

### Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$



S = power density

P = power input to the antenna

G = antenna gain

R = distance

|                         |             |                       |
|-------------------------|-------------|-----------------------|
| Conducted output power: | <u>36</u>   | (dBm) EIRP            |
|                         | <u>3981</u> | (mW) EIRP             |
|                         | <u>4</u>    | (W) EIRP              |
| Distance:               | <u>20</u>   | (cm)                  |
| Duty Cycle:             | <u>100</u>  | (%)                   |
| Frequency:              | <u>2400</u> | (MHz)                 |
| MPE Limit:              | <u>1</u>    | (mW/cm <sup>2</sup> ) |
| Power density:          | <u>0.79</u> | (mW/cm <sup>2</sup> ) |
|                         | <u>7.9</u>  | (W/m <sup>2</sup> )   |
| Margin                  | <u>1.0</u>  | (dB)                  |