

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

47 CFR FCC Part 2

Measurement procedure: ANSI C63.10-2013

Report No.: RFBBQZ-WTW-P24100623-4

FCC ID: PY324300636

Product: NIGHTHAWK BE5000 WiFi 7 Router, NIGHTHAWK BE4300 WiFi 7 Router (refer to

item 3.1 for more details)

Brand: NETGEAR

Model No.: RS150v2

Series Model: RS140, RS130 (refer to item 3.1 for more details)

Received Date: 2024/11/12

Test Date: 2025/1/10 ~ 2025/1/20

Issued Date: 2025/2/24

Applicant and Manufacturer: NETGEAR, INC.

Address: 350 East Plumeria Drive San Jose CA 95134

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383,

Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

Approved by:	Jeremy Lin	, Date:	2025/2/24	
	Jeremy Lin / Project Engineer			

This test report consists of 28 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Polly Chien / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 1 / 28 Report Format Version: 7.1.0

Table of Contents

Rele	elease Control Record	3
1	Certificate	4
2	Summary of Test Results	5
	Measurement Uncertainty	
3	General Information	6
3. 3. 3.	3.1 General Description of EUT	
4	Test Instruments	10
4.	 4.1 Unwanted Emissions below 1 GHz 4.2 Unwanted Emissions above 1 GHz 4.3 Conducted Out of Band Emissions 	11
5	Limits of Test Items	12
5.	 5.1 Unwanted Emissions below 1 GHz 5.2 Unwanted Emissions above 1 GHz 5.3 Conducted Out of Band Emissions 	13
6	Test Arrangements	15
6. 6. 6. 6. 6.	6.1 Unwanted Emissions below 1 GHz 6.1.1 Test Setup 6.1.2 Test Procedure 6.2 Unwanted Emissions above 1 GHz 6.2.1 Test Setup 6.2.2 Test Procedure 6.3 Conducted Out of Band Emissions 6.3.1 Test Setup 6.3.2 Test Procedure	
7	Test Results of Test Item	19
7.	 7.1 Unwanted Emissions below 1 GHz 7.2 Unwanted Emissions above 1 GHz 7.3 Conducted Out of Band Emissions 	21
8	Pictures of Test Arrangements	27
9	Information of the Testing Laboratories	28

Release Control Record

Issue No.	Description	Date Issued
RFBBQZ-WTW-P24100623-4	Original release.	2025/2/24

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 3 / 28 Report Format Version: 7.1.0

1 Certificate

Product: NIGHTHAWK BE5000 WiFi 7 Router, NIGHTHAWK BE4300 WiFi 7 Router (refer to

item 3.1 for more details)

Brand: NETGEAR

Test Model: RS150v2

Series Model: RS140, RS130 (refer to item 3.1 for more details)

Sample Status: Engineering sample

Applicant and Manufacturer: NETGEAR, INC.

Test Date: 2025/1/10 ~ 2025/1/20

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

47 CFR FCC Part 2

Measurement procedure: ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 4 / 28 Report Format Version: 7.1.0

2 Summary of Test Results

Standard / Clause	Test Item	Result	Remark
15.205 /15.209 /15.247(d) 15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Meet the requirement of limit.
15.205 /15.209 /15.247(d) 15.407(b) (1/2/3/4(i)/10) 15.407(b)(5)/15.407(b)(10)	Unwanted Emissions above 1 GHz	Pass	Meet the requirement of limit.
15.247(d)	Conducted Out of Band Emissions	Pass	Meet the requirement of limit.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Specification	Uncertainty (±)
Dedicted Spurious Emissions helpy 10Uz	9 kHz ~ 30 MHz	3.59 dB
Radiated Spurious Emissions below 1GHz	30 MHz ~ 1 GHz	3.64 dB
Dedicted Spurious Emissions shows 10Hz	1 GHz ~ 18 GHz	2.29 dB
Radiated Spurious Emissions above 1GHz	18 GHz ~ 40 GHz	2.29 dB
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.79 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 5 / 28 Report Format Version: 7.1.0

