibrated item	In Tolerance		
All calibrations have been condu- Calibration Equipment used (M&		ory facility: environment temperature (22 ± 3)°C and	f humidity < 70%.
	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08
Power meter E4419B Power sensor E4412A Power sensor E4412A	GB41293874 MY41495277 MY41498087	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08 Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592)	Mar-08 Mar-08 Mar-08 Aug-07
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	GB41293874 MY41495277 MY41496087 SN: S5054 (3c) SN: S5066 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Mar-08 Mar-08 Mar-08 Aug-07
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards	GB41293874 MY41495277 MY41498087 SN: \$5064 (3⊲) SN: \$5066 (20b) SN: \$5129 (30b) SN: 6182 SN: 654	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check
Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator H9 8648C	GB41293874 MY41495277 MY41498087 SN: S5064 (3c) SN: S5066 (20b) SN: S5129 (30b) SN: 6182 SN: 654	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00691) 10-Aug-06 (METAS, No. 217-00691) 2-Oct-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check In house check: Nov-07
Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator H9 8648C	GB41293874 MY41495277 MY41498087 SN: \$5064 (3⊲) SN: \$5066 (20b) SN: \$5129 (30b) SN: 6182 SN: 654	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 MY41498087 SN: S5064 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00571) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Schoduled Check In house check: Nov-07 In house check: Oct-07
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: \$5064 (3d) SN: \$5086 (20b) SN: \$5129 (30b) SN: 6182 SN: 654 ID # US3842U01700 US37390585	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Oct-06)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Schoduled Check In house check: Nov-07 In house check: Oct-07
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 MY41498087 SN: S5064 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00571) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Oct-07 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07

Certificate No: H3-6207_Jul07

Page 1 of 8

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 51 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 310179

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to a ign probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- X,Y,Z_a0a1a2: Assessed for E-field polarization θ = 90 for XY sensors and θ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no uncertainty required).

Certificate No H3-6207_Jul07

Page 2 of 8

FCC ID: PY7A3252041	PETEST' ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	csson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 52 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Faye 32 01 79

Probe H3DV6

SN:6207

Manufactured: June 12, 2006 Last calibrated: July 10, 2006 Recalibrated: July 19, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-5207_Jul07

Page 3 of 8

FCC ID: PY7A3252041	PETEST* ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 53 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 33 01 79

DASY - Parameters of Probe: H3DV6 SN:6207

Sensitivity in Free Space [A/m / √(μV)]

	a0 a	a1 a	12	
Х	2.409E-03	2.606E-5	1.397E-4 ± 5.1 %	(k=2)
Υ	2.343E-03	4.761E-4	1.923E-4 ± 5.1 %	(k=2)
Z	2.933E-03	-3.706E-5	1.549E-4 ± 5.1 %	(k=2)

Diode Compression¹

DCP X 85 mV DCP Y 85 mV DCP Z 85 mV

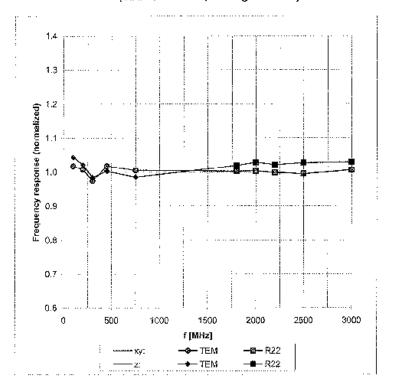
Sensor Offset (Probe Tip to Sensor Center)

X 3.0 mm Y 3.0 mm Z 3.0 mm

Connector Angle -364 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: H3-6207_Jul07

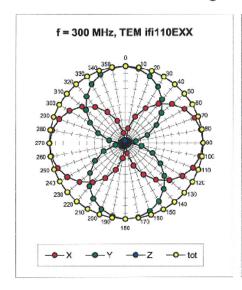

Page 4 of 8

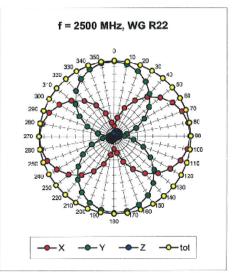
FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 54 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Fage 54 01 79

