

FCC Test Report

FCC ID : PY314300284

Equipment : 5G Wireless Card

Model No. : N600

Brand Name : NETGEAR

Applicant : NETGEAR, Inc.

Address : 350 East Plumeria Drive, San Jose, California

95134, USA

Standard : 47 CFR FCC Part 15.407

Received Date : May 21, 2014

Tested Date : May 21 ~ Jul. 18, 2014

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

Report No.: FR462302AN Report Version: Rev. 01 Page: 1 of 45

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	8
1.5	Testing Applied Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Emission Bandwidth	14
3.3	RF Output Power	16
3.4	Peak Power Spectral Density	18
3.5	Transmitter Radiated and Band Edge Emissions	20
3.6	Frequency Stability	43
4	TEST LABORATORY INFORMATION	45

Release Record

Report No.	Version	Description	Issued Date
FR462302AN	Rev. 01	Initial issue	Aug. 21, 2014

Report No.: FR462302AN Page: 3 of 45

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.184MHz 47.43 (Margin -6.85dB) - AV	Pass
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 15600.00MHz 53.90 (Margin -0.10dB) – AV	Pass
15.209	Naulateu Liilissions	[dBuV/m at 3m]: 5149.95MHz 53.90 (Margin -0.10dB) - AV	F 055
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: 20.16	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR462302AN Page: 4 of 45

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information								
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS			
5150-5250	а	5180-5240	36-48 [4]	2	6-54 Mbps			
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	MCS 0-15			
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	MCS 0-15			
5150-5250	ac (VHT20)	5180-5240	36-48 [4]	2	MCS 0-8			
5150-5250	ac (VHT40)	5190-5230	38-46 [2]	2	MCS 0-9			
5150-5250	ac (VHT80)	5210	42 [1]	2	MCS 0-9			

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

1.1.2 Antenna Details

Ant. No.	Model	Typo	Connector	Antenna Gain (dBi)	
	Wodei	Туре	Connector	5150~5250 MHz	5725~5850 MHz
1	90VEAA15 G05	dipole	I-PEX	3.10	4.22
2	90VEAA15 G06	dipole	I-PEX	4.15	4.23

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host
-------------------	------------------

1.1.4 Accessories

N/A

Report No.: FR462302AN Page: 5 of 45

1.1.5 Channel List

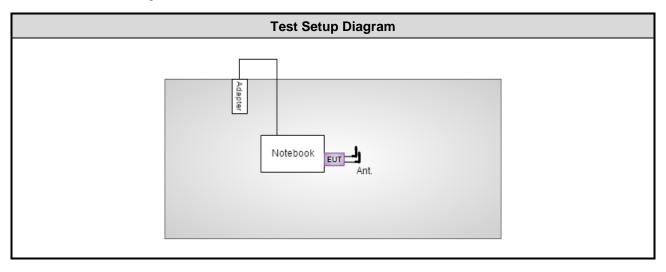
For Frequency band 5150-5250 MHz						
802.11 a / l	HT20 / VHT20	HT40 /	VHT40			
Channel	Channel Frequency(MHz)		Frequency(MHz)			
36	5180	38	5190			
40	5200	46	5230			
44	5220	VH	Т80			
48	5240	42	5210			

1.1.6 Test Tool and Duty Cycle

Test Tool	MT7662E, Version 1.0.3.2					
	Mode	Duty cycle (%)	Duty factor (dB)			
	11a 88.16%		0.55			
Duty Cycle and Duty Factor	VHT20	88.00%	0.56			
	VHT40	84.33%	0.74			
	VHT80	62.33%	2.05			

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11a	5180	12/16
11a	5200	12/16
11a	5240	12/16
HT20	5180	12/16
HT20	5200	12/16
HT20	5240	12/16
HT40	5190	12/15
HT40	5230	11/15
VHT20	5180	12/16
VHT20	5200	12/16
VHT20	5240	12/16
VHT40	5190	12/15
VHT40	5230	11/15
VHT80	5210	0E/11


Report No.: FR462302AN Page: 6 of 45

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model FCC ID Signal cable / Length (m)						
1	Notebook	DELL	E6430	DoC			

1.3 Test Setup Chart

Report No.: FR462302AN Page: 7 of 45

1.4 The Equipment List

Test Item Conducted Emission								
Test Site	Conduction room 1 / (CO01-WS)							
Instrument	Instrument Manufacturer Model No. Serial No. Calibration Date Calibration Unti							
EMC Receiver	R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014			
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 23, 2013	Nov. 22, 2014			
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127-666	Dec. 04, 2013	Dec. 03, 2014			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Apr. 23, 2014	Apr. 22, 2015			
50 ohm terminal (Support Unit)	NA	50	04	Apr. 18, 2014	Apr. 17, 2015			

Test Item	Radiated Emission							
Test Site	966 chamber 2 / (03CH02-WS)							
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration Until							
Spectrum Analyzer	R&S	FSV40	101499	Feb. 08, 2014	Feb. 07, 2015			
Spectrum Analyzer	Agilent	N9030A	MY52350930	Oct. 19, 2013	Oct. 18, 2014			
Receiver	R&S	ESR3	101657	Jan. 18, 2014	Jan. 17, 2015			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Jan. 08, 2014	Jan. 07, 2015			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Jan. 07, 2014	Jan. 06, 2015			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Dec. 27, 2013	Dec. 26, 2014			
Preamplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014			
Preamplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014			
Preamplifier	WM	TF-130N-R1	923365	Oct. 23, 2013	Oct. 22, 2014			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 17, 2013	Dec. 16, 2014			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 17, 2013	Dec. 16, 2014			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 17, 2013	Dec. 16, 2014			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 17, 2013	Dec. 16, 2014			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 17, 2013	Dec. 16, 2014			
Note: Calibration Inte	rval of instruments listed	d above is one year.						

Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014		
Note: Calibration Interval of instruments listed above is two year.							