3 General Information

3.1 General Description of EUT

5	NIGHTHAWK BE5000 WiFi 7 Router, NIGHTHAWK BE4300 WiFi 7 Router (Refer to	
Product	note)	
Brand NETGEAR		
Test Model	RS150v2	
Series Model	RS140, RS130	
Model Difference	Refer to note	
Status of EUT	Engineering sample	
Power Supply Rating	12 Vdc from adapter	
	CCK, DQPSK, DBPSK for DSSS	
	64QAM, 16QAM, QPSK, BPSK for OFDM	
Modulation Type	256QAM for OFDM in 11ac mode	
	1024QAM for OFDMA in 11ax mode	
	4096QAM for OFDMA in 11be mode	
Modulation Technology	DSSS, OFDM, OFDMA	
Transfer Rate	Up to 573.5 Mbps for 2.4 GHz	
Transier Rate	Up to 3602.9 Mbps for 5 GHz	
	2.412 GHz ~ 2.462 GHz	
	5.18 GHz ~ 5.25 GHz	
Operating Frequency	5.26 GHz ~ 5.32 GHz	
Operating Frequency	5.50 GHz ~ 5.72 GHz	
	5.745 GHz ~ 5.825 GHz	
	5.815 GHz ~ 5.885 GHz	
	2.4 GHz	
	802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20), 802.11be (EHT20): 11	
	802.11n (HT40), VHT40, 802.11ax (HE40), 802.11be (EHT40): 7	
Number of Channel	5 GHz:	
Number of Chamiles	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20), 802.11be (EHT20): 28	
	802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40), 802.11be (EHT20): 14	
	802.11ac (VHT80), 802.11ax (HE80), 802.11be (EHT20): 7	
	802.11ac (VHT160), 802.11ax (HE160), 802.11be (EHT20): 3	

Note:

1. The following product and models are as below. The model of the RS150v2 was chosen for final test.

Product	Model	remark
AUGUITUANAIK PEEGOO MIE 7 Paatas	RS150v2	BE5000 2.4GHz (2 x 2): 0.7 Gbps 40/20 MHz, 4K QAM 5GHz (3 x 3): 4.3 Gbps 160 to 20MHz, 4K QAM
NIGHTHAWK BE5000 WiFi 7 Router	RS140	BE5000 2.4GHz (2 x 2): 0.7 Gbps 40/20 MHz, 4K QAM 5GHz (3 x 3): 4.3 Gbps 160 to 20MHz, 4K QAM
NIGHTHAWK BE4300 WiFi 7 Router	RS130	BE4300 2.4GHz (2 x 2): 0.7 Gbps 40/20 MHz, 4K QAM 5GHz (3 x 3): 3.6 Gbps 160 to 20MHz, 1024K QA

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3. The EUT uses following accessories.

Item	Brand	Model	Part Number	Specification
AC Adapter 1	NETGEAR	ADS-40FPC-12 12030E	332-11699-01	AC Input : 100-240V, 50/60 Hz, 1.0A DC Output : 12.0V, 2.5A, 30.0W DC Output Cable : 1.76M / 0core Plug : Changeable Manufacturer : Vietnam Honor High Tech Company Limited
AC Adapter 2	NETGEAR	2AED030FC	332-11712-01	AC Input : 100-240V, 50/60Hz, 1.0A DC Output : 12.0V, 2.5A, 30.0W DC Output Cable : 1.8M / 0core Plug : Changeable Manufacturer : Channel Well Technology(Guangzhou) Co., Ltd
Ethernet Cable	NETGEAR	N/A	-	Signal Line: 1.96M non-shielded and without core

4. Simultaneously transmission combination.

Combination	Technology	
1	WLAN 2.4 GHz WLAN 5 GHz	
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.		

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Antenna Type	Dipole
Connector Type	ipex(MHF)
Antenna Gain	Directional Gain (dBi)
2400~2483.5 MHz	3.91
5150~5250 MHz	5.06
5250~5350 MHz	5.14
5470~5725 MHz	5.24
5725~5850 MHz	5.39

^{*}The detailed antenna information, please refer to the BV CPS Directional Gain Measurement Report no.: RFBBQZ-WTW-P24100623-5.