⁵ numerical Enearization parameter: uncertainty not required

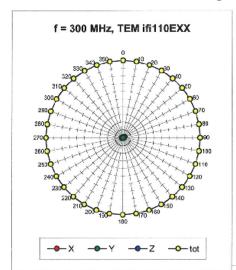
Frequency Response of H-Field

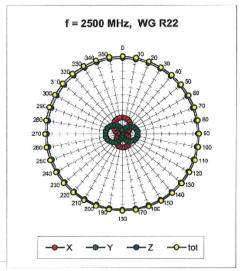
(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

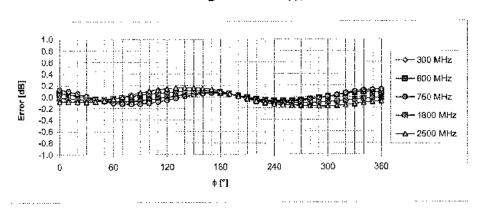

Certificate No: H3-6207_Jul07

Page 5 of 8


FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 55 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	luetooth	Faye 33 01 79

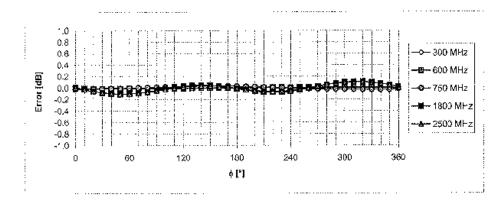

Receiving Pattern (ϕ), $9 = 90^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Certificate No: H3-6207_Jul07

Page 6 of 8

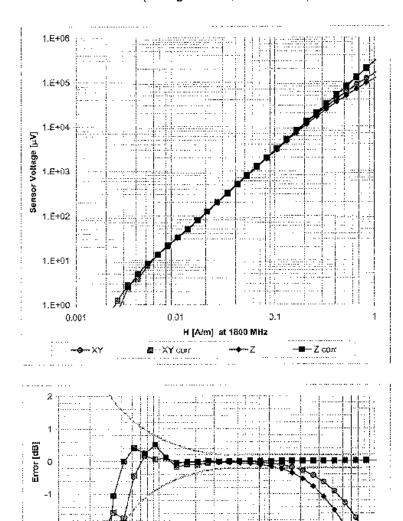

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 56 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 30 01 79

Receiving Pattern (\$\phi\$), \$\theta = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: 143-6207_Jul07

Page 7 of 8

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 57 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with B	luetooth	Fage 37 0179

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

H (A/m) at 1800 MHz

Certificete No: H3-6207, Jul07

0.001

Page 8 of 8

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 58 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Faye 30 01 79

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

Client

PC Test

Certificate No: CD835V3-1082_Jul06

CALIBRATION CERTIFICATE CD835V3 - SN: 1082 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air July 17, 2006 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traccability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) Primary Standards GE37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power meter EPM-442A Oct-06 US37292783 04-Oct-05 (METAS, No. 251-00516) Power sensor HP 8481A Aug-05 SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Reference 20 dB Attenuator Aug-05 Reference 10 dB Attenuator 11-Aug-05 (METAS, No 251-00498) SN: 5047 2 (10r) 1-Mar-06 (SPEAG, No. DAE4-660_War06) Calibration, Mar-07 SN: 660 DAE4 20-Dac-05 (SPEAG, No. ER3-2336_Dec05) Calibration, Dec-08 Probe ER30V6 SN: 2336 20-Dec-05 (SPEAG, No. H3-6065-Dec05) Calibration, Dec-08 Probe H3DV6 SN: 6065 Check Cate (in house) Scheculed Check Secondary Standards 12-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-06 Power meter EPM-4419B GB43310786 10-Aug-03 (SPEAG, in house check Oct-05) In house check: Oct-07 MY41093312 Power sensor HP 8481A In house check: Oct-06 10-Aug-03 (SPEAG, in house check Oct-05) Power sensor HP 8481A MY41093315 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 Network Analyzer FP 8753E US37390585 26-Jul-04 (SPEAG, in house check Nov-05) In house check: Nov-07 RF generator R&S SMT06 SN: 100005 Name **Function** Mike Meil Laboratory Technician Calibrated by: M. Hoil Technical Director F. Knowledt Approved by: Fin Bomholt Issued: July 18, 2006 This calibration pertificate shall not be reproduced except in full without written approval of the laboratory.