Report No.: FR462302AN Page: 8 of 45

Test Item	RF Conducted							
Test Site	(TH01-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2014	Feb. 16, 2015			
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 11, 2013	Dec. 10, 2014			
Power Meter	Anritsu	ML2495A	1241002	Oct. 24, 2013	Oct. 23, 2014			
Power Sensor	Anritsu	MA2411B	1207366	Oct. 24, 2013	Oct. 23, 2014			
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.							

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC KDB 412172

FCC 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±34.134 Hz					
Conducted power	±0.808 dB					
Frequency error	±34.134 Hz					
Temperature	±0.6 °C					
Conducted emission	±2.670 dB					
AC conducted emission	±2.92 dB					
Radiated emission ≤ 1GHz	±3.26 dB					
Radiated emission > 1GHz	±4.94 dB					

Report No.: FR462302AN Page: 9 of 45

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 63%	Skys Huang
Radiated Emissions	03CH02-WS	20-25°C / 65-68%	Anderson Hong Aska Huang
RF Conducted	TH01-WS	22°C / 64%	Brad Wu

FCC site registration No.: 657002IC site registration No.: 10807A-2

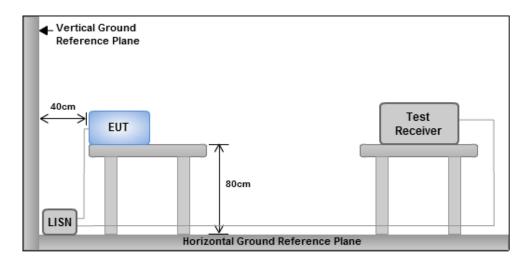
2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	VHT40	5230	MCS 0	
Radiated Emissions ≤1GHz	VHT40	5230	MCS 0	
	11a	5180 / 5200 / 5240	6 Mbps	
	HT20	5180 / 5200 / 5240	MCS 0	
RF Output Power	HT40	5190 / 5230	MCS 0	
The Guiput's ower	VHT20	5180 / 5200 / 5240	MCS 0	
	VHT40	5190 / 5230	MCS 0	
	VHT80	5210	MCS 0	
	11a	5180 / 5200 / 5240	6 Mbps	
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0	
Emission Bandwidth Peak Power Spectral Density	VHT40	5190 / 5230	MCS 0	
Total Swor opposition Donolly	VHT80	5210	MCS 0	
Frequency Stability	Un-modulation	5200		

Report No.: FR462302AN Page: 10 of 45

3 Transmitter Test Results

3.1 Conducted Emissions

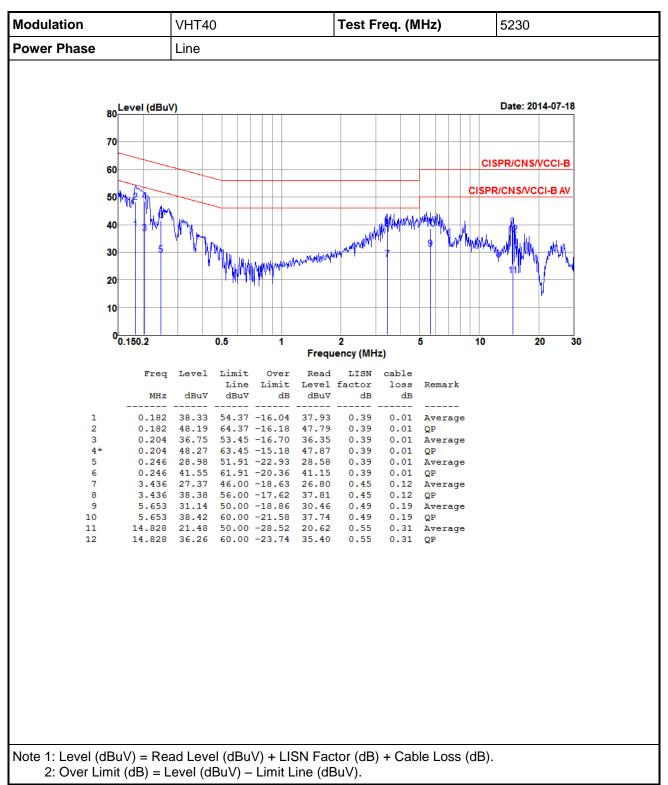

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

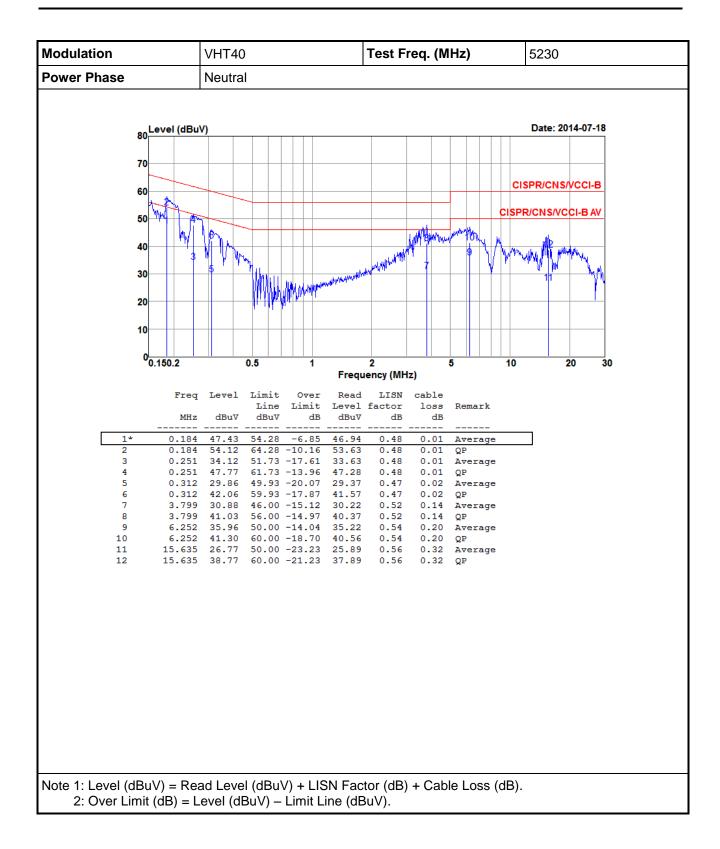
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR462302AN Page: 11 of 45