Antenna No.	Gain (dBi) 5850 MHz	Antenna Type	Connector Type
Ant. 0	3.78	Dipole	ipex(MHF)
Ant. 1	3.84	Dipole	ipex(MHF)
Ant. 2	3.00	Dipole	ipex(MHF)

^{*}Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

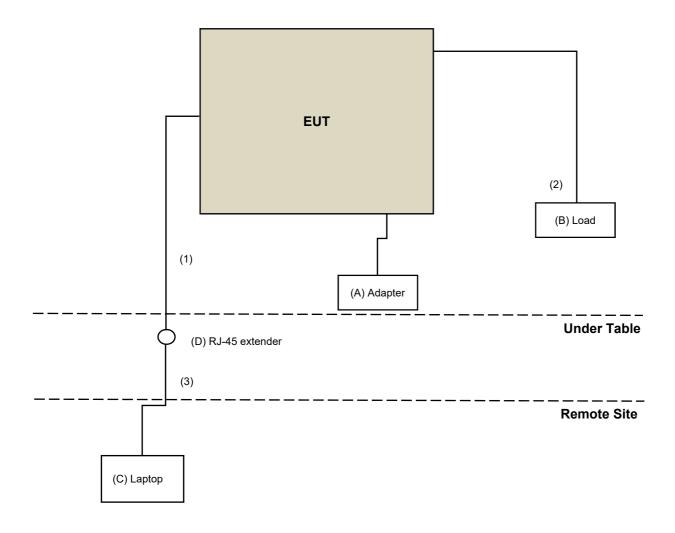
Report No.: RFBBQZ-WTW-P24100623-4 Page No. 7 / 28 Report Format Version: 7.1.0

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Worst Case:	The EUT is designed to be positioned on the Z-Plane only.

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Combination	Mode	Tested Channel
Unwanted Emissions below 1 GHz	1	802.11b	6
Offwarted Effissions below 1 GHz	I	802.11be (EHT80)	171
Unwanted Emissions above 1 GHz	4	802.11b	6
Onwanted Emissions above 1 GHZ	I	802.11be (EHT80)	171
Conducted Out of Band Emissions	4	802.11b	6
Conducted Out of Band Emissions	l	802.11be (EHT80)	171


Report No.: RFBBQZ-WTW-P24100623-4 Page No. 8 / 28 Report Format Version: 7.1.0

3.4 Test Program Used and Operation Descriptions

Controlling software Manual Tool 3.3.0.8 has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.5 Connection Diagram of EUT and Peripheral Devices

3.6 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Adapter	NETGEAR	2AED030FC	332-11712-01	N/A	Supplied by applicant
В	Load	N/A	N/A	N/A	N/A	Provided by Lab
С	Laptop	DELL	E5430	2RL3YW1	N/A	Provided by Lab
D	RJ-45 extender	N/A	N/A	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	RJ-45 Cable	1	1.96	No	N/A	Accessory of EUT
2	RJ-45 Cable	3	1.5	No	N/A	Provided by Lab
3	RJ-45 Cable	1	10	No	N/A	Provided by Lab

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 9 / 28 Report Format Version: 7.1.0

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower inn-co GmbH	MA 4000	010303	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-155	2024/10/14	2025/10/13
EMI Test Receiver R&S	ESR3	102782	2024/12/10	2025/12/9
Loop Antenna TESEQ	HLA 6121	45745	2024/8/21	2025/8/20
Preamplifier Agilent	8447D	2944A10631	2024/5/1	2025/4/30
Preamplifier EMCI	EMC001340	980201	2024/9/24	2025/9/23
RF Coaxial Cable Woken	8D-FB	Cable-CH4-01	2024/7/6	2025/7/5
Signal & Spectrum Analyzer R&S	FSW43	101582	2024/4/12	2025/4/11
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 3.

2. Tested Date: 2025/1/10

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 10 / 28 Report Format Version: 7.1.0

4.2 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower inn-co GmbH	MA 4000	010303	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	5	N/A	N/A
EMI Test Receiver R&S	ESR3	102782	2024/12/10	2025/12/9
	BBHA 9120D	9120D-408	2024/11/10	2025/11/9
Horn Antenna		9170-480	2024/11/10	2025/11/9
Schwarzbeck	BBHA 9170	BBHA9170241	2024/10/18	2025/10/17
		BBHA9170243	2024/11/10	2025/11/9
Preamplifier EMCI	EMC 184045	980116	2024/9/24	2025/9/23
Preamplifier Keysight	83017A	MY53270295	2024/5/1	2025/4/30
RF Coaxial Cable	EMC102-KM-KM-600	150928	2024/7/6	2025/7/5
EMCI	EMC102-KM-KM-3000	150929	2024/7/6	2025/7/5
RF Coaxial Cable	011005157404	Cable-CH4-03(250724)	2024/5/1	2025/4/30
HUBER+SUHNER	SUCOFLEX 104	MY 13380+295012/04	2024/5/1	2025/4/30
Signal & Spectrum Analyzer R&S	FSW43	101582	2024/4/12	2025/4/11
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 3.