FCC ID: PY7A3252041	PCTEST HA	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 59 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Faye 39 01 79

Page 1 of 6

Certificate No: CD835V3-1082_Jul06

Calibration Laboratory of Schmid & Partner Engineering AG Zeoghauestresse 43, 8004 Zurich, Switzerland

8

С

Schweizerlacher Kathriardianst Service autees d'étalennage Servizie avizzem di taratura Swies Cellipration Service

Appreciated by the Swiss Federal Office of Metrology and Appreciation.

The Gwiss Accorditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration contributes.

Accreditation No.: SCS 108

References

 ANSI-PC83.19-2001 (Draft 3.x, 2006)
 American National Standard for Mothods of Measurement of Compatibility between Wireless Communications Devices and Hearing Alds.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. Z-axis is from the basis of the antonna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In noincidence with standard (1), the measurement planes (probe sensor center) are selected to be at a
 distance of 40 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to this dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 cirectional couplor. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The clipple is incurried on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a snielded from with absorbers around the samp to reduce the reflections.

 is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the fIAC dipole positioner with its arms parallel below the dielectric reference whe and able to move electionally in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the grobe is adjusted after dipole mounting with a DASY4 Surface Chenk job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the NAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- frood Point Impedance and Return Loss. These parameters are measured using a HP 8753E Vector Notwork
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 abstractors.
- E-field distribution. Elfield is measured in the x-y-plane with an Isotropic ER3D-field proba with 100 mW forward power to the america feed point. In accordance with [1], the soan arcous 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the cipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (a) subgrid 2 and subgrid 8; is determined to compensate for any non-perallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field. 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 entenne feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 estibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Continuate Not CO835V3-1082_Ju/08 Page 2 of 6

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 60 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	Bluetooth	Fage 00 01 79

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B44
DASY PP Version	SEMCAD	V1.8 E171
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx. dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
input power drift	< 0.05 dB	i

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 rtW forward power	0.454 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	! condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	172.3 V/m
Maximum measured shove low end	100 mW forward power	162.3 V/m
Avoraged maximum above arm	100 mW forward power	167.3 V/m

Uncertainty for E-fleid measurement: 12.9% (K°2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impadance
800 MHz	18.7 dD	(43.5 – <u>j12.2) Ohm</u>
835 MHz	27.6 dB	(51.3 + [4.0] Ohm
900 MHz	16.1 dB	(57.4 <u>– j15.4) Ohm</u>
950 MHz	21.1 dB	(44.3 · J6.0) Chm
960 MHZ	18.0 dB	[(49.0 ÷ j12.6) Ohm]

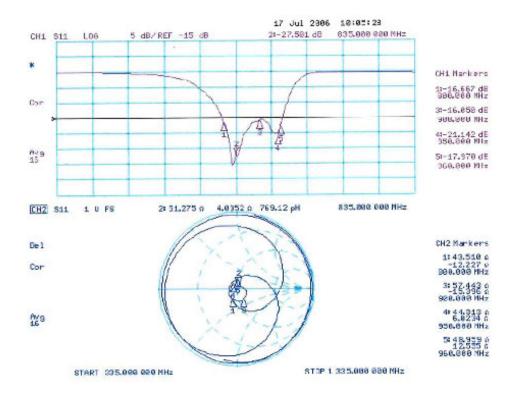
3.2 Antenna Design and Handling

The calibration dipole has a symmetric generatry with a burt-in two stud matching hetwork, which leads to the enhanced bandwidth.

The dipole is built of stendard semingid cosxis, cable. The internal matching line is open crided. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the Impedance characteristics to ensure that the internet matering network is not affected.

