

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

BLUETOOTH + DTS/UNII a/b/g/n/ac. ANT+ & NFC

FCC ID: PY7-TS0050

REPORT NUMBER: 15J20363-E1

ISSUE DATE: APRIL 20, 2015

Prepared for SONY MOBILE COMMUNICATIONS, INC. 1-8-15 KONAN, MINATO-KU TOKYO, 108-0075 JAPAN

Prepared by
UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	04/20/15	Initial Issue	CHOON OOI

TABLE OF CONTENTS

1.	Α	TTESTATION OF TEST RESULTS	4
2.	Т	EST METHODOLOGY	5
3.	F	ACILITIES AND ACCREDITATION	5
4.	С	ALIBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	<i>6</i>
5.	E	QUIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	WORST-CASE CONFIGURATION AND MODE	8
	5.5.	DESCRIPTION OF TEST SETUP	9
6.	Т	EST AND MEASUREMENT EQUIPMENT	11
7.	S	UMMARY TABLE	12
8.	Α	NTENNA PORT TEST RESULTS	13
	8.1.	20 dB AND 99% BANDWIDTH	13
	8.2.	HOPPING FREQUENCY SEPARATION	14
	8.3.	NUMBER OF HOPPING CHANNELS	15
	8.4.	AVERAGE TIME OF OCCUPANCY	16
	8.5.	OUTPUT POWER	17
	8.6.	AVERAGE POWER	18
	8.7.	CONDUCTED SPURIOUS EMISSIONS	19
9.	R	ADIATED TEST RESULTS	20
	9.1.	LIMITS AND PROCEDURE	20
	9.2.	TRANSMITTER ABOVE 1 GHz	21
	9.3.	WORST-CASE BELOW 1 GHz	21
1(0.	AC POWER LINE CONDUCTED EMISSIONS	22
11	1.	SETUP PHOTOS	23
		Page 3 of 24	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SONY MOBILE COMMUNICATIONS. INC.

EUT DESCRIPTION: BLUETOOTH + DTS/UNII a/b/g/n/ac. ANT+ & NFC

SERIAL NUMBER: CB5A23Q9M5 (Conducted), CB5A23Q1WM (Radiated)

DATE TESTED: FEBRUARY 13-MARCH 13, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS CFR 47 Part 15 Subpart C **Pass**

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Tested By:

CHOON OOI

CONSUMER TECHNOLOGY DIVISION

PROJECT LEAD

UL Verification Services Inc.

STEVEN TRAN

CONSUMER TECHNOLOGY DIVISION

WISE LAB ENGINEER

UL Verification Services Inc.

Page 4 of 24

REPORT NO: 15J20363-E1 DATE: APRIL 20, 2015

FCC ID: PY7-TS0050

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) — Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a BLUETOOTH + DTS/UNII a/b/g/n/ac. ANT+ & NFC

The model FCC ID: PY7-TS0050 shares the same enclosure and circuit board as mode FCC ID: PY7-TM0061. The unlicensed radios (WLAN/BT/NFC/ANT+) including antenna, are identical between the two units.

Difference is FCC ID: PY7-TS0050 has only unlicensed radio but FCC ID: PY7-TM0061 has unlicensed radio and licensed radio.

After confirming through preliminary radiated emissions that the performance of the FCC ID: PY7-TM0061 data remains representative of this model (FCC ID: PY7-TS0050), FCC ID: PY7-TS0050 leveraged test data from FCC ID: PY7-TM0061.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	8.61	7.26
2402 - 2480	Enhanced 8PSK	7.62	5.78

Note: GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance. For average power data please refer to section 8.6.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of -1.4dBi.

Page 7 of 24

REPORT NO: 15J20363-E1 DATE: APRIL 20, 2015

FCC ID: PY7-TS0050

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

REPORT NO: 15J20363-E1 DATE: APRIL 20, 2015

FCC ID: PY7-TS0050

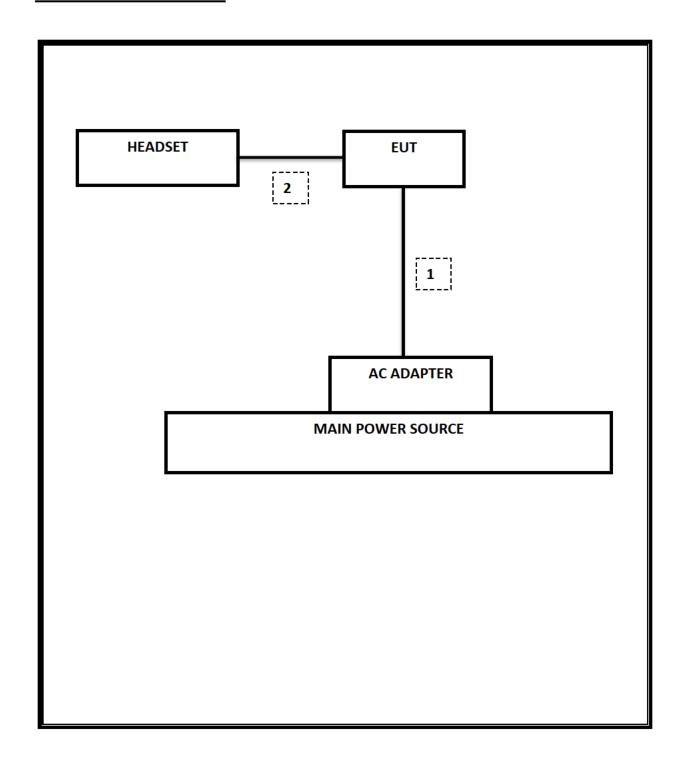
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
AC Adapter	SONY	EP880	3514W 01 S08328	N/A			
Earphone	Sony	N/A	N/A	N/A			
USB cable	Sony	N/A	N/A	N/A			