2. Tested Date: 2025/1/13

4.3 Conducted Out of Band Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Signal & Spectrum Analyzer R&S	FSV3044	101105	2024/2/27	2025/2/26
Software BV	ADT_RF Test Software V7.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2025/1/20

5 Limits of Test Items

5.1 Unwanted Emissions below 1 GHz

For FCC 15.247:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

For FCC 15.407:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 12 / 28 Report Format Version: 7.1.0

5.2 Unwanted Emissions above 1 GHz

For FCC 15.247:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

For FCC 15.407 transmitters operating in the 5.150-5.850 GHz band:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To	Limit	
789033 D02 General UNII Test Procedure New Rules	Field Strength at 3 m	
v02r01	PK: 74 (dBµV/m)	AV: 54 (dBμV/m)

Applicable To	EIRP Limit	Equivalent Field Strength at 3 m
15.407(b)(1)	PK: -27 (dBm/MHz)	PK: 68.2 (dBμV/m) *
15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2 (dBμV/m) *
15.407(b)(3)	PK: -27 (dBm/MHz)	PK: 68.2 (dBμV/m) *
15.407(b)(4)(i)	PK: -27 (dBm/MHz) *1 PK: 10 (dBm/MHz) *2 PK: 15.6 (dBm/MHz) *3 PK: 27 (dBm/MHz) *4	PK: 68.2 (dBμV/m) *1 PK: 105.2 (dBμV/m) *2 PK: 110.8 (dBμV/m) *3 PK: 122.2 (dBμV/m) *4

^{*1} beyond 75 MHz or more above of the band edge.

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{10000000 \sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 13 / 28 Report Format Version: 7.1.0

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

For transmitters operating in the 5.850-5.925 GHz band:

- (i) For an indoor access point or subordinate device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of 15 dBm/MHz and shall decrease linearly to an e.i.r.p. of −7 dBm/MHz at or above 5.925 GHz.
- (ii) For a client device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of −5 dBm/MHz and shall decrease linearly to an e.i.r.p. of −27 dBm/MHz at or above 5.925 GHz.
- (iii) For a client device or indoor access point or subordinate device, all emissions below 5.725 GHz shall not exceed an e.i.r.p. of −27 dBm/MHz at 5.65 GHz increasing linearly to 10 dBm/MHz at 5.7 GHz, and from 5.7 GHz increasing linearly to a level of 15.6 dBm/MHz at 5.72 GHz, and from 5.72 GHz increasing linearly to a level of 27 dBm/MHz at 5.725 GHz.

Note:

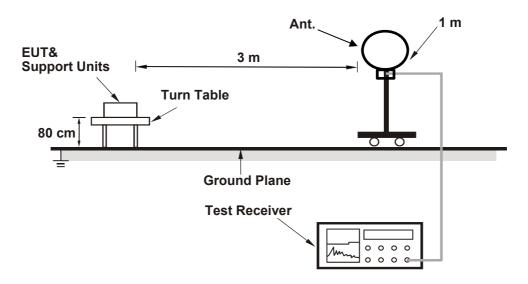
The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

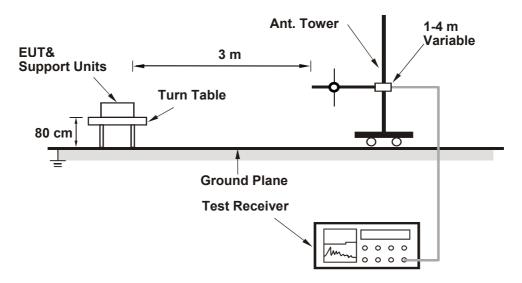
5.3 Conducted Out of Band Emissions

Below 30 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 14 / 28 Report Format Version: 7.1.0



6 Test Arrangements


6.1 Unwanted Emissions below 1 GHz

6.1.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.1.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

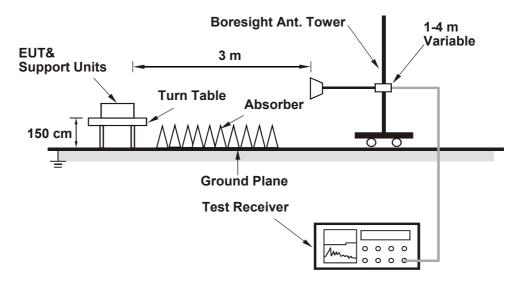
Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 16 / 28 Report Format Version: 7.1.0

6.2 Unwanted Emissions above 1 GHz

6.2.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 17 / 28 Report Format Version: 7.1.0

6.3 Conducted Out of Band Emissions

6.3.1 Test Setup

6.3.2 Test Procedure

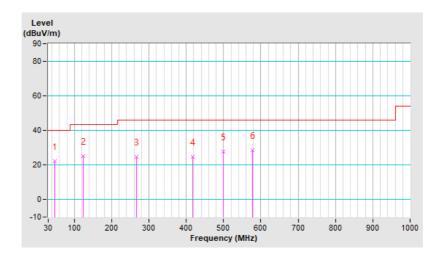
MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

Report No.: RFBBQZ-WTW-P24100623-4 Page No. 18 / 28 Report Format Version: 7.1.0

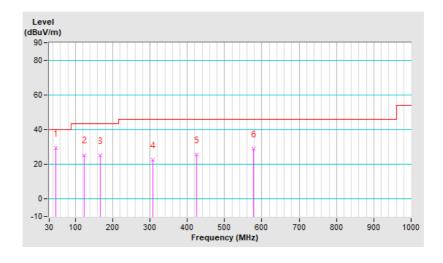

7 Test Results of Test Item

7.1 Unwanted Emissions below 1 GHz

Combination	1		
Frequency Range	1.3() MH7 ~ 1 (3H7	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	1120 Vac 60 Hz	Environmental Conditions	23 °C, 67 % RH
Tested By	Titan Hsu		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	48.28	22.2 QP	40.0	-17.8	1.00 H	279	31.1	-8.9		
2	124.19	25.1 QP	43.5	-18.4	1.49 H	259	35.7	-10.6		
3	266.17	24.8 QP	46.0	-21.2	1.00 H	269	33.2	-8.4		
4	418	24.9 QP	46.0	-21.1	1.99 H	128	30.1	-5.2		
5	499.54	27.7 QP	46.0	-18.3	1.00 H	338	31.3	-3.6		
6	578.26	28.5 QP	46.0	-17.5	1.49 H	75	30.4	-1.9		

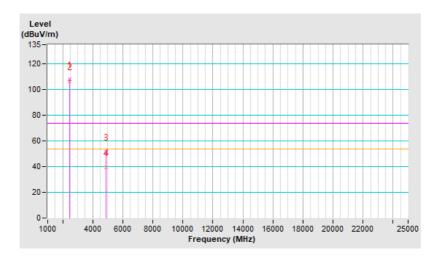
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



			VERITAS
Combination	1		
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23 °C, 67 % RH
Tested By	Titan Hsu		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	48.28	29.4 QP	40.0	-10.6	1.00 V	0	38.3	-8.9		
2	124.19	25.4 QP	43.5	-18.1	2.00 V	186	36.0	-10.6		
3	166.36	25.3 QP	43.5	-18.2	1.00 V	282	34.1	-8.8		
4	308.35	22.5 QP	46.0	-23.5	1.00 V	149	29.5	-7.0		
5	425.03	25.4 QP	46.0	-20.6	1.00 V	358	30.4	-5.0		
6	576.86	28.8 QP	46.0	-17.2	1.00 V	319	30.8	-2.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

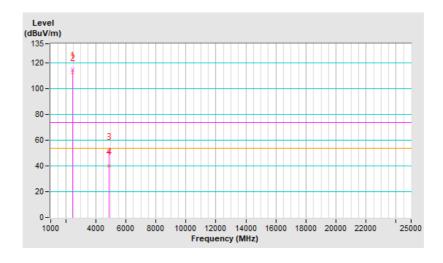

7.2 Unwanted Emissions above 1 GHz

FCC 15.247

Combination	1		
Frequency Range	1 GHz ~ 25 GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23 °C, 66 % RH
Tested By	Titan Hsu		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	No Frequency Level Limit Margin Height Angle Value					Correction Factor (dB/m)				
1	*2437	108.4 PK			2.80 H	32	73.5	34.9		
2	*2437	106.3 AV			2.80 H	32	71.4	34.9		
3	4874	51.2 PK	74.0	-22.8	1.90 H	92	37.8	13.4		
4	4874	39.3 AV	54.0	-14.7	1.90 H	92	25.9	13.4		

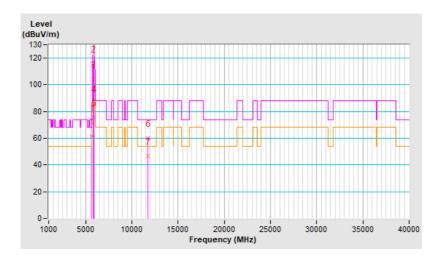
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.