After long term use with 4000 rapiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: SD835V%-1082_4n06

Page 3 of 6

FCC ID: PY7A3252041	PCTEST* ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 61 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	luetooth	raye or or 79

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1082_Jul06

Page 4 of 6

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 62 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 02 01 79

3.3.2 DASY4 H-field result

Test Laboratory: SPEAG, Zurich, Switzerland File Name: H. CD835_1082_060717.da4

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC H Dipole

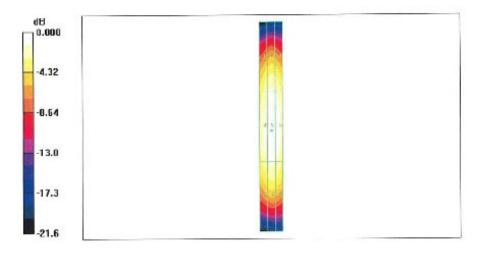
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_i=1$; $\rho=1$ kg/m³ Phantom section: H Dipole Section

DASY4 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated. 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

H Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.454 A/m


Probe Modulation Factor = 1.00

Reference Value = 0.482 A/m; Power Drift = -0.014 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H field in A/m

Gr.d 1	Grid 2	Grid 3
0.372	0.402	0,386
Grd 4	Grid 5	Grid 6
0.425	0.454	0.438
Gr.d 7	Grid 8	Cirid 9
0.379	0.404	0.388

0 dB = 0.454 A/m

Certificate No: CD835V3-1082_Jul06

Page 5 of 6

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 63 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 03 01 79

Date/Time: 7/17/2006 2:56:42 PM

3.3.3 DASY4 E-Field result

Date/Time: 7/17/2006 11:50:47 AM

Test Laboratory: SPEAG, Zurich, Switzerland File Name: E CD835 1082 060717.da4

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1082

Program Name: HAC E Dipole

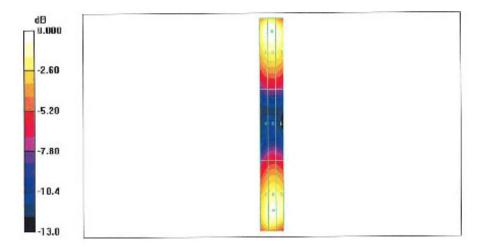
Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ mho/m, $\epsilon_c=1$; $\rho=1000$ kg/m² Phantom section: E Dipole Section

DASY4 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 12/20/2005
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn660; Calibrated: 3/1/2006
- Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

R Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1): Measurement grid:

dx=5mm, dy=5mm


Maximum value of peak Total field = 172.3 V/m

Probe Modulation Factor = 1.00

Reference Value = 122.7 V/m; Power Drift = -0.030 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak B-field in V/m

Grd 1	Grid 2	Gr.d 3
166.8	172.3	165.8
Gr.d 4	Grid 5	Gr.d 6
84.7	88.9	87.9
Grid 7	Grid 8	Grid 9
154.6	162.3	160.4

0 dB = 172.3 V/m

Certificate No: CD835V3-1082_Jul06

Page 6 of 6

FCC ID: PY7A3252041	PCTEST: ENGINEERING LABORATORY, INC.	AC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 64 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 04 01 79

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: CD1880V3-1064_Mar08

CALIBRATION CERTIFICATE CD1880V3 - SN: 1064 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air March 11, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: anvironment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID # Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards 04-Oct-07 (METAS, No. 217-00736) Power meter EPM-442A GB37480704 Oct-08 04-Oct-07 (METAS, No. 217-00736) Oct-08 Power sensor HP 8481A US37292783 31-Dec-07 (SPEAG, No. ER3-2336_Dec07) Dec-08 Probe ER3DV6 SN: 2336 31-Dec-07 (SPEAG, No. H3-6065_-Dec07) Dec-08 Probe H3DV6 SN: 6065 2-Oct-07 (SPEAG, No. DAE4-781_Oct07) Oct-08 SN: 781 DAE4 Scheduled Check ID# Check Date (in house) Secondary Standards GB42420191 11-May-05 (SPEAG, in house check Oct-07) In house check: Nov-08 Power meter EPM-4419B In house check: Nov-08 Power sensor HP 8482A US37295597 11-May-05 (SPEAG, in house check Oct-07) 3318A09450 08-Jan-02 (SFEAG, in house check Cct-07) In house check: Nov-08 Power sensor HP 8482H In house check: Nov-09 US37390585 18-Oct-01 (SPEAG, in house check Oct-07) Network Analyzer HP 8753E RF generator E4433B MY 41310391 22-Nov-04 (SPEAG, in house check Oct-07) In house check: Nov-09 Function Name Mike Meili Laboratory Technician Cal brated by: Approved by: Fin Bomho't **Technical Director** Issued: March 12, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD1880V3-1064_Mar08