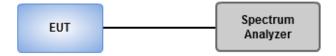
3.1.4 Test Result of Conducted Emissions

Report No.: FR462302AN Page: 12 of 45

Report No.: FR462302AN Page: 13 of 45

3.2 Emission Bandwidth

3.2.1 Test Procedures

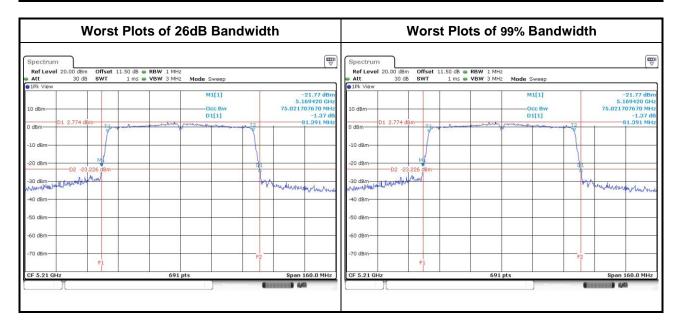

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

3.2.2 Test Setup



Report No.: FR462302AN Page: 14 of 45

3.2.3 Test Result of Emission Bandwidth

	Emission Bandwidth									
Mode	N	Freq.	2	26dB Band	width (MHz)		99% Bandv	vidth (MHz)	
Wode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3
11a	2	5180	26.84	26.32			17.02	17.02		
11a	2	5200	27.42	23.88			17.95	17.89		
11a	2	5240	28.99	30.09			17.19	18.06		
VHT20	2	5180	26.38	26.43			17.95	17.95		
VHT20	2	5200	25.39	23.88			17.89	17.83		
VHT20	2	5240	27.19	27.77			17.95	17.95		
VHT40	2	5190	42.44	41.51			36.47	36.58		
VHT40	2	5230	80.22	72.65			37.64	37.51		
VHT80	2	5210	81.16	81.39			75.02	75.02		

Report No.: FR462302AN Page: 15 of 45

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Оре	erating Mode	Limit
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)
	Indoor access point	Conducted Power: 1 W
	Fixed point-to-point access points	Conducted Power: 1 W
	Mobile and portable client devices	Conducted Power: 250 mW

3.3.2 Test Procedures

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

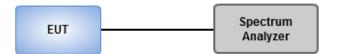
Report No.: FR462302AN Page: 16 of 45

3.3.4 Test Result of Maximum Conducted Output Power

			Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	2	5180	15.68	16.02			76.977	18.86	30.00
11a	2	5200	15.72	16.15			78.535	18.95	30.00
11a	2	5240	16.15	16.70			87.983	19.44	30.00
HT20	2	5180	15.02	15.38			66.283	18.21	30.00
HT20	2	5200	14.95	15.43			66.175	18.21	30.00
HT20	2	5240	15.68	16.28			79.445	19.00	30.00
HT40	2	5190	12.66	12.31			35.472	15.50	30.00
HT40	2	5230	17.14	17.01			101.995	20.09	30.00
VHT20	2	5180	15.06	15.42			66.896	18.25	30.00
VHT20	2	5200	15.01	15.51			67.259	18.28	30.00
VHT20	2	5240	15.74	16.32			80.352	19.05	30.00
VHT40	2	5190	12.73	12.42			36.208	15.59	30.00
VHT40	2	5230	17.22	17.08			103.773	20.16	30.00
VHT80	2	5210	10.61	10.83			23.614	13.73	30.00

Report No.: FR462302AN Page: 17 of 45

3.4 Peak Power Spectral Density


3.4.1 Limit of Peak Power Spectral Density

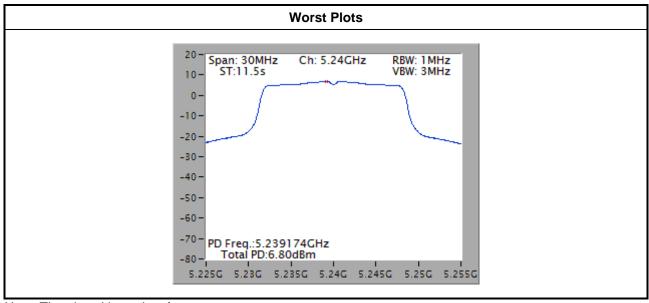
Оре	erating Mode	Limit
	Outdoor access point	17 dBm / MHz
\boxtimes	Indoor access point	17 dBm / MHz
	Fixed point-to-point access points	17 dBm / MHz
	Mobile and portable client devices	11 dBm / MHz

3.4.2 Test Procedures

- ☐ Method SA-1
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative
 - Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add $10 \log(1/x)$, where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR462302AN Page: 18 of 45



Test Result of Peak Power Spectral Density 3.4.4

	For Frequency band 5150-5250 MHz									
Co	ndition	1		Peak Power Spec	ctral Density (dBm)					
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm)	Duty Factor (dB)	PPSD with D.F (dBm)	PPSD Limit (dBm)				
11a	2	5180	5.77	0.55	6.32	16.35				
11a	2	5200	5.95	0.55	6.50	16.35				
11a	2	5240	6.80	0.55	7.35	16.35				
VHT20	2	5180	4.93	0.56	5.49	16.35				
VHT20	2	5200	5.03	0.56	5.59	16.35				
VHT20	2	5240	5.43	0.56	5.99	16.35				
VHT40	2	5190	-1.37	0.74	-0.63	16.35				
VHT40	2	5230	3.35	0.74	4.09	16.35				
VHT80	2	5210	-6.82	2.05	-4.77	16.35				

Note:

- 1. D.F is duty factor.
- Test result is bin-by-bin summing measured value of each TX port. Directional gain = $10 * log((10^{3.1720}+10^{4.15/20})^2/2) = 6.65 dBi > 6 dBi$ Limit shall be reduced to 17 dBm (6.65 dBi 6 dBi) = 16.35 dBm

Note: The plot without duty factor

Report No.: FR462302AN Page: 19 of 45

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

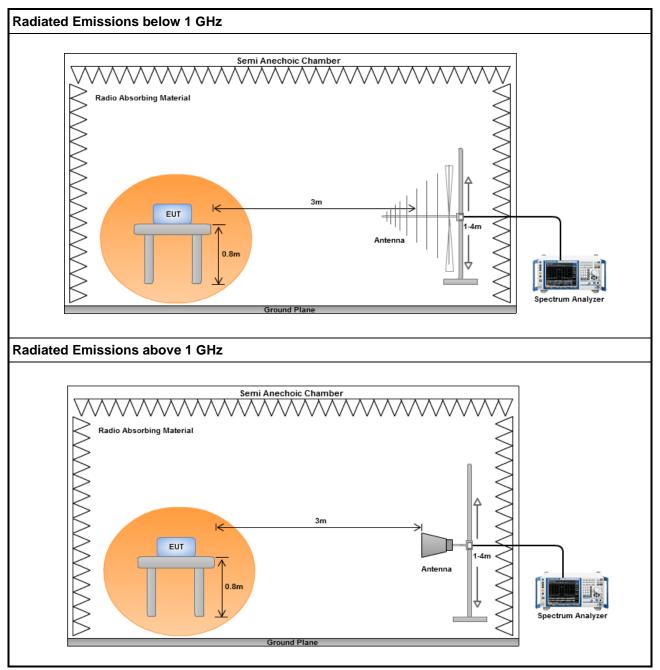
Un-restricted band emissions above 1GHz Limit						
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]					

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR462302AN Page: 20 of 45

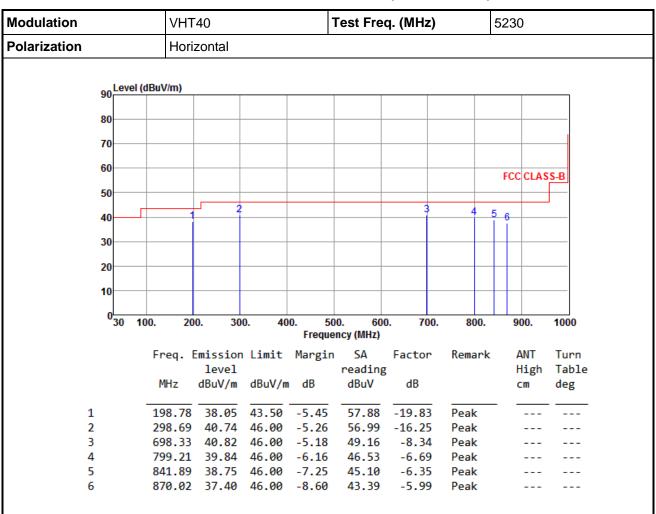
3.5.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR462302AN Page: 21 of 45


3.5.3 Test Setup

Report No.: FR462302AN Page: 22 of 45

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR462302AN Page: 23 of 45

Modulation		\	VHT40				Test Freq. (MHz)			523	5230		
Polarization			Vertical										
	90 Lev	/el (dBuV/ı	m)										
	90												
	80												
	70												
	60									FC	C CLAS	S-B	
	50												
	40	1						2	3	4 5		6	
	40							î					
	30												
	20												
	10												
	030	100.	20	0. 30	0. 40	0. 50	00. 600	0. 700.	80	0.	900.	1000	
						Freque	ency (MHz)						
		Fre	q. E	mission	Limit	Margin		Factor	Rema	rk	ANT	Turn	
				level			reading				High	Table	
		MH	Z	dBuV/m	dBuV/m	dB	dBuV	dB			cm	deg	
1		127	.00	37.88	43.50	-5.62	56.34	-18.46	Peak				
2			.36	37.57	46.00	-8.43	45.93	-8.36	Peak				
3		770	.11	39.40	46.00	-6.60	46.52	-7.12	Peak				
4			.89	38.73	46.00	-7.27	45.08	-6.35	Peak				
5		868	.08	38.82	46.00	-7.18	44.84	-6.02	Peak				

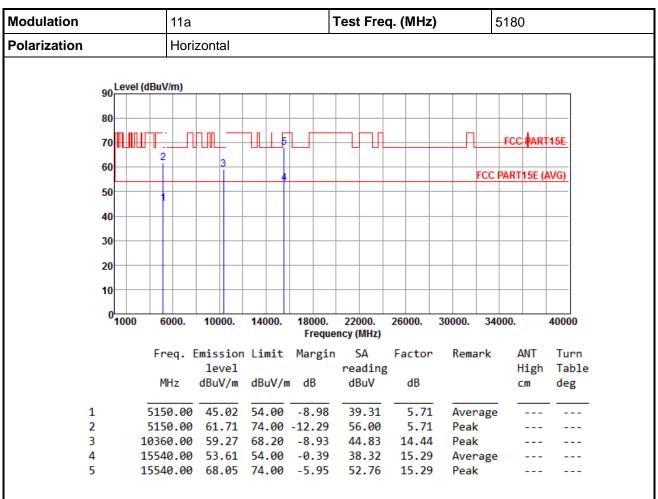
Peak

-4.86

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

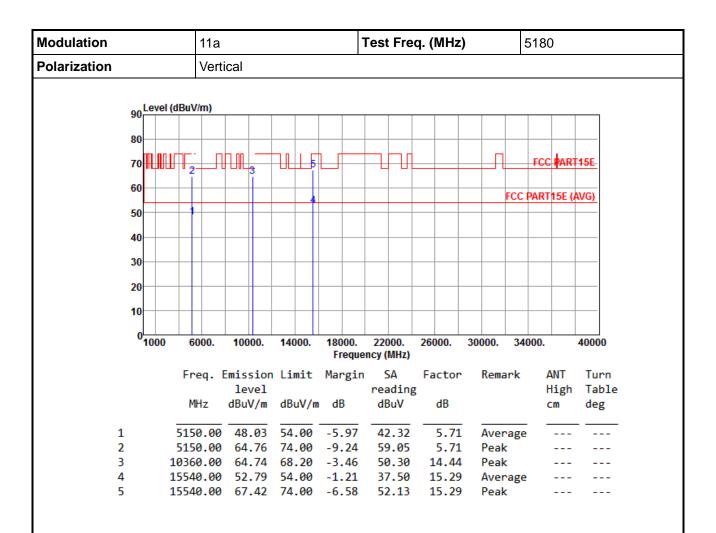
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

974.78 38.96 54.00 -15.04 43.82

Report No.: FR462302AN Page: 24 of 45

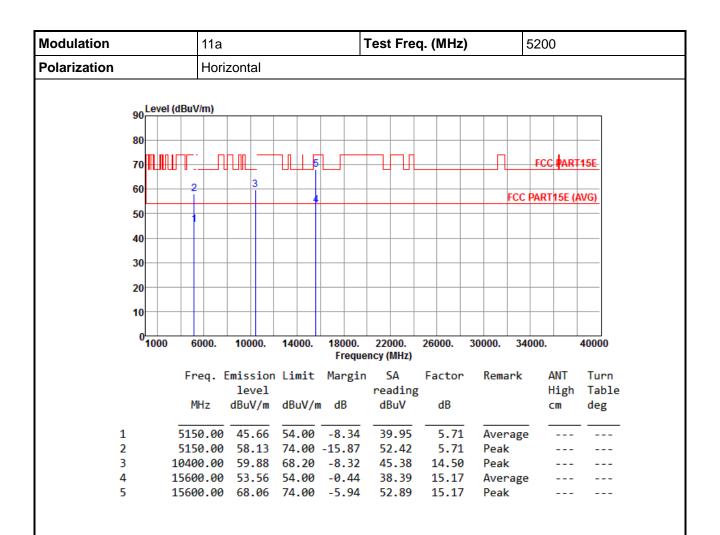
3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

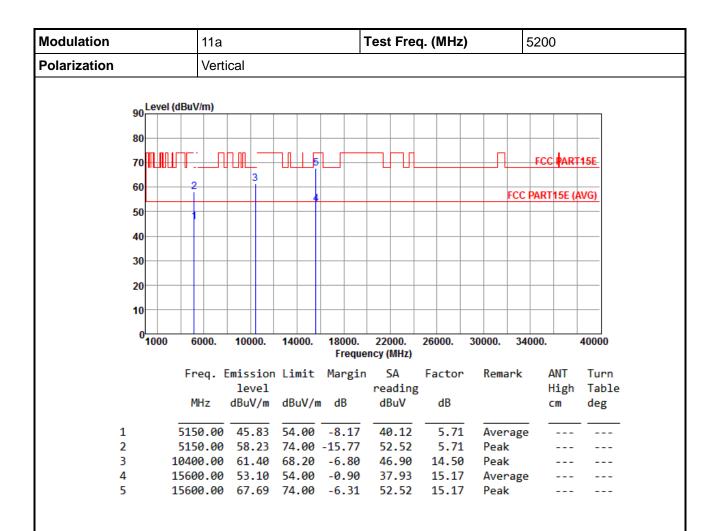
Report No.: FR462302AN Page: 25 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

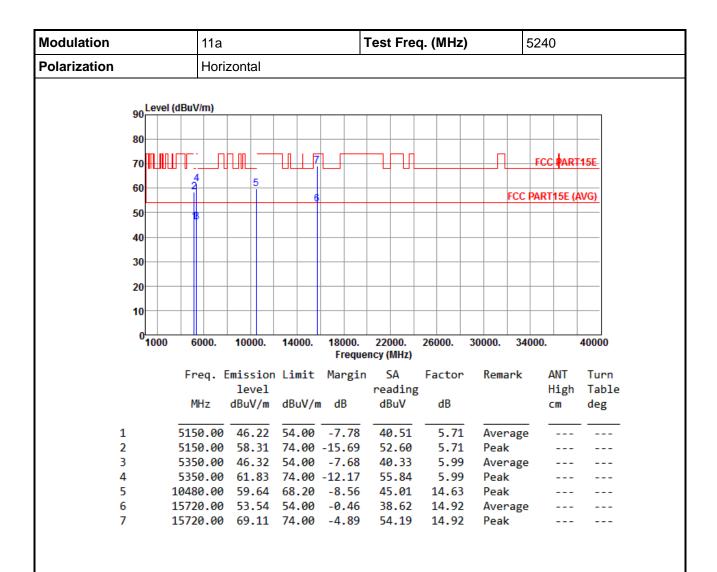
Report No.: FR462302AN Page: 26 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

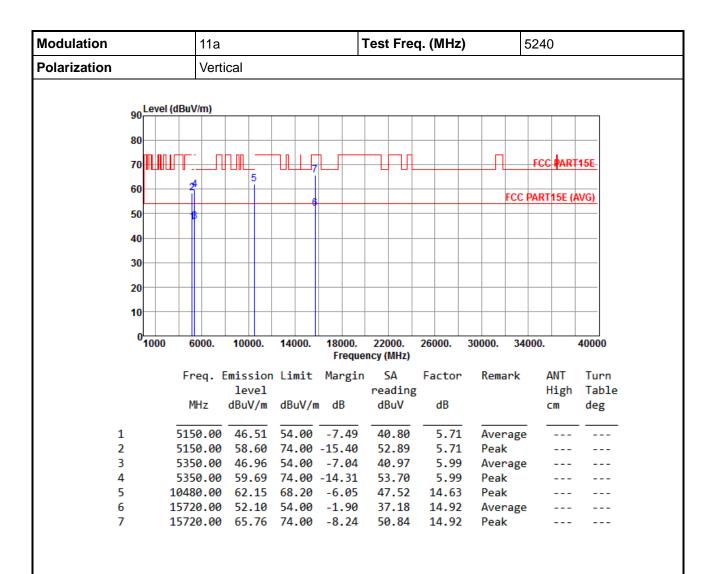
Report No.: FR462302AN Page: 27 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

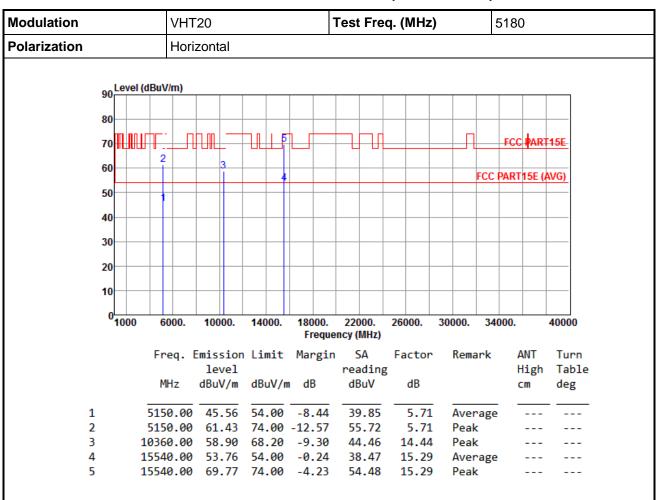
Report No.: FR462302AN Page: 28 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

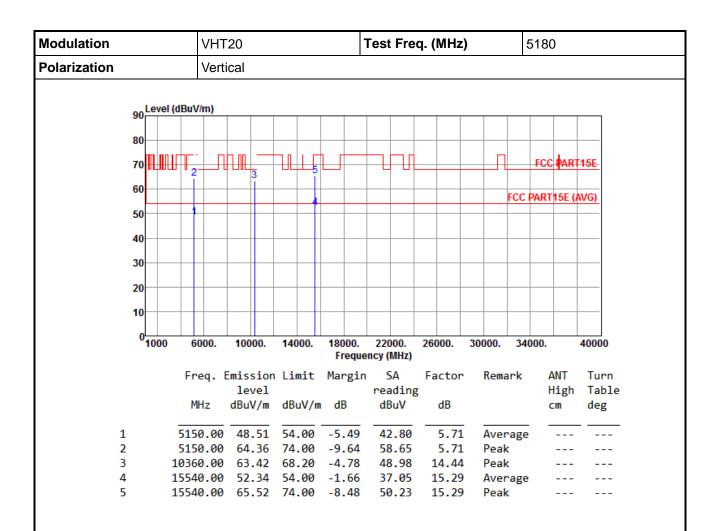
Report No.: FR462302AN Page: 29 of 45


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR462302AN Page: 30 of 45

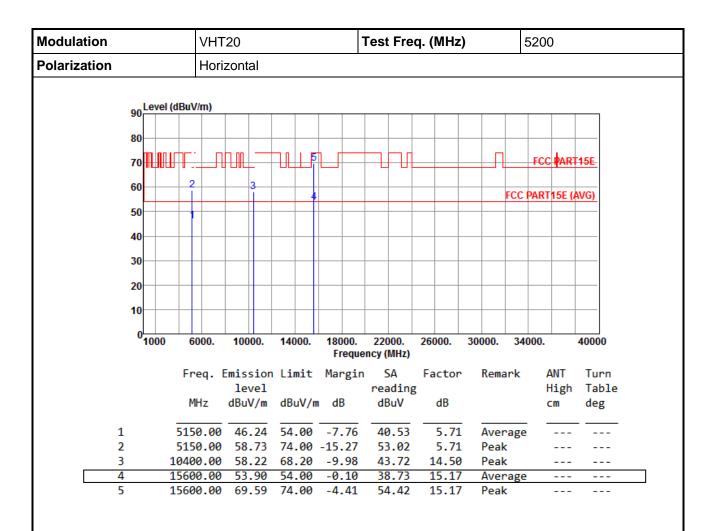
3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

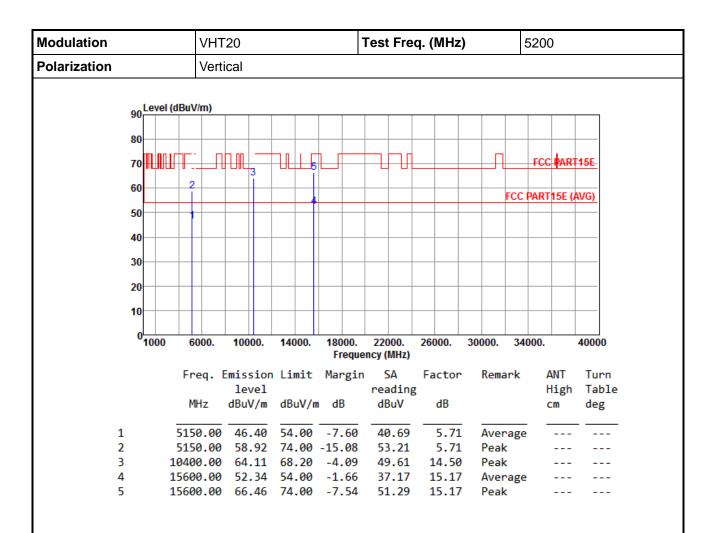
Report No.: FR462302AN Page: 31 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

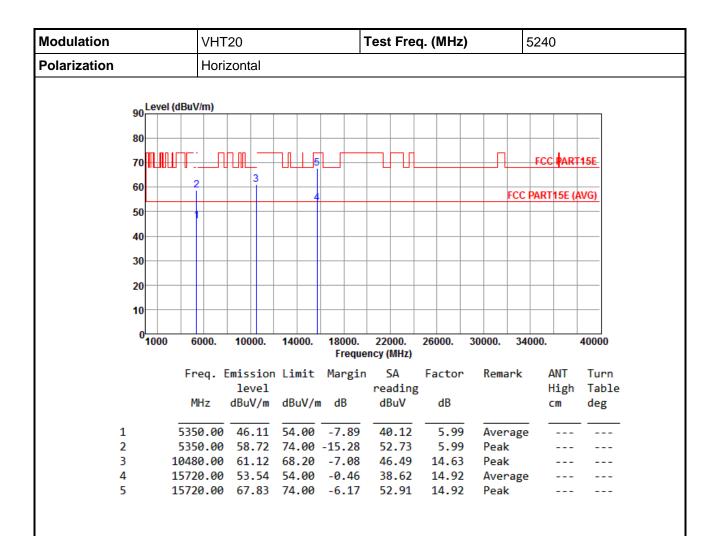
Report No.: FR462302AN Page: 32 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

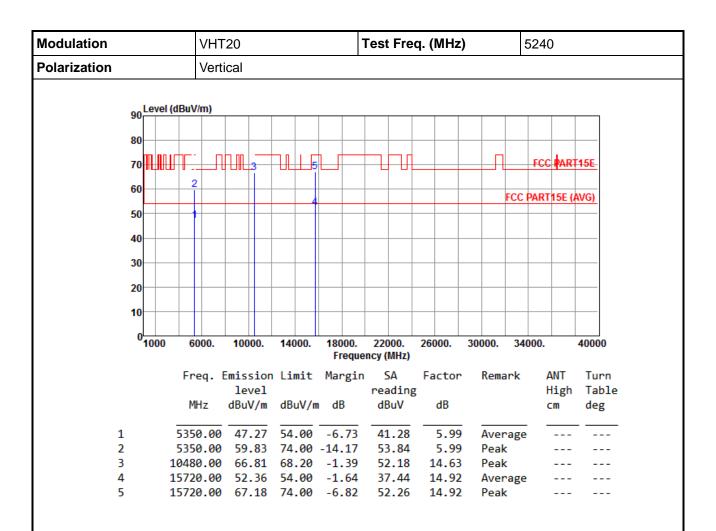
Report No.: FR462302AN Page: 33 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

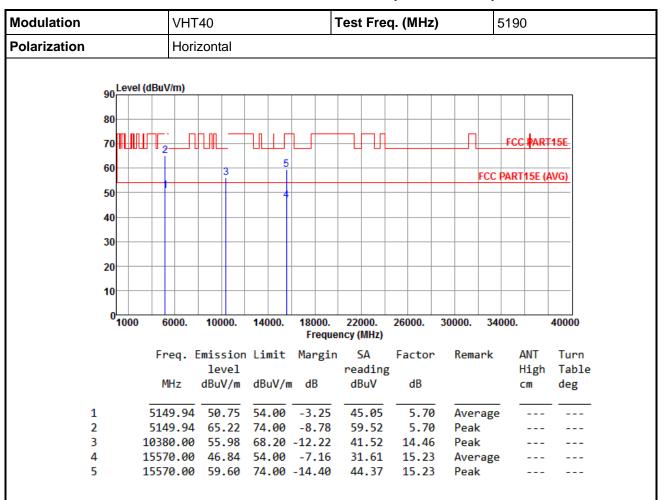
Report No.: FR462302AN Page: 34 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

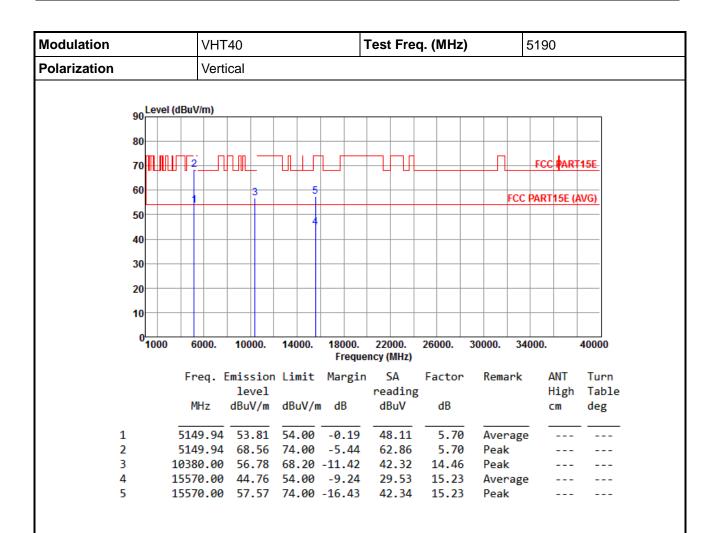
Report No.: FR462302AN Page: 35 of 45


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR462302AN Page: 36 of 45

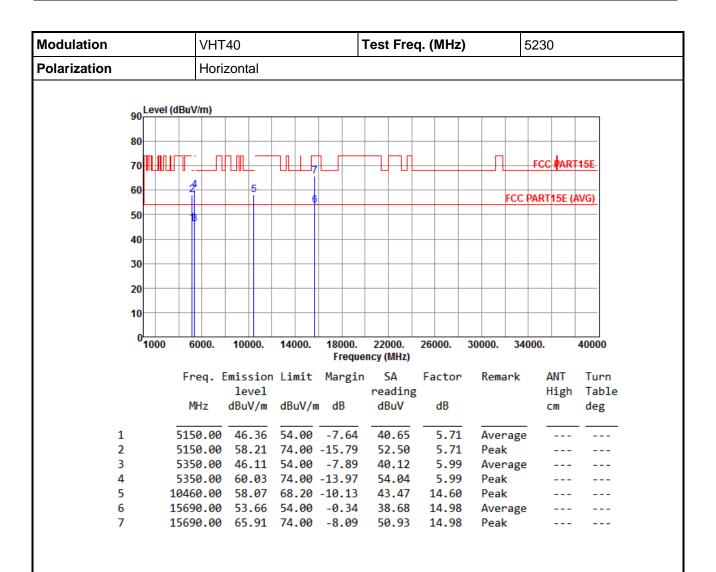
3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

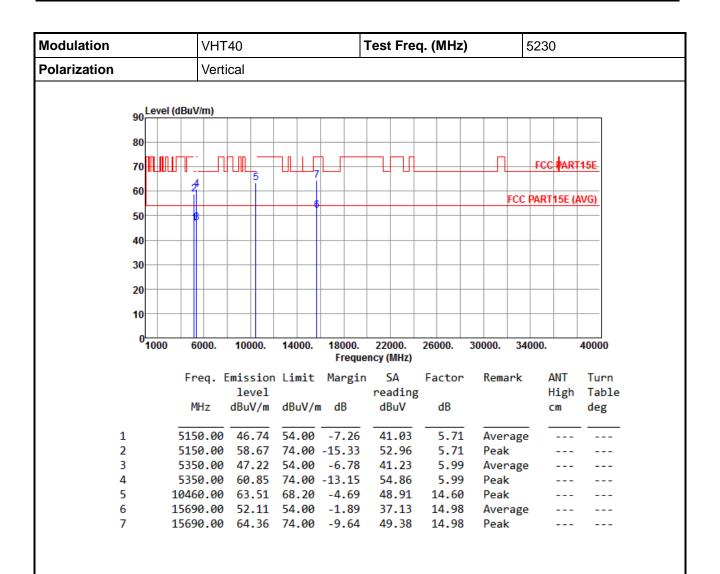
Report No.: FR462302AN Page: 37 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

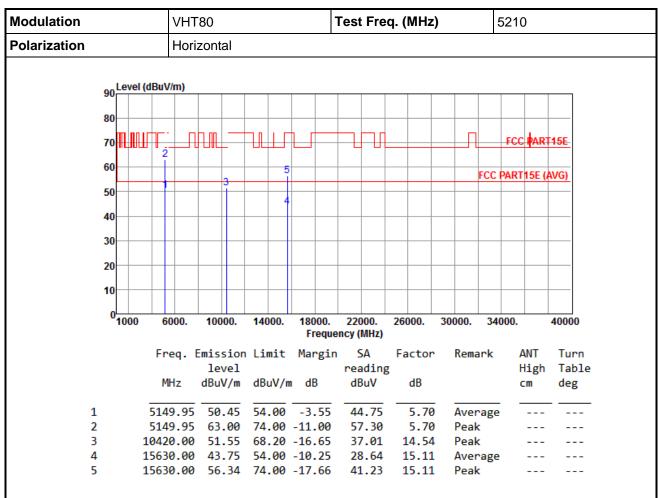
Report No.: FR462302AN Page: 38 of 45



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

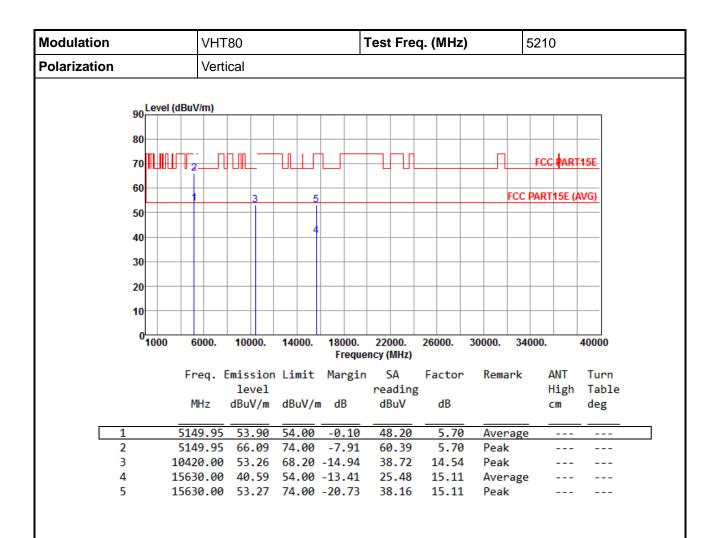
Report No.: FR462302AN Page: 39 of 45


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR462302AN Page: 40 of 45

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR462302AN Page: 41 of 45

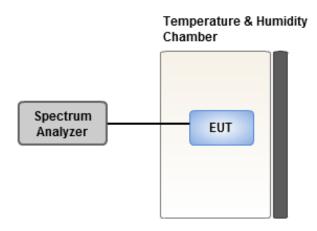
^{*}Factor includes antenna factor, cable loss and amplifier gain

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR462302AN Page: 42 of 45

3.6 Frequency Stability


3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR462302AN Page: 43 of 45

3.6.4 Test Result of Frequency Stability

Frequency: 5200 MHz	Frequency Drift (ppm)								
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes					
T20°CVmax	0.34	0.48	0.38	0.76					
T20°CVmin	4.58	4.96	4.79	4.85					
T50°CVnom	4.55	4.08	4.58	4.90					
T40°CVnom	-2.39	-1.57	-2.49	-2.63					
T30°CVnom	0.73	0.77	0.71	1.41					
T20°CVnom	0.97	1.20	1.41	0.85					
T10°CVnom	-0.40	-0.91	0.28	-0.09					
T0°CVnom	-0.46	-0.38	-0.05	-0.34					
T-10°CVnom	-0.33	-0.28	-0.54	-0.18					
T-20°CVnom	-0.93	-0.16	-0.25	-0.32					
T-30°CVnom	-0.01	-0.12	0.03	0.48					
Vnom [Vac]: 120	V	max [Vac]: 138	Vmin	Vmin [Vac]: 102					
Tnom [°C]: 20	Tı	max [°C]: 50	Tmin [Tmin [°C]: -30					

Report No.: FR462302AN Page: 44 of 45

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR462302AN Page: 45 of 45