			VERITAS
Combination	1		
Frequency Range	1 GHz ~ 25 GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23 °C, 66 % RH
Tested By	Titan Hsu		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	No Frequency Level Limit Margin Height Angle Value F						Correction Factor (dB/m)			
1	*2437	115.1 PK			2.35 V	119	80.2	34.9		
2	*2437	112.5 AV			2.35 V	119	77.6	34.9		
3	4874	51.5 PK	74.0	-22.5	2.59 V	60	38.1	13.4		
4	4874	39.9 AV	54.0	-14.1	2.59 V	60	26.5	13.4		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

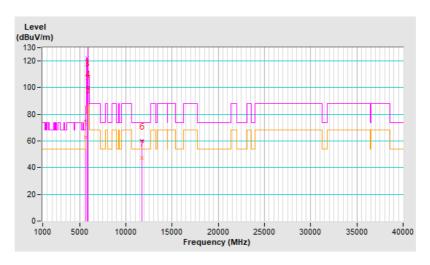


FCC 15.407

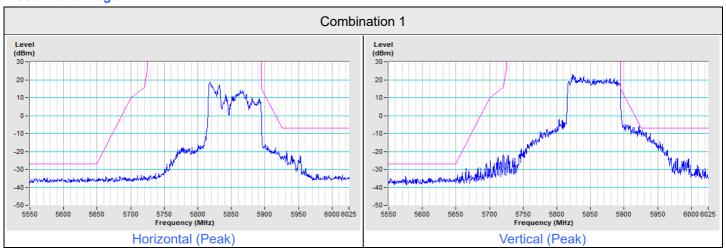
Combination	1		
Frequency Range	1 GHz ~ 40 GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23 °C, 66 % RH
Tested By	Titan Hsu		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	#5650	61.5 PK	68.2	-6.7	1.59 H	106	48.0	13.5		
2	*5855	115.9 PK			1.59 H	106	71.2	44.7		
3	*5855	104.0 AV			1.59 H	106	59.3	44.7		
4	#5895	86.2 PK	110.2	-24.0	1.59 H	106	72.2	14.0		
5	#5925	75.4 PK	88.2	-12.8	1.59 H	106	61.3	14.1		
6	11710	60.0 PK	74.0	-14.0	1.90 H	319	37.8	22.2		
7	11710	46.7 AV	54.0	-7.3	1.90 H	319	24.5	22.2		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- 6. " # ": The radiated frequency is out of the restricted band.

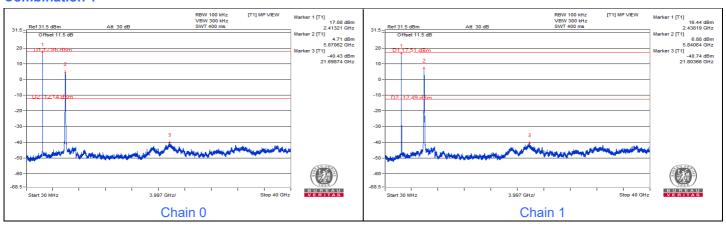


			VERITAS
Combination	1		
Frequency Range	1 (¬H7 ~ Δ() (¬H7		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak
Input Power	1120 Vac 60 Hz	Environmental Conditions	23 °C, 66 % RH
Tested By	Titan Hsu		


	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	#5650	62.7 PK	68.2	-5.5	1.35 V	5	49.2	13.5		
2	*5855	122.3 PK			1.35 V	5	77.6	44.7		
3	*5855	107.6 AV			1.35 V	5	62.9	44.7		
4	#5895	98.9 PK	110.2	-11.3	1.35 V	5	84.9	14.0		
5	#5925	87.6 PK	88.2	-0.6	1.35 V	5	73.5	14.1		
6	11710	60.2 PK	74.0	-13.8	1.50 V	169	38.0	22.2		
7	11710	47.1 AV	54.0	-6.9	1.50 V	169	24.9	22.2		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- 6. " # ": The radiated frequency is out of the restricted band.

Plot of Band Edge



7.3 Conducted Out of Band Emissions

Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 65% RH	Tested By:	Chris Lin
--------------	----------------	---------------------------	--------------	------------	-----------

Combination 1

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> **Web Site:** <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ---

1988 to provide our best

Report Format Version: 7.1.0