Page 1 of 9

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 65 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	Bluetooth	Faye 03 01 79

Calibration Laboratory of

Schmid & Partner
Engineering AC
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratur
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-C63.19-2006

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other
 axes. In coincidence with standard [1], the measurement planes (probe sensor conter) are selected to
 be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move efastically in vertical direction without changing its relative position to the too center of the Test Arch phantom. The vertical distance to the probe is arijusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the crobe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The Impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor penter is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H field
 value stated as calibration value represents the maximum of the Interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3 1064 Mar08

Page 2 of 9

FCC ID: PY7A3252041	PCTEST HA	C (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 66 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	Bluetooth	Faye 00 01 79

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B61
DASY PP Version	SEMCAD	V1.8 B176
Phantom	IAAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, $dy = 5 mm$	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.463 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	136.6 V/m
Maximum measured above low end	100 mW forward power	185.9 V/m
Averaged maximum above arm	100 mW forward power	136.3 V/m

Uncertainty for E-field measurement: 12.8% (k-2)

3. Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MH∠	21.5 dB	(47.5 + j7.8) Onm
1880 MHz	20.9 d∃	(49.4 + j8.9) Ohm
1900 MHz	21.1 dB	(51.8 + j8.8) Ohm
1950 MHz	26.0 dB	(54.8 – j2.1) Ohm
2000 MHz	25.1 dB	(44,9 + j1.1) Ohm

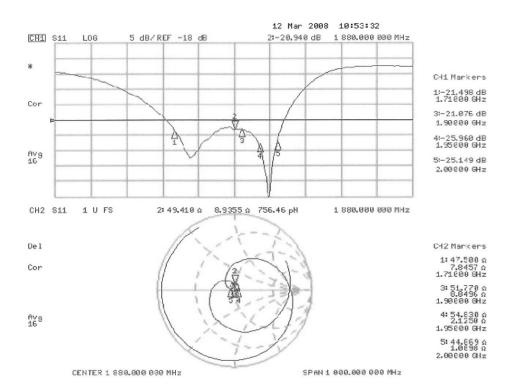
3.2 Antenna Design and Handling

The callbration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Cedificate No: CD188CV3-1064_Mar08

Page 3 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 67 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with I	850/1900 GSM/WCDMA Phone with Bluetooth	

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD1880V3-1064_Mar08

Page 4 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 68 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with E	850/1900 GSM/WCDMA Phone with Bluetooth	

3.3.2 DASY4 H-Field Result

Date/Time: 11.03.2008 15:03:42

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_t = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

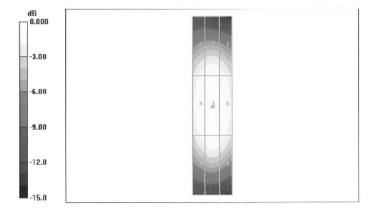
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.463 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.490 A/m; Power Drift = 0.001 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.400	0.421	0.402
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.440	0.463	0.443
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.402	0.427	0.407
M2	M2	M2

0 dB = 0.463 A/m

Certificate No: CD1880V3-1064_Mar08

Page 5 of 9

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 69 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth		Faye 09 01 79

3.3.2 DASY4 E-Field Result

Date/Time: 10.03.2008 16:23:45

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_t = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

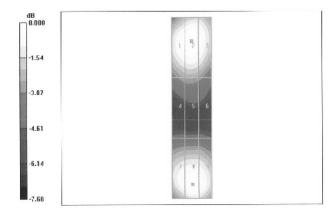
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 136.6 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 151.7 V/m; Power Drift = 0.009 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E field in V/m

Grid 1	Grid 2	Grid 3
133.1	136.6	132.0
M2	M2	M2
Grid 4	Grid 5	Grid 6
88.2	90.1	86.1
M3	M3	M3
Grid 7	Grid 8	Grid 9
128.9	135.9	132.8
M2	M2	M2

0 dB = 136.6 V/m

Certificate No: CD1880V3-1064_Mar08

Page 6 of 9

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:	
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with Bluetooth	Page 70 of 79

4 Additional Measurements

4.1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	ĐASY4	V4.7 B61
DASY PP Version	SEMÇAD	V1.8 B176
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	1C mm	7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1730 MHz ± 1 VHz	
Forward power at dipole connector	20.0 dBm = 100mW	
input power drift	< 0.05 dB	

4.2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.487 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	146.6 V/m
Maximum measured above low and	100 mW forward power	146.1 V/m
Averaged maximum above arm	100 mW forward power	146.4 V/m

Uncertainty for E-field measurement: 12.8% (K=2)

Certificate No: CD1880V3-1064 Mar08

Page 7 of 9

FCC ID: PY7A3252041	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 71 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth	

4.3.1 DASY4 H-Field Result

Date/Time: 11.03.2008 15:03:42

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1730 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

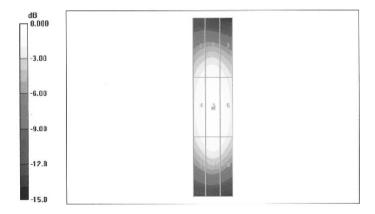
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.487 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.518 A/m; Power Drift = -0.005 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak II-field in A/m

Grid 1	Grid 2	Grid 3
0.403	0.424	0.406
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.458	0.487	0.466
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.405	0.433	0.412
M2	M2	M2

0 dB = 0.463 A/m

Certificate No: CD1880V3-1064_Mar08

Page 8 of 9

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT Sony Efficience		Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth		Page 72 of 79
0806230910.PY7	June 24 - 28, 2008			Fage 72 01 79

4.3.2 DASY4 E-Field Result

Date/Time: 10.03.2008 16:23:45

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1064

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

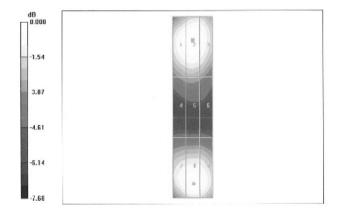
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

· Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprccessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 146.6 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 162.5 V/m; Power Drift = 0.013 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
142.6	146.6	141.7
M2	M2	M2
Grid 4	Grid 5	Grid 6
99.8	102.1	97.7
M3	M3	M3
Grid 7	Grid 8	Grid 9
138.8	146.1	142.6
M2	M2	M2

0 dB = 136.6 V/m

Certificate No: CD1880V3-1064_Mar08

Page 9 of 9

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT Son's Griction		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth		Page 73 of 79
0806230910.PY7	June 24 - 28, 2008			Fage 73 01 79

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

Please note that the M-rating for this equipment only represents the field interference possible against a hypothetical and typical hearing aid. The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT Song Exclusion		Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 74 of 79
0806230910.PY7	June 24 - 28, 2008	850/1900 GSM/WCDMA Phone with	850/1900 GSM/WCDMA Phone with Bluetooth	

16. REFERENCES

- ANSI C63.19-2007, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, January 2006
- 2. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 3. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 4. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 5. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 7. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- 8. Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- 9. Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 11. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 12. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 13. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 14. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Sony Ericsson	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth		Page 75 of 79
0806230910.PY7	June 24 - 28, 2008			rage 75 01 79

- 15. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 16. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 17. Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 18. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 19. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 20. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 21. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 22. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 23. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 24. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 25. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 26. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 27. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: PY7A3252041	HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type: 850/1900 GSM/WCDMA Phone with Bluetooth		Page 76 of 79
0806230910.PY7	June 24 - 28, 2008			rage 10 01 19