

FCC PART 15 SUBPART C
EMI MEASUREMENT AND TEST REPORT
For
smartBridges Pte Ltd

745, Toa Payoh Lorong 5, #04-01, HMB Building
Singapore 319455

FCC ID: PWGDOLPHIN

February 18, 2003

This Report Concerns: <input checked="" type="checkbox"/> Permissive Change Report	Equipment Type: AirBridge Outdoor, airPointPRO Outdoor, and airPoint Outdoor
Test Engineer: <u>Ming Jing</u>	
Test Date: <u>January 3, 2003</u>	
Reviewed By: <u>Hans Mellberg</u>	
Prepared By: Bay Area Compliance Laboratory Corporation (BACL) 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is specially limited to the above client company and the product sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION.....	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 OBJECTIVE	4
1.3 RELATED SUBMITTAL(S)/GRANT(S).....	4
1.4 TEST METHODOLOGY	4
1.5 TEST FACILITY	5
1.6 TEST EQUIPMENT LIST AND DETAILS.....	5
1.7 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS.....	6
1.8 HOST SYSTEM CONFIGURATION LIST AND DETAILS	6
1.9 EXTERNAL I/O CABLING LIST AND DETAILS	6
2 - SYSTEM TEST CONFIGURATION.....	7
2.1 JUSTIFICATION	7
2.2 EUT EXERCISE SOFTWARE	7
2.3 SPECIAL ACCESSORIES	7
2.4 EQUIPMENT MODIFICATIONS	7
2.5 CONFIGURATION OF TEST SYSTEM.....	8
2.6 TEST SETUP BLOCK DIAGRAM	8
3 - SUMMARY OF TEST RESULTS.....	9
4 - CONDUCTED OUTPUT POWER MEASUREMENT	10
4.1 STANDARD APPLICABLE	10
4.2 MEASUREMENT PROCEDURE.....	10
4.4 TEST RESULT	10
5 - SPURIOUS EMISSION	12
5.1 STANDARD APPLICABLE	12
5.2 MEASUREMENT PROCEDURE.....	12
5.3 MEASUREMENT DATA.....	12
6 - POWER DENSITY	14
6.1 STANDARD APPLICABLE	14
6.2 MEASUREMENT PROCEDURE.....	14
6.3 TEST RESULTS	14
7 - 6DB BANDWIDTH.....	16
7.1 STANDARD APPLICABLE	16
7.2 MEASUREMENT PROCEDURE.....	16
7.3 TEST RESULT	16
8 - 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT.....	18
8.1 STANDARD APPLICABLE	18
8.2 MEASUREMENT PROCEDURE.....	18
8.3 TEST RESULTS	18
9 - CONDUCTED EMISSIONS TEST DATA.....	20
9.1 MEASUREMENT UNCERTAINTY	20
9.2 EUT SETUP	20
9.3 SPECTRUM ANALYZER SETUP	20
9.4 TEST PROCEDURE	20
9.5 SUMMARY OF TEST RESULTS	20
9.6 CONDUCTED EMISSIONS TEST DATA	21
9.7 PLOT OF CONDUCTED EMISSIONS TEST DATA	21
10 - RADIATED EMISSION.....	22
10.1 MEASUREMENT UNCERTAINTY	22
10.2 EUT SETUP	22
10.3 SPECTRUM ANALYZER SETUP	22

10.4 TEST PROCEDURE	23
10.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	23
10.6 SUMMARY OF TEST RESULTS	23
10.7 FINAL TEST RESULT	24
11 - RF EXPOSURE.....	26

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The SmartBridges Pte Ltd. 's product, FCC ID: PWGDOLPHIN or the "EUT" as referred to in this report is a AirBridge Outdoor, airPointPRO Outdoor, and airPoint Outdoor which provides instant high speed wireless network connectivity to Wireless Access Point. The EUT provides a complete solution to customers who require mobility and freedom in a wireless Local Area Network and wireless internet connectivity through a gateway.

The EUT provides the following feature(s):

- Dimension: Approximately 5.1”L x 5.1”W x 1.8”H.
- S/N: 00-30-1A-00-D7-62
- Chipset: LSI L802251B

The EUT utilized with smartBridges' power adapter, M/N: SMA10-2112C, S/N: 00000148.

1.2 Objective

This type approval report is prepared on behalf of SmartBridges Pte Ltd. in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for Output Power, Antenna Requirements, and Spurious Radiated Emission.

1.3 Related Submittal(s)/Grant(s)

This Class II Permissive Change device has been originally granted on 2/21/02. The new product, AirBridge Outdoor, airPointPRO Outdoor, and airPoint Outdoor are electrically identical to airBridge Outdoor and airPointPRO Outdoor which were granted on 8/22/02. Please refer to the schematics, found in file R0301022Sch and R0301022Sch(RF). The software features are changed from airPointPRO Outdoor due to marketing purposes. The device was intended to use with the following antennas:

- 14.5 dBi 90 Degree Antenna: 28”L x 5.2”W x 5.2”H

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at BACL. The radiated testing was performed at an antenna-to-EUT distance of 3 Meters.