I/O CABLES

	I/O Cable List					
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks
No		ports	Туре		Length (m)	
1	DC Power	1	Mini-USB	Shielded	1.2m	N/A
2	Audio	1	Mini-Jack	Unshielded	1m	N/A


TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests.

EUT was set in the Hidden menu mode to enable BT communications.

FAX: (510) 661-0888

SETUP DIAGRAM FOR TESTS

REPORT NO: 15J20363-E1 DATE: APRIL 20, 2015

FCC ID: PY7-TS0050

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15		
Spectrum Analyzer,9KHz-40GHz	HP	8564E	C00986	04/01/15		
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	100773	08/15/15		
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15		
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/15		
Antenna, Horn, 18GHz	EMCO	3115	C00783	10/25/15		
Antenna, Horn,18- 26 GHz	ARA	MWH-1826/B	C00946	11/12/15		
Antenna, Horn, 26-40 GHz	ARA	MWH-2640	C00891	06/28/15		
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	T243	12/08/15		
RF Preamplifier, 100KHz -> 1300MHz	HP	TBD	C00825	06/01/15		
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/15		
RF Preamplifier, 1GHz - 26.5GHz	HP	8449B	F00351	06/27/15		
AC Power Supply, 2,500VA 45-500Hz	Elgar-Ametek	CW2501M	F00013	CNR		
RF Preamplifier, 1GHz - 18GHz	Miteq	AFS42-00101800-25-S-42	1818466	05/09/15		
Attenuator / Switch driver	HP	11713A	F00204	CNR		
Low Pass Filter 3GHz	Micro-Tronics	LPS17541	F00219	05/23/15		
High Pass Filter 5GHz	Micro-Tronics	HPS17542	F00222	05/22/15		
High Pass Filter 6GHz	Micro-Tronics	HPM17543	F00224	05/22/15		

Test Software List					
Description	Manufacturer	Model	Version		
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14		
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14		
CLT Software	UL	UL RF	Version 1.0, 02/02/15		
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15		

7. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
2.1049	RSS-GEN 4.6	Occupied Band width (99%)	N/A		Pass	1.252 MHz
2.1051, 15.247 (d)	RSS-210 A8.5	Band Edge / Conducted Spurious Emission	-20dBc		Pass	-57.95 dBm
15.247 (b)(1)	RSS-210 A8.4	TX conducted output power	<21dBm		Pass	8.61 dBm
15.247 (a)(1)	RSS-210 A8.1(b)	Hopping frequency separation	> 25KHz	Conducted	Pass	1 MHz
15.247 (a)(1)(iii)	RSS-210 A8.1(d)	Number of Hopping channels	More than 15 non- overlapping channels		Pass	79 ch
15.247 (a)(1)(iii)	RSS-210 A8.1(d)	Avg Time of Occupancy	< 0.4sec		Pass	0.35 s
15.207 (a)	RSS-GEN 7.2.2	AC Power Line conducted emissions	Section 10		Pass	47.3 dBuV (AV)
15.205, 15.209	RSS-210 Clause 2.6, RSS-210 Clause 6	Radiated Spurious Emission	< 54dBuV/m	Radiated	Pass	37.48 dBuV/m

8. ANTENNA PORT TEST RESULTS

8.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

8.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

8.3. NUMBER OF HOPPING CHANNELS

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

8.4. OUTPUT POWER

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

8.5. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

DA 00-705: The transmitter output is connected to a power meter.

RESULTS

8.6. CONDUCTED SPURIOUS EMISSIONS

L	IN	И	IT	S
_				•

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

REPORT NO: 15J20363-E1 DATE: APRIL 20, 2015

FCC ID: PY7-TS0050

9. RADIATED TEST RESULTS

LIMITS AND PROCEDURE 9.1. LIMITS

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

IC RSS-GEN Clause 7 (Receiver)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For band edge measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 1/T (on time) for average measurement. GFSK = 1/T = 1 / 0.0028S = 360Hz.

The spectrum from 1GHzHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

9.2. TRANSMITTER ABOVE 1 GHz

Please refer to Bluetooth test report of FCC ID: PY7-TM0061.

9.3. WORST-CASE BELOW 1 GHz

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS