

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134, USA
FCC ID	PY314200264

Product Name	AC3200 Smart WiFi Router
Brand Name	NETGEAR
Model No.	R8000
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	Apr. 22, 2014
Final Test Date	May 16, 2014
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 General UNII Test Procedures Effective 2014 DR02-41759, KDB 662911 D01 v02r01, KDB644545 D01v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CER	RTIFICATE OF COMPLIANCE	
2. SUM	MMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	
3.1.		
3.2.	Accessories	5
3.3.	Table for Filed Antenna	6
3.4.	Table for Carrier Frequencies	10
3.5.	Table for Test Modes	11
3.6.	Table for Testing Locations	13
3.7.	Table for Supporting Units	14
3.8.	Table for Parameters of Test Software Setting	15
3.9.	EUT Operation during Test	16
3.10	D. Duty Cycle	17
3.11	1. Test Configurations	20
4. TEST	T RESULT	24
4.1.		
4.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	30
4.3.		
4.4.	Power Spectral Density Measurement	41
4.5.	Radiated Emissions Measurement	47
4.6.	Band Edge Emissions Measurement	62
4.7.	Frequency Stability Measurement	68
4.8.	Antenna Requirements	70
5. LIST	OF MEASURING EQUIPMENTS	71
6. ME/	ASUREMENT UNCERTAINTY	73
APPEN	IDIX A. TEST PHOTOS	A1 ~ A5
APPEN	IDIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
ΔΡΡΕΝΙ	IDIX C. PADIATED EMISSION COI OCATION REPORT	C1 ~ C3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR450713AB	Rev. 01	Initial issue of report	May 29, 2014

Certificate No.: CB10305210

1. CERTIFICATE OF COMPLIANCE

Product Name : AC3200 Smart WiFl Router

Brand Name : NETGEAR
Model No. : R8000

Applicant : NETGEAR, Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 22, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

FCC ID: PY314200264

Page No. ; 1 of 75 Issued Date : May 29, 2014

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	3.25 dB			
4.2 15.407(a)		26dB Spectrum Bandwidth and 99% Occupied	Complies	-			
4.2 13.407(d)	Bandwidth	Complies					
4.3	15.407(a)	Maximum Conducted Output Power	Complies	2.19 dB			
4.4	15.407(a)	Power Spectral Density	Complies	2.44 dB			
4.5	15.407(b)	Radiated Emissions	Complies	3.12 dB			
4.6	15.407(b)	Band Edge Emissions	Complies	0.16 dB			
4.7	15.407(g)	Frequency Stability	Complies	-			
4.8	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description		
Product Type	WLAN (3TX, 3RX)		
Radio Type	Intentional Transceiver		
Power Type	From power adapter		
Modulation	see the below table for IEEE 802.11n/ac		
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)		
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac		
Frequency Range	5150 ~ 5250MHz		
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth		
	1 for 80MHz bandwidth		
Channel Band Width (99%)	802.11ac MCS0/Nss1 (VHT20): 27.52 MHz ;		
	802.11ac MCS0/Nss1 (VHT40): 56.64 MHz ;		
	802.11ac MCS0/Nss1 (VHT80): 76.16 MHz		
Maximum Conducted Output	802.11ac MCS0/Nss1 (VHT20): 25.99 dBm ;		
Power	802.11ac MCS0/Nss1 (VHT40): 25.19 dBm ;		
	802.11ac MCS0/Nss1 (VHT80): 17.85 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

 Report Format Version: Rev. 01
 Page No. : 3 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

IEEE 802.11a

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	4
Channel Band Width (99%)	29.76 MHz
Maximum Conducted Output	25.86 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description			
Communication Mode				Frame Based
Beamforming Function	\boxtimes	With beamforming		Without beamforming

Note: The EUT supports beamforming mode for 802 11n/ac in 2.4GHz/5GHz.

Antenna and Band width

Antenna	Three (TX)				
Band width Mode	20 MHz	40 MHz	80 MHz		
IEEE 802.11a	V	Х	Х		
IEEE 802.11n	V	V	Х		
IEEE 802.11ac	V	V	V		

 Report Format Version: Rev. 01
 Page No. : 4 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	3	MC\$ 0-23
802.11n (HT40)	3	MC\$ 0-23
802.11ac (VHT20)	3	MCS 0-9/Nss1-3
802.11ac (VHT40)	3	MCS 0-9/Nss1-3
802.11ac (VHT80)	3	MCS 0-9/Nss1-3

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 in 2.4GHz and support VHT20, VHT40, VHT80 in 5GHz.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	P/N	Rating		
Adapter 1	NETGEAR	NU60-H120500-I1	332-10122-03	Input: 100-240V~50/60Hz 1.4A Output: 12.0V, 5.0A		
Adapter 2	NETGEAR	AD8180LF	332-10318-01	Input: 100-240V~50/60Hz 1.5A Output: 12V, 5.0A		
Others						
AC Power Cable: Non-Shielded 1.8m						

RJ-45 Cable: Shielded, 1.5m

 Report Format Version: Rev. 01
 Page No. : 5 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector
1	NETGEAR	R8000	Dipole Antenna	I-PEX
2	NETGEAR	R8000	Dipole Antenna	I-PEX
3	NETGEAR	R8000	Dipole Antenna	I-PEX
4	NETGEAR	R8000	Dipole Antenna	I-PEX
5	NETGEAR	R8000	Dipole Antenna	I-PEX
6	NETGEAR	R8000	Dipole Antenna	I-PEX

		2.40	GHz	
Ant.	Frequency	Gain (dBi)		
		20MHz	40MHz	
	2412 MHz	1.76	-	
	2422 MHz	-	1.69	
1	2437 MHz	1.56	1.56	
	2452 MHz	-	1.47	
	2462 MHz	1.49	-	
	2412 MHz	1.76	-	
	2422 MHz	-	1.69	
2	2437 MHz	1.56	1.56	
	2452 MHz	-	1.47	
	2462 MHz	1.49	-	
	2412 MHz	1.76	-	
	2422 MHz	-	1.69	
3	2437 MHz	1.56	1.56	
	2452 MHz	-	1.47	
	2462 MHz	1.49	-	

			Gain (dBi)	
Ant.	Frequency		5GHz (Band 1)	
		20MHz	40MHz	80MHz
	5180 MHz	3.07	-	-
	5190 MHz	-	3.12	-
, [5200 MHz	3.09	-	-
1	5210 MHz	-	-	3.11
	5230 MHz	-	3.04	-
	5240 MHz	3.05	-	-
	5180 MHz	3.07	-	-
	5190 MHz	-	3.12	-
2	5200 MHz	3.09	-	-
2	5210 MHz	-	-	3.11
	5230 MHz	-	3.04	-
	5240 MHz	3.05	-	-
	5180 MHz	3.07	-	-
	5190 MHz	-	3.12	-
3	5200 MHz	3.09	-	-
3	5210 MHz	-	-	3.11
	5230 MHz	-	3.04	-
	5240 MHz	3.05	-	-

			Gain (dBi)	
Ant.	Frequency		5GHz (Band 4)	
		20MHz	40MHz	80MHz
	5745 MHz	2.06	-	-
	5755 MHz	-	2.08	-
,	5775 MHz	-	-	2.08
4	5785 MHz	2.08	-	-
	5795 MHz	-	2.20	-
	5825 MHz	2.15	-	-
	5745 MHz	2.06	-	-
	5755 MHz	-	2.08	-
5	5775 MHz	-	-	2.08
5	5785 MHz	2.08	-	-
	5795 MHz	-	2.20	-
	5825 MHz	2.15	-	-
	5745 MHz	2.06	-	-
	5755 MHz	-	2.08	-
4	5775 MHz	-	-	2.08
6	5785 MHz	2.08	-	-
	5795 MHz	-	2.20	-
	5825 MHz	2.15	-	-

Note:

The EUT supports beamforming mode for 802 11n/ac in 2.4GHz/5GHz.

<For 2.4GHz and 5GHz B1 Band:>

For IEEE 802.11a/b/g/n/ac mode (3TX/3RX)

Chain 1 · Chain 2 · and Chain 3 can be used as transmitting/receiving antennas.

Chain 1 · Chain 2 · and Chain 3 can transmit/receive signal simultaneously.

<For 5GHz B4 Band:>

For IEEE 802.11a/n/ac mode (3TX/3RX)

Chain 4 · Chain 5 · and Chain 6 can be used as transmitting/receiving antennas.

Chain 4 · Chain 5 · and Chain 6 can transmit/receive signal simultaneously.

 Report Format Version: Rev. 01
 Page No. : 9 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

For 80MHz bandwidth systems, use Channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz Band 1	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-

 Report Format Version: Rev. 01
 Page No. : 10 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mod	de	Data Rate	Channel	Chain
AC Power Conducted Emission	Normal Link		-	-	-
Max. Conducted Output Power	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
Power Spectral Density	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
26dB Spectrum Bandwidth	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
99% Occupied Bandwidth	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
Measurement	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
Peak Excursion	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
Band Edge Emission	11ac VHT20	Band 1	MCS0/Nss1	36/40/48	1+2+3
	11ac VHT40	Band 1	MCS0/Nss1	38/46	1+2+3
	11ac VHT80	Band 1	MCS0/Nss1	42	1+2+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+2+3
Frequency Stability	Un-modulation	າ	-	40	1+2+3

 Report Format Version: Rev. 01
 Page No. : 11 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation.

Note 2: There are two modes of EUT in 802.11n/ac, one is beamforming mode and the other is non-beamforming mode for 802.11n/ac. After evaluating, beamforming mode had been evaluated to be the worst case, so it was selected to test and record in this test report.

The following test modes were performed for all tests:

For Conducted Emission test:

- Mode 1. Normal Link with Adapter 1
- Mode 2. Normal Link with Adapter 2
- Mode 1 generated the worst test result, so it was recorded in this report.

For Radiated Emission test<Below 1GHz>:

- Mode 1. Laying with Adapter 1
- Mode 2. Laying with Adapter 2
- Mode 2 has been evaluated to be the worst case between Mode $1\sim2$, thus measurement for Mode 3 will follow this same test mode.
- Mode 3. Stand with AC Adapter 2
- Mode 3 generated the worst test result, so it was recorded in this report.

For Radiated Emission test<Above 1GHz>:

- Mode 1. Laying Antenna 0°C
- Mode 2. Laying Antenna 90°C
- Mode 3. Laying Antenna 130°C
- Mode 2 has been evaluated to be the worst case between Mode $1\sim3$, thus measurement for Mode 4 will follow this same test mode
- Mode 4. Stand Antenna 90°C
- Mode 2 generated the worst test result, so it was recorded in this report.

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with WLAN 2.4GHz, WLAN 5GHz Band1 and WLAN 5GHz Band4 function; therefore Co-location Maximum Permissible Exposure (Please refer to Appendix B) and Radiated Emission Co-location (please refer to Appendix C) tests are added for simultaneously transmit between WLAN 2.4GHz, WLAN 5GHz Band1 and WLAN 5GHz Band4 function.

 Report Format Version: Rev. 01
 Page No.
 : 12 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

3.6. Table for Testing Locations

	Test Site Location					
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	886	5-3-656-9065				
FAX:	FAX: 886-3-656-9085					
Test Site N	0.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-0	3CH01-CB SAC Hsin Chu 262045 IC 4086D -					
CO01-C	CO01-CB Conduction Hsin Chu 262045 IC 4086D -					
TH01-CE	3	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

 Report Format Version: Rev. 01
 Page No. : 13 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

3.7. Table for Supporting Units

For Test Site No: CO01-CB

	5. 100. Gine 1.00. G G G . G G					
Support Unit	Brand	Model	FCC ID			
NB	DELL	E6430	DoC			
NB	DELL	E6430	DoC			
NB	DELL	E6430	DoC			
NB	DELL	E6430	DoC			
NB	DELL	E6430	DoC			
Flash Disk	Silicon	I-Series	DoC			
Flash Disk 3.0	ADATA	C103	DoC			

For Test Site No: 03CH01-CB < Below 1GHz>

Support Unit	Brand	Model	FCC ID
Flash Disk 3.0	ADATA	C103	DoC
Flash Disk	Silicon	D33B01	DoC
NB	DELL	M1330	E2K4965AGNM
NB	DELL	M1340	E2K4965AGNM
NB	DELL	E6430	DoC
NB	DELL	D420	E2KWM3945ABG
NB	DELL	D420	E2KWM3945ABG

For Test Site No: 03CH01-CB < Above 1GHz > For Non-Beamforming

Support Unit	Brand	Model	FCC ID
NB	DELL	M1330	E2K4965AGNM

For Test Site No: 03CH01-CB < Above 1GHz > For Beamforming

Support Unit	Brand	Model	FCC ID
NB	DELL	M1330	E2K4965AGNM
NB	DELL	E6430	DoC
WLAN AC Dongle	Netgear	A6200	PY31220200

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC

 Report Format Version: Rev. 01
 Page No. : 14 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version	Telnet		
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS0/Nss1 VHT20	68	70	88

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	Telnet					
Frequency	5190 MHz	5230 MHz				
MCS0/Nss1 VHT40	66	90				

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	Telnet
Frequency	5210 MHz
MCS0/Nss1 VHT80	57

Power Parameters of IEEE 802.11a

Test Software Version	Telnet					
Frequency	5180 MHz	5200 MHz	5240 MHz			
802.11a	76	76	88			

: 15 of 75 Page No. FCC ID: PY314200264 Issued Date : May 29, 2014

3.9. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

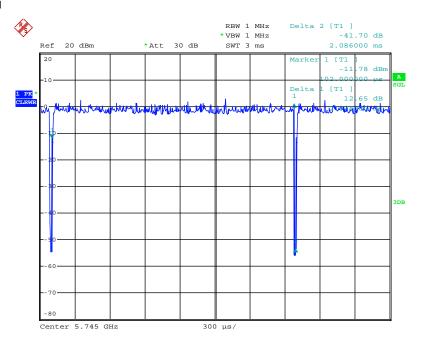
During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by WLAN AC Dongle and transmit duty cycle no less 98%

 Report Format Version: Rev. 01
 Page No. : 16 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014



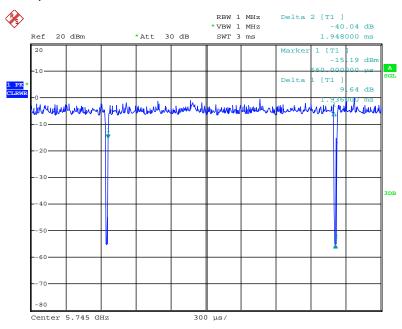
3.10. Duty Cycle

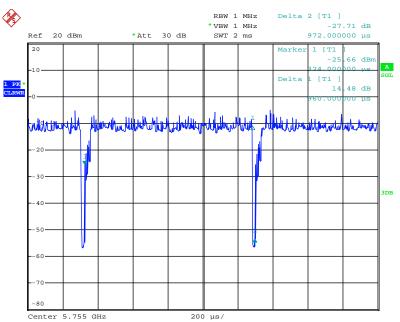
For non-beamforming mode:

IEEE 802.11a

Date: 16.MAY.2014 06:03:19

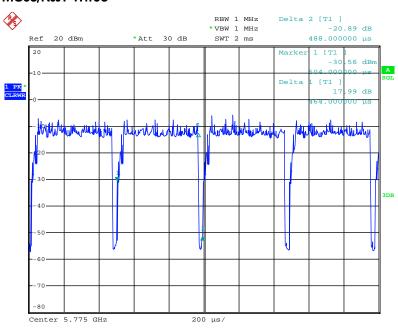
 Report Format Version: Rev. 01
 Page No. : 17 of 75


 FCC ID: PY314200264
 Issued Date : May 29, 2014


For beamforming mode:

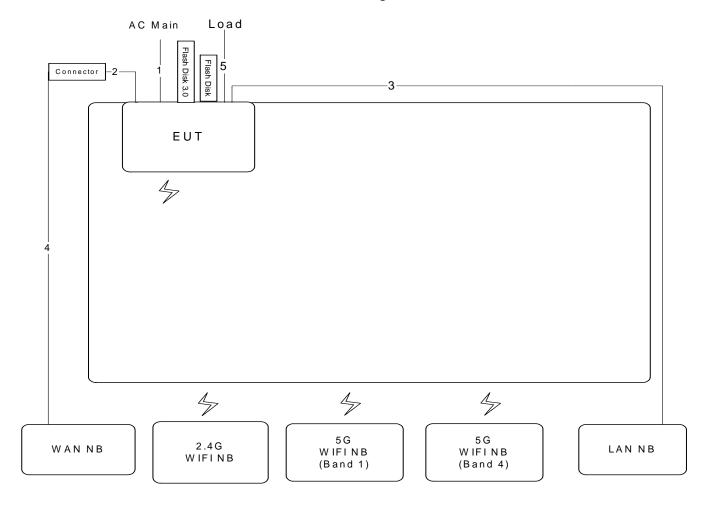
IEEE 802.11ac MCS0/Nss1 VHT20

Date: 16.MAY.2014 06:04:47


IEEE 802.11ac MCS0/Nss1 VHT40

Date: 16.MAY.2014 06:05:38

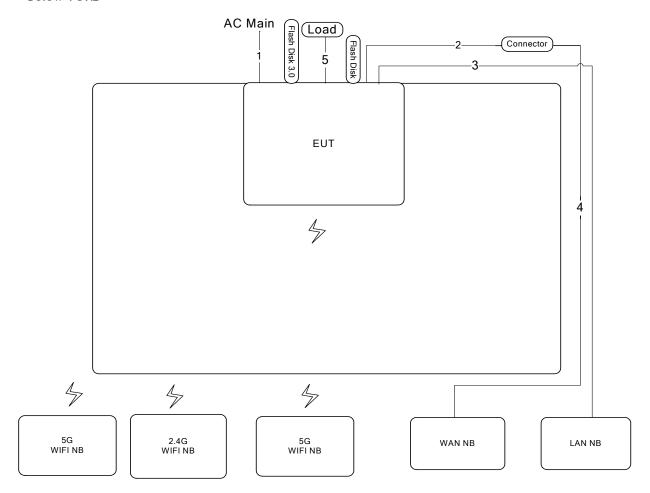
IEEE 802.11ac MCS0/Nss1 VHT80


Date: 16.MAY.2014 06:06:46

3.11.Test Configurations

3.11.1.AC Power Line Conduction Emissions Test Configuration

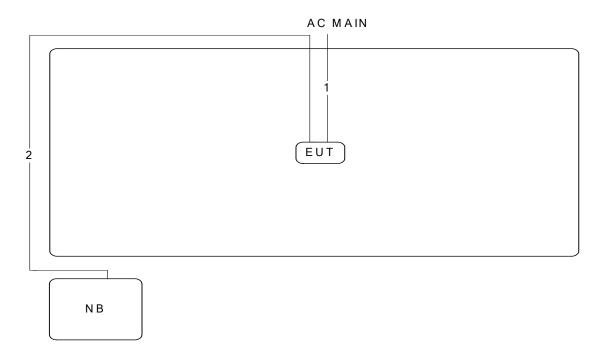
Item	Connection	Shield	Length(m)
1	Power cable	No	1.8m
2	RJ-45 cable	Yes	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	Yes	10m
5	RJ-45 cable*3	No	1.5m


 Report Format Version: Rev. 01
 Page No. : 20 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

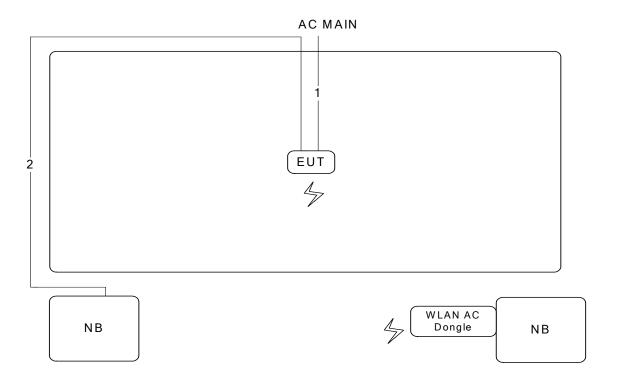
3.11.2. Radiation Emissions Test Configuration

<Below 1GHz>



Item	Connection	Shield	Length
1	Power cable	No	1.8m
2	RJ-45 cable	Yes	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable*3	No	lm

<Above 1GHz> For Non-Beamforming



Item	Connection	Shield	Length(m)
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m

<Above 1GHz> For Beamforming

Item	Connection	Shield	Length(m)
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

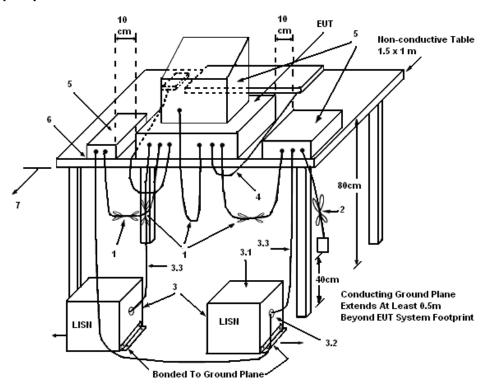
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 Report Format Version: Rev. 01
 Page No.
 : 24 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.1.4. Test Setup Layout

LEGEND:

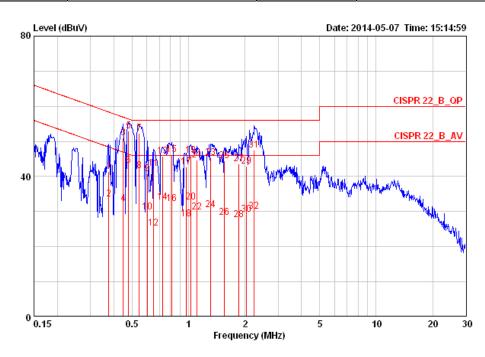
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


 Report Format Version: Rev. 01
 Page No.
 : 25 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

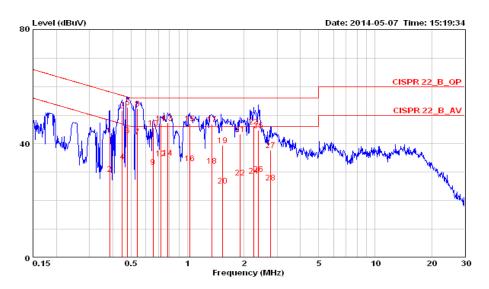
4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25°C	Humidity	54%
Test Engineer	Hank Huang	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

			0ver	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dB	dBuV	dB		
1	0.37512	41.34	-17.05	58.39	0.08	41.08	0.18	LINE	QP
2	0.37512	33.51	-14.88	48.39	0.08	33.25	0.18	LINE	AVERAGE
3	0.44916	50.93	-5.96	56.89	0.08	50.67	0.18	LINE	QP
4	0.44916	32.30	-14.59	46.89	0.08	32.04	0.18	LINE	AVERAGE
5 @	0.47865	52.95	-3.42	56.36	0.08	52.68	0.18	LINE	QP
6 @	0.47865	43.12	-3.25	46.36	0.08	42.85	0.18	LINE	AVERAGE
7 @	0.54644	52.37	-3.63	56.00	0.08	52.10	0.19	LINE	QP
8 @	0.54644	41.62	-4.38	46.00	0.08	41.35	0.19	LINE	AVERAGE
9	0.60112	40.66	-15.34	56.00	0.08	40.39	0.19	LINE	QP
10	0.60112	29.91	-16.09	46.00	0.08	29.64	0.19	LINE	AVERAGE
11	0.65084	42.30	-13.70	56.00	0.08	42.03	0.19	LINE	QP
12	0.65084	25.27	-20.73	46.00	0.08	25.00	0.19	LINE	AVERAGE
13	0.72744	45.75	-10.25	56.00	0.09	45.47	0.19	LINE	QP
14	0.72744	32.73	-13.27	46.00	0.09	32.45	0.19	LINE	AVERAGE
15	0.81306	46.19	-9.81	56.00	0.09	45.91	0.20	LINE	QP
16	0.81306	32.23	-13.77	46.00	0.09	31.95	0.20	LINE	AVERAGE
17	0.97354	42.70	-13.30	56.00	0.09	42.41	0.20	LINE	QP
18	0.97354	28.01	-17.99	46.00	0.09	27.72	0.20	LINE	AVERAGE
19	1.032	45.96	-10.04	56.00	0.09	45.67	0.20	LINE	QP
20	1.032	32.76	-13.24	46.00	0.09	32.47	0.20	LINE	AVERAGE
21	1.111	44.76	-11.24	56.00	0.09	44.46	0.21	LINE	QP
22	1.111	29.86	-16.14	46.00	0.09	29.56	0.21	LINE	AVERAGE
23	1.310	45.42	-10.58	56.00	0.10	45.10	0.22	LINE	QP
24	1.310	30.52	-15.48	46.00	0.10	30.20	0.22	LINE	AVERAGE

 Report Format Version: Rev. 01
 Page No. : 26 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014



	Freq	Level	Over Limit				Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBu∀	dB	dBuV	dВ		
25	1.552	44.47	-11.53	56.00	0.11	44.13	0.23	LINE	QP
26	1.552	28.30	-17.70	46.00	0.11	27.96	0.23	LINE	AVERAGE
27	1.858	43.56	-12.44	56.00	0.12	43.20	0.24	LINE	QP
28	1.858	27.67	-18.33	46.00	0.12	27.31	0.24	LINE	AVERAGE
29	2.033	43.04	-12.96	56.00	0.12	42.67	0.25	LINE	QP
30	2.033	29.10	-16.90	46.00	0.12	28.73	0.25	LINE	AVERAGE
31	2.237	47.60	-8.40	56.00	0.12	47.22	0.26	LINE	QP
32	2.237	30.03	-15.97	46.00	0.12	29.65	0.26	LINE	AVERAGE

Temperature	25°C	Humidity	54%
Test Engineer	Hank Huang	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

			0ver	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dB	dBuV	dВ		
1	0.38519	43.27	-14.90	58.17	0.09	43.00	0.18	NEUTRAL	QP
2	0.38519	29.39	-18.78	48.17	0.09	29.12	0.18	NEUTRAL	AVERAGE
3 ⊜	0.44916	51.68	-5.21	56.89	0.09	51.41	0.18	NEUTRAL	QP
4	0.44916	33.86	-13.03	46.89	0.09	33.59	0.18	NEUTRAL	AVERAGE
5 @	0.47865	52.67	-3.69	56.36	0.09	52.40	0.18	NEUTRAL	QP
6 @	0.47865	42.95	-3.41	46.36	0.09	42.68	0.18	NEUTRAL	AVERAGE
7 @	0.54068	42.42	-3.58	46.00	0.09	42.14	0.19	NEUTRAL	AVERAGE
8 @	0.54068	52.34	-3.66	56.00	0.09	52.06	0.19	NEUTRAL	QP
9	0.65430	31.81	-14.19	46.00	0.09	31.53	0.19	NEUTRAL	AVERAGE
10	0.65430	45.66	-10.34	56.00	0.09	45.38	0.19	NEUTRAL	QP
11	0.71977	47.12	-8.88	56.00	0.09	46.84	0.19	NEUTRAL	QP
12	0.71977	34.89	-11.11	46.00	0.09	34.61	0.19	NEUTRAL	AVERAGE
13	0.78761	47.40	-8.60	56.00	0.09	47.12	0.19	NEUTRAL	QP
14	0.78761	35.09	-10.91	46.00	0.09	34.81	0.19	NEUTRAL	AVERAGE
15	1.027	47.19	-8.81	56.00	0.09	46.90	0.20	NEUTRAL	QP
16	1.027	33.04	-12.96	46.00	0.09	32.75	0.20	NEUTRAL	AVERAGE
17	1.345	46.93	-9.07	56.00	0.10	46.61	0.22	NEUTRAL	QP
18	1.345	32.33	-13.67	46.00	0.10	32.01	0.22	NEUTRAL	AVERAGE
19	1.535	39.44	-16.56	56.00	0.11	39.10	0.23	NEUTRAL	QP
20	1.535	25.20	-20.80	46.00	0.11	24.86	0.23	NEUTRAL	AVERAGE
21	1.898	43.40	-12.60	56.00	0.12	43.04	0.25	NEUTRAL	QP
22	1.898	28.20	-17.80	46.00	0.12	27.84	0.25	NEUTRAL	AVERAGE
23	2.249	45.99	-10.01	56.00	0.13	45.61	0.26	NEUTRAL	QP
24	2.249	28.69	-17.31	46.00	0.13	28.31	0.26	NEUTRAL	AVERAGE

	Freq	Level		Limit Line			Cable Loss	Pol/Phase	Remark
	МН	dBuV	dB	dBuV	dB	dBuV	dB		
25	2.384	44.77	-11.23	56.00	0.13	44.38	0.26	NEUTRAL	QP
26	2.384	29.50	-16.50	46.00	0.13	29.11	0.26	NEUTRAL	AVERAGE
27	2.779	37.73	-18.27	56.00	0.14	37.32	0.27	NEUTRAL	QP
28	2.779	26.35	-19.65	46.00	0.14	25.94	0.27	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Deviation

There is no deviation with the original standard.

4.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 30 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.2.6. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	21.12	18.08
40	5200 MHz	20.80	18.24
48	5240 MHz	38.72	27.52

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	39.36	36.48
46	5230 MHz	84.16	56.64

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	80.64	76.16

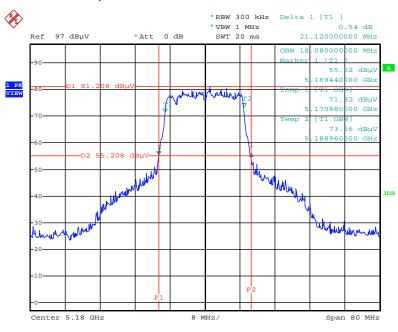
 Report Format Version: Rev. 01
 Page No. : 31 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

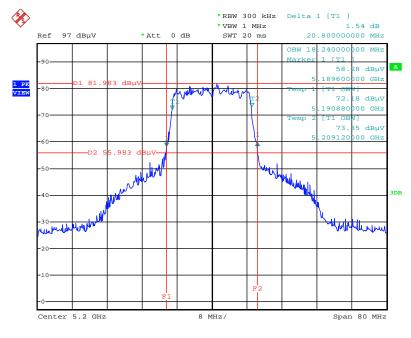
Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	23.04	18.88
40	5200 MHz	23.36	18.40
48	5240 MHz	41.92	29.76


 Report Format Version: Rev. 01
 Page No. : 32 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

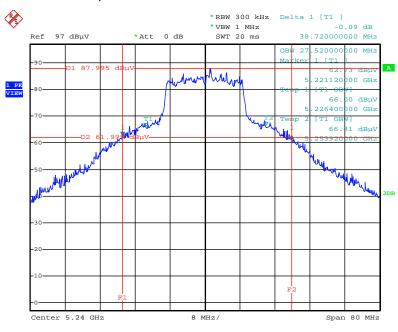


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3 / 5180 MHz

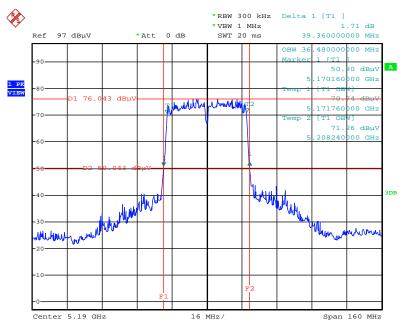
Date: 16.MAY.2014 03:30:59

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3 / 5200 MHz

Date: 16.MAY.2014 03:31:44


 Report Format Version: Rev. 01
 Page No. : 33 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

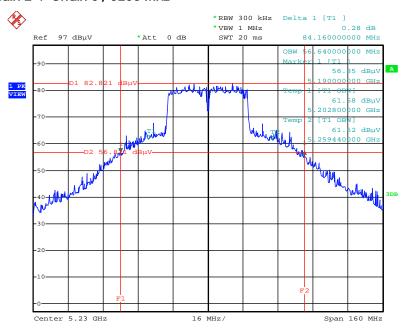


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

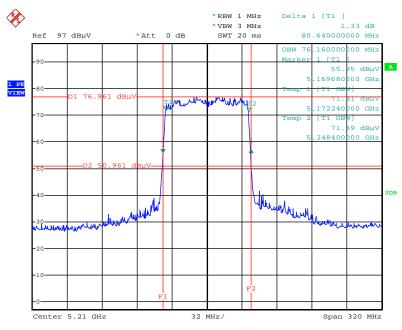
Date: 16.MAY.2014 03:32:17

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3 / 5190 MHz

Date: 16.MAY.2014 03:34:15


 Report Format Version: Rev. 01
 Page No. : 34 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

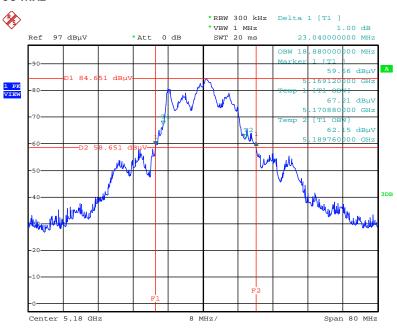


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz

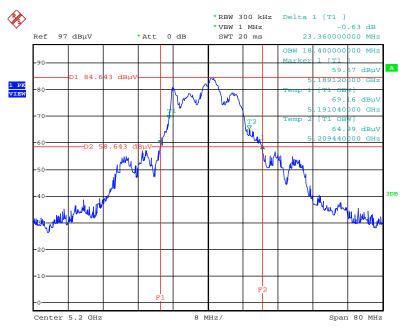
Date: 16.MAY.2014 03:34:51

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 + Chain 3 / 5210 MHz

Date: 16.MAY.2014 03:36:11


 Report Format Version: Rev. 01
 Page No. : 35 of 75

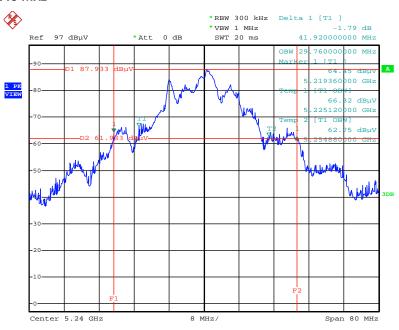
 FCC ID: PY314200264
 Issued Date : May 29, 2014



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5180 MHz

Date: 16.MAY.2014 03:25:44

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5200 MHz


Date: 16.MAY.2014 03:27:14

 Report Format Version: Rev. 01
 Page No. : 36 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

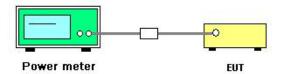
Date: 16.MAY.2014 03:33:02

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 General UNII Test Procedures Effective 2014 DR02-41759.
- Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 38 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac
Test Date	May 15, 2014		

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3

Channol	Channel Frequency Conducted Power (dBm)			Max. Limit	Result		
Channe	riequericy	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
36	5180 MHz	17.39	17.13	17.21	22.02	28.16	Complies
40	5200 MHz	18.14	18.18	18.03	22.89	28.14	Complies
48	5240 MHz	22.01	21.16	20.31	25.99	28.18	Complies

Note:
$$DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2} \\ Note: DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2} \\ N_{ANT} \end{bmatrix} = 7.84 dBi > 6 dBi, So 5180 MHz Limit = 30-(7.84-6) = 28.16 dBm$$

Note: $DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2} \\ N_{ANT} \end{bmatrix} = 7.86 dBi > 6 dBi, So 5200 MHz Limit = 30-(7.86-6) = 28.14 dBm$

Note: $DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2} \\ N_{ANT} \end{bmatrix} = 7.82 dBi > 6 dBi, So 5240 MHz Limit = 30-(7.82-6) = 28.18 dBm$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3

Channel	conducted Power (dBm)				Max. Limit	Result	
Charlie	riequericy	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
38	5190 MHz	14.88	13.95	15.14	19.46	28.11	Complies
46	5230 MHz	21.09	20.26	19.82	25.19	28.19	Complies

Note:
$$_{DirectionalGain = 10 \cdot log} \frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} = 7.89 dBi > 6 dBi, So 5190 MHz Limit = 30-(7.89-6) = 28.11 dBm$$

Note: $_{DirectionalGain = 10 \cdot log} \frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} = 7.81 dBi > 6 dBi, So 5230 MHz Limit = 30-(7.81-6) = 28.19 dBm$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 + Chain 3

Channel	Conducted Power (dBm)			Max. Limit	Result		
Charlie	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
42	5210 MHz	13.34	12.24	13.54	17.85	28.12	Complies

Note:
$$_{DirectionalGain = 10 \cdot log} \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 7.88 dBi > 6 dBi, So 5210 MHz Limit = 30-(7.88-6) = 28.12 dBm$$

 Report Format Version: Rev. 01
 Page No.
 : 39 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a
Test Date	May 15, 2014		

Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3

Channel	Eroguenov	Conducted Power (dBm)				Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Resuli
36	5180 MHz	18.52	17.82	17.96	22.88	30.00	Complies
40	5200 MHz	19.35	19.05	19.25	23.99	30.00	Complies
48	5240 MHz	21.97	21.02	20.06	25.86	30.00	Complies

 Report Format Version: Rev. 01
 Page No.
 : 40 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

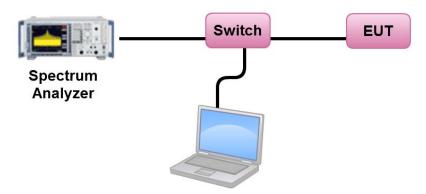
Frequency Range	Power Spectral Density limit (dBm/MHz)		
5.15~5.25 GHz	17		

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures


- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 General UNII Test Procedures Effective 2014 DR02-41759.
- 3. Multiple antenna systems was performed in accordance KDB 662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

 Report Format Version: Rev. 01
 Page No.
 : 41 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11ac
Test Data	May 15, 2014		

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	8.68	15.16	Complies
40	5200 MHz	9.52	15.14	Complies
48	5240 MHz	12.61	15.18	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5180 \text{ MHz Limit} = 17-(7.84-6) = 15.16 dBm/MHz}$$

Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5200 \text{ MHz Limit} = 17-(7.86-6) = -15.14 dBm/MHz}$

Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5240 \text{ MHz Limit} = 17-(7.82-6) = -15.18 dBm/MHz}$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	3.15	15.11	Complies
46	5230 MHz	8.59	15.19	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5190 \text{ MHz Limit} = 17-(7.89-6) = 15.11 dBm/MHz$$

Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5230 \text{ MHz Limit} = 17-(7.81-6) = -15.19 dBm/MHz$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-1.43	15.12	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5210 \text{ MHz Limit} = 17-(7.88-6) = 15.12 dBm/MHz$$

 Report Format Version: Rev. 01
 Page No.
 : 43 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

Temperature	23°C	Humidity	52%
Test Engineer	Wen Chao	Configurations	IEEE 802.11a
Test Data	May 15, 2014		

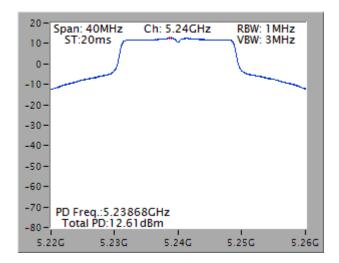
Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	Total Power Density Max. Lim (dBm/MHz) (dBm/MH		Result
36	5180 MHz	9.43	15.16	Complies
40	5200 MHz	10.24	15.14	Complies
48	5240 MHz	12.74	15.18	Complies

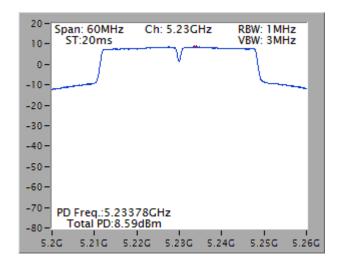
Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5180 \text{ MHzLimit} = 17-(7.84-6) = 15.16 dBm/MHz}$$

Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5200 \text{ MHz Limit} = 17-(7.86-6) = -15.14 dBm/MHz}$

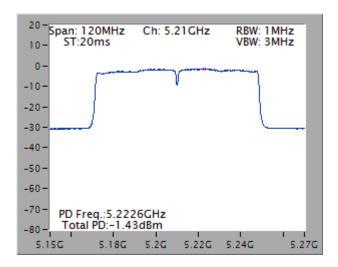
Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 5240 \text{ MHz Limit} = 17-(7.82-6) = -15.18 dBm/MHz}$

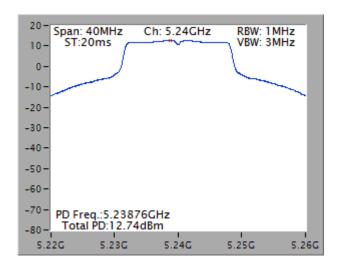

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.



Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 1 + Chain 2 + Chain 3 / 5240 MHz


Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 1 + Chain 2 + Chain 3 / 5230 MHz



Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 1 + Chain 2 + Chain 3 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 + Chain 3 / 5240 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

 Report Format Version: Rev. 01
 Page No. : 47 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.5.3. Test Procedures

 Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: Rev. 01
 Page No.
 : 48 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.5.4. Test Deviation

There is no deviation with the original standard.

4.5.5. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 49 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.5.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24°C	Humidity	51%
Test Engineer	YC Chen	Configurations	Normal Link
Test Date	May 10, 2014	Test Mode	Mode 3

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

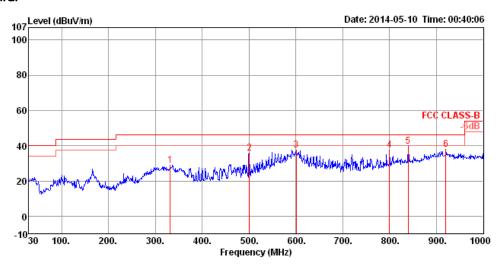
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 Report Format Version: Rev. 01
 Page No. : 50 of 75

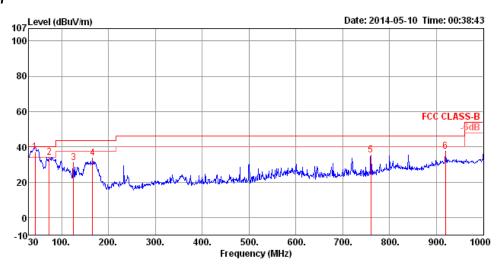
 FCC ID: PY314200264
 Issued Date : May 29, 2014



4.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	51%
Test Engineer	YC Chen	Configurations	Normal Link
Test Date	May 10, 2014	Test Mode	Mode 3

Horizontal


			Limit	0∨er	Read	CableA	ntenna	Preamp	A/Pos	T/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark
	MHz	dBu\//m	dBu∨/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	331.67	29.02	46.00	-16.98	44.38	2.26	13.79	31.41	100	197	HORIZONTAL	Peak
2	500.45	35.80	46.00	-10.20	47.47	2.82	16.92	31.41	125	205	HORIZONTAL	Peak
3	600.36	37.40	46.00	-8.60	47.07	3.12	18.45	31.24	125	142	HORIZONTAL	Peak
4	800.18	37.67	46.00	-8.33	45.51	3.67	19.76	31.27	150	130	HORIZONTAL	Peak
5	839.95	39.64	46.00	-6.36	46.84	3.77	20.25	31.22	150	151	HORIZONTAL	Peak
6	920.46	37.82	46.00	-8.18	44.33	4.00	20.66	31.17	150	207	HORIZONTAL	Peak

 Report Format Version: Rev. 01
 Page No. : 51 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

Vertical

	Frea	Level	Limit Line	0ver Limit				Preamp Factor		T/Pos	Pol/Phase	Remark
-			dBu√/m		dBu√	dB	dB/m		cm	deg		
1	43.58	36.88	40.00	-3.12	57.69	0.78	10.25	31.84	100	221	VERTICAL	QP
2	73.65	33.98	40.00	-6.02	58.86	1.02	5.80	31.70	200	282	VERTICAL	Peak
3	125.06	30.84	43.50	-12.66	49.35	1.33	11.73	31.57	100	138	VERTICAL	Peak
4	165.80	33.70	43.50	-9.80	54.30	1.56	9.38	31.54	100	231	VERTICAL	Peak
5	760.41	35.26	46.00	-10.74	43.32	3.59	19.73	31.38	150	140	VERTICAL	Peak
6	919.49	37.60	46.00	-8.40	44.11	4.00	20.66	31.17	150	132	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: Rev. 01
 Page No. : 52 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.5.8. Results for Radiated Emissions (1GHz~40GHz)

Temperature	24°C	Humidity	51%
Test Engineer	Sorway Li	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 36 /
Test Engineer	neer Serway Li Configuration	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Horizontal

HOHZ	Orliai											
			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15538.04	52.94	74.00	-21.06	43.53	6.13	38.45	35.17	Peak	100	57	HORIZONTAL
2	15538.06	40.72	54.00	-13.28	31.31	6.13	38.45	35.17	Average	100	57	HORIZONTAL
Verti	cal											
			Limit	Over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
		JD-A//m	dBu∀/m		dBu∀	dB	dB/m	dB				
	MHZ	abuv/m	abuv/m	dB	abuv	ав	OB/M	ab		cm	deg	
1	15538.79	53.58	74.00	-20.42	44.17	6.13	38.45	35.17	Peak	100	135	VERTICAL
2	15541.60	41.01	54.00	-12.99	31.60	6.13	38.45	35.17	Average	100	135	VERTICAL

Temperature	24°C	Humidity	51%
Tost Engineer	Sorway Li	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 40 /
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Horizontal

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15598.18							35.18		100		HORIZONTAL
2	15600.90	40.81	54.00	-13.19	31.51	6.13	38.36	35.19	Average	100	108	HORIZONTAL
Verti	cal											

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1	15599.50 15600.46								100 100		VERTICAL VERTICAL

Temperature	24°C	Humidity	51%		
Test Engineer	Sorway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 48 /		
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Horizontal

	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
,	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15717.56	42.32	54.00	-11.68	33.20	6.14	38.19	35.21	Average	100	87	HORIZONTAL
2	15717.76	54.35	74.00	-19.65	45.23	6.14	38.19	35.21	Peak	100	87	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15717.86	54.45	74.00	-19.55	45.33	6.14	38.19	35.21	Peak	100	188	VERTICAL
2	15720.30	42.68	54.00	-11.32	33.56	6.14	38.19	35.21	Average	100	188	VERTICAL

Temperature	24°C	Humidity	51%		
Tost Engineer	Sorway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 38 /		
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Horizontal

Freq	Level	Limit Line				Antenna Factor		A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		deg	
15568.03 15568.21								100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	15568.35	54.02	74.00	-19.98	44.66	6.13	38.40	35.17	Peak	100	156 VERTICAL
2	15569.04	40.64	54.00	-13.36	31.28	6.13	38.40	35.17	Average	100	156 VERTICAL

Temperature	24°C	Humidity	51%
Test Engineer	Serway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 46 / Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		Shair i Fidin 2 Fidin 6

Horizontal

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15691.22	53.26	74.00	-20.74	44.10	6.14	38.23	35.21	Peak	100	171	HORIZONTAL
2	15692.23	40.72	54.00	-13.28	31.56	6.14	38.23	35.21	Average	100	171	HORIZONTAL
Verti	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	15687.59	41.74	54.00	-12.26	32.58	6.14	38.23	35.21	Average	100	253	VERTICAL
2	15689.54	53.61	74.00	-20.39	44.45	6.14	38.23	35.21	Peak	100	253	VERTICAL

Temperature	24°C	Humidity	51%		
Test Engineer	Sorway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 42 /		
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Horizontal

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		Cm	deg	
1	15629.83	40.34	54.00	-13.66	31.08	6.14	38.31	35.19	Average	100	71	HORIZONTAL
2	15630.14	53.02	74.00	-20.98	43.76	6.14	38.31	35.19	Peak	100	71	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB			deg	
1	15627.84	40.52	54.00	-13.48	31.24	6.14	38.33	35.19	Average	100	134	VERTICAL
2	15631.27	53.61	74.00	-20.39	44.35	6.14	38.31	35.19	Peak	100	134	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 FCC ID: PY314200264

Page No. : 58 of 75 Issued Date : May 29, 2014

Temperature	24°C	Humidity	51%
Test Engineer	Sanuav Li	Configurations	IEEE 802.11a CH 36 /
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Horizontal

	_		Limit	0ver			Antenna			A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15537.98	53.83	74.00	-20.17	44.42	6.13	38.45	35.17	Peak	100	109	HORIZONTAL
2	15541.10	40.97	54.00	-13.03	31.56	6.13	38.45	35.17	Average	100	109	HORIZONTAL
Vertic	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15540.51	41.27	54.00	-12.73	31.86	6.13	38.45	35.17	Average	100	247	VERTICAL
2	15541.77	53.00	74.00	-21.00	43.59	6.13	38.45	35.17	Peak	100	247	VERTICAL

Temperature	24°C	Humidity	51%
Test Engineer	Sorway Li	Configurations	IEEE 802.11a CH 40 /
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Horizontal

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	15598.71	41.15	54.00	-12.85	31.84	6.13	38.36	35.18	Average	100	139	HORIZONTAL
2	15600.11	53.00	74.00	-21.00	43.70	6.13	38.36	35.19	Peak	100	139	HORIZONTAL
Verti	cal											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	15598.71	53.43	74.00	-20.57	44.12	6.13	38.36	35.18	Peak	100	176	VERTICAL
2	15601.31	41.48	54.00	-12.52	32.18	6.13	38.36	35.19	Average	100	176	VERTICAL

Page No.

Temperature	24°C	Humidity	51%		
Test Engineer	Sorway Li	Configurations	IEEE 802.11a CH 48/		
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Horizontal

	Freq	Level	Limit Line	0∨er Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15721.28	53.48	74.00	-20.52	44.36	6.14	38.19	35.21	Peak	100	36	HORIZONTAL
2	15722.49	40.06	54.00	-13.94	30.94	6.14	38.19	35.21	Average	100	36	HORIZONTAL
Vertic	cal											
			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15719.13	42.24	54.00	-11.76	33.12	6.14	38.19	35.21	Average	100	61	VERTICAL
2	15721.49	52.98	74.00	-21.02	43.86	6.14	38.19	35.21	Peak	100	61	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Pag
FCC ID: PY314200264 Issue

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.6.3. Test Procedures

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.6.4. Test Deviation

There is no deviation with the original standard.

 Report Format Version: Rev. 01
 Page No. : 62 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.6.5. EUT Operation during Test

For Non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 63 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.6.6. Test Result of Band Edge and Fundamental Emissions

Temperature	24°C	Humidity	51%
Test Engineer	Sonuavili	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 36, 40,
Test Engineer	Serway Li	Configurations	48 / Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Channel 36

	Freq	Level	Limi t Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBu∀	dB	dB/m	dВ	 deg	Cm	
1 2 3 4	5107.20 5150.00 5180.80 5181.60	69.98 116.80			50.85 67.12 113.87 101.34	4.34 4.36	33.14 33.19	34 . 62 34 . 62	122 122 122 122	196 196	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
			dBu∀/m	dB		dB					deg	
1	5112.18	53.57	54.00	-0.43	50.99	3.42	34.06	34.90	Average	100	114	VERTICAL
2	5115.39	64.79	74.00	-9.21	62.21	3.42	34.06	34.90	Peak	100	114	VERTICAL
3	5192.63	104.78			102.07	3.44	34.18	34.91	Average	100	114	VERTICAL
4	5193.27	117.73			115.02	3.44	34.18	34.91	Peak	100	114	VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

			Limit	0∨er	Read	CableA	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
,	MHz	dBu√/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	5112.02	50.30	54.00	-3.70	47.72	3.42	34.06	34.90	Average	100	50	VERTICAL
2	5112.98	60.62	74.00	-13.38	58.04	3.42	34.06	34.90	Peak	100	50	VERTICAL
3	5233.27	107.25			104.47	3.46	34.23	34.91	Average	100	50	VERTICAL
4	5233.27	120.06			117.28	3.46	34.23	34.91	Peak	100	50	VERTICAL
5	5353.70	52.32	54.00	-1.68	49.35	3.49	34.39	34.91	Average	100	50	VERTICAL
6	5353.85	64.96	74.00	-9.04	61.99	3.49	34.39	34.91	Peak	100	50	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	24°C	Humidity	51%
Test Engineer	Serwav Li		IEEE 802.11ac MCS0/Nss1 VHT40
Test Engineer	Serway Li	Configurations	CH 38, 46 / Chain 1 + Chain 2 + Chain 3
Test Date	Apr. 22, 2014		

Channel 38

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	5149.04	69.32	74.00	-4.68	66.69	3.43	34.11	34.91	Peak	100	113	VERTICAL
2	5149.36	53.22	54.00	-0.78	50.59	3.43	34.11	34.91	Average	100	113	VERTICAL
3	5195.13	99.21			96.49	3.45	34.18	34.91	Average	100	113	VERTICAL
4	5195.45	111.55			108.83	3.45	34.18	34.91	Peak	100	113	VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

			Limit	0ver	Read	Cable#	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase	è
	MHz	dBu√/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	-
1	5145.19	68.51	74.00	-5.49	65.88	3.43	34.11	34.91	Peak	100	59 VERTICAL	
2	5150.00	53.37	54.00	-0.63	50.74	3.43	34.11	34.91	Average	100	59 VERTICAL	
3	5216.54	105.01			102.27	3.45	34.20	34.91	Average	100	59 VERTICAL	
4	5217.82	117.35			114.61	3.45	34.20	34.91	Peak	100	59 VERTICAL	

Item 3, 4 are the fundamental frequency at 5230 MHz.

Temperature	24°C	Humidity	51%		
Tost Engineer	Serway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80		
Test Engineer	Serway Li	Configurations	CH 42 / Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Channel 42

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dВ	dB/m	ďB		deg	Cm	
1 2	5141.00 5149.00	71.82 53.84	74.00 54.00	-2.18 -0.16	68.96 50.98	4.34	33.14 33.14	34.62 34.62	Peak Average	123 123	196 196	VERTICAL VERTICAL
3 4 5 6	5221.00 5222.00 5350.00 5350.00	107.73 95.97 57.28 46.07	74.00 54.00	-16.72 -7.93	104.72 92.96 53.97 42.76	4.38 4.38 4.47 4.47	33.25 33.25 33.46 33.46	34.62	Average	123 123 123 123	196	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5210 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 66 of 75

Issued Date : May 29, 2014

Temperature	24°C	Humidity	51%		
Test Engineer	Sorway Li	Configurations	IEEE 802.11a CH 36, 40, 48 /		
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Apr. 22, 2014				

Channel 36

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBu∀	₫B	dB/m	 	deg	Cm	
1 2 3 4	5150.00 5150.00 5182.00 5182.67	53.84 105.66	54.00		70.73 50.98 102.73 113.23	4.34 4.36	33.14 33.19	Average Average	64 64 64 64	199 199	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit				Preamp Factor	Remark	T/Pos	A/Pos	Pol/Phase
,	MHz	dBuV/m	dBuV/m	₫B	dBu∀	₫B	dB/m	dB		deg	Cin	
1 2 3 4	5127.20 5127.20 5198.00 5198.33	117.74	74.00 54.00		61.99 50.66 114.77 104.03	4.33	33.11 33.22	34.62	Average	46 46 46 46	197 197	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line	Over Limit	Kead Level			Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	₫B		deg	Cin	
1 2 3 4 5 6	5120.00 5120.60 5241.00 5241.00 5361.40 5362.00	118.49	54.00	-15.75 -8.27 -4.21 -13.98		4.32 4.32 4.39 4.39 4.48 4.48	33.09 33.09 33.27 33.27 33.49 33.49	34.62 34.62	Average Peak Average Average	59 59 59 59 59	197 197	VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: Rev. 01
 Page No. : 67 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

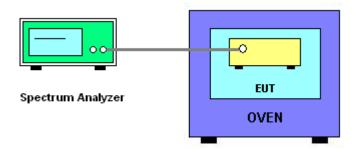
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -30°C~50°C.

4.7.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No.
 : 68 of 75

 FCC ID: PY314200264
 Issued Date
 : May 29, 2014

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	24°C	Humidity	51%
Test Engineer	Wen Chao	Test Date	May 15, 2014

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200 MHz
126.50	5199.9440
110.00	5199.9442
93.50	5199.9440
Max. Deviation (MHz)	0.056000
Max. Deviation (ppm)	10.77

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200 MHz
-30	5199.9480
-20	5199.9472
-10	5199.9466
0	5199.9460
10	5199.9454
20	5199.9442
30	5199.9424
40	5199.9416
50	5199.9400
Max. Deviation (MHz)	0.060000
Max. Deviation (ppm)	11.54

 Report Format Version: Rev. 01
 Page No. : 69 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: Rev. 01
 Page No. : 70 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150 kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 11, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150 kHz ~ 30 MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112B	2928	30MHz ~ 2GHz	Dec. 27, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 04, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)

Report Format Version: Rev. 01

FCC ID: PY314200264

Page No. : 71 of 75

Issued Date : May 29, 2014

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 Report Format Version: Rev. 01
 Page No. : 72 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Un	certaint		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch Receiver VSWR 1= AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060
Combined standard uncertainty Uc(y)	1.2			
Measuring uncertainty for a level of confidence	2.4			

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u>

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.173	dB	k=1	0.086
Cable loss	±0.174	dB	k=2	0.087
Antenna gain	±0.169	dB	k=2	0.084
Site imperfection	±0.433	dB	Triangular	0.214
Pre-amplifier gain	±0.366	dB	k=2	0.183
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.778			
Measuring uncertainty for a level of confidence	3.555			

 Report Format Version: Rev. 01
 Page No. : 73 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.191	dB	k=1	0.095
Cable loss	±0.169	dB	k=2	0.084
Antenna gain	±0.191	dB	k=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	k=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.839			
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				3.678

<u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u>

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.186	dB	k=1	0.093
Cable loss	±0.167	dB	k=2	0.083
Antenna gain	±0.190	dB	k=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	k=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.771			
Measuring uncertainty for a level of confidence	3.541			

 Report Format Version: Rev. 01
 Page No. : 74 of 75

 FCC ID: PY314200264
 Issued Date : May 29, 2014

Uncertainty of Conducted Emission Measurement

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	±0.038	dB	k=2	0.019
Attenuator	±0.047	dB	k=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	0.863			
Measuring uncertainty for a level of confidence	1.726			