1.5 Test Facility

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, CISPR 22: 1997: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods.

1.6 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8568B	2610A02165	12/6/03
HP	Spectrum Analyzer	8593B	2919A00242	12/20/03
HP	Amplifier	8349B	2644A02662	12/20/03
HP	Quasi-Peak Adapter	85650A	917059	12/6/03
HP	Amplifier	8447E	1937A01046	12/6/03
A.H. System	Horn Antenna	SAS0200/571	261	12/27/03
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/03
Com-Power	Biconical Antenna	AB-100	14012	11/2/03
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/03
Com-Power	LISN	LI-200	12208	12/20/03
Com-Power	LISN	LI-200	12005	12/20/03
BACL	Data Entry Software	DES1	0001	12/20/03

Statement of Traceability: Bay Area Compliance Laboratory Corp. certifies that all calibration has been performed using suitable standards traceable to the NIST.

1.7 Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Microsoft	Keyboard	PCVA-KB1P/UA	0000348	DOC
Microsoft	Mouse	MUS3P	None	JKGMUS3P01
HP	Printer	2225C	2821S14783	DOC
EVEREX	Modem	EV-945	None	E3E5UVEV-945
ViewSonic	Monitor	VCDTS21477	DP02301877	DOC
Compaq	Desktop	CM 0204	2H04DCT6225	DOC

1.8 Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Compaq	PC System	CM 0204	2H04DCT6225	DOC

1.9 External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	To
Shielded KB Cable	1.6	KB Serial Port/Host	Microsoft Keyboard
Shielded Cable	1.5	Mouse Serial Port/Host	Microsoft Mouse
Shielded VGA Cable	1.0	VGA/Host	Monitor
Shielded Serial Cable	1.5	Serial Port/Host	EVEREX Modem
Shielded Printer Cable	2	Parallel Port/Host	HP Printer
Shielded RJ45 Cable	15	Adapter RJ45 Port	RJ45 Port /EUT
Shielded RJ45 Cable	1.0	Adapter RJ45 Port	RJ45 Port /Host
Unshielded Power Cord	1.0	Ac/dc adapter	Adapter RJ45 Port
Shielded Antenna Cable	0.8	Antenna port/EUT	Antennas

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The host system was configured for testing in a typical fashion (as a normally used by a typical user).

The EUT was tested in the normal operating mode to represent *worst-case* results during the final qualification test.

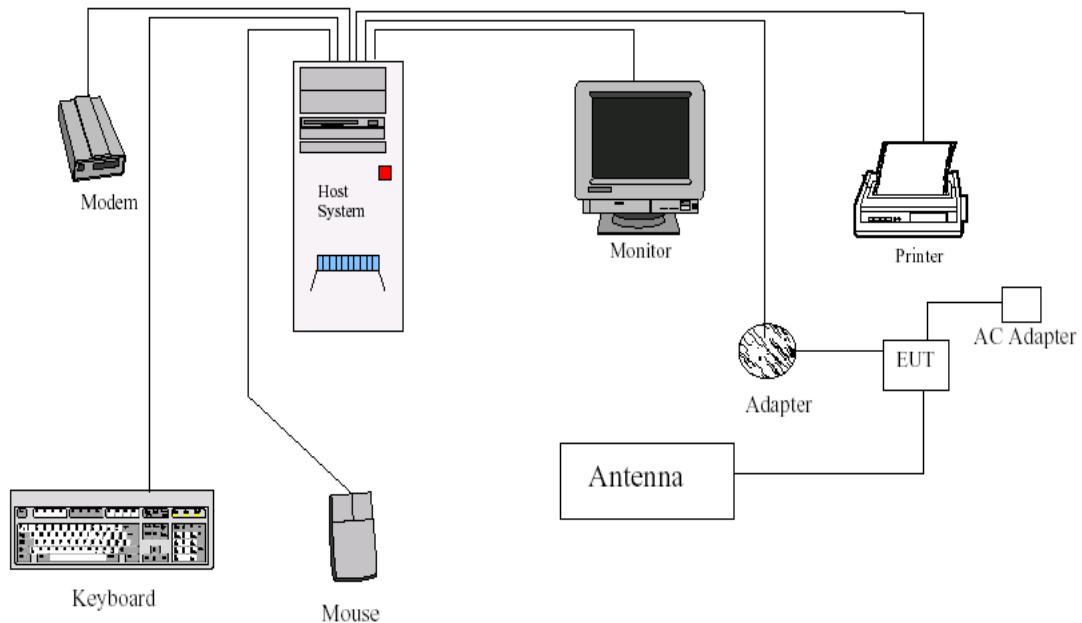
2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The test software, Atmel testing software, provided by the customer, is started the Windows 98 terminal program under the Windows 98 operating system. Once loaded, the program sequentially exercises each system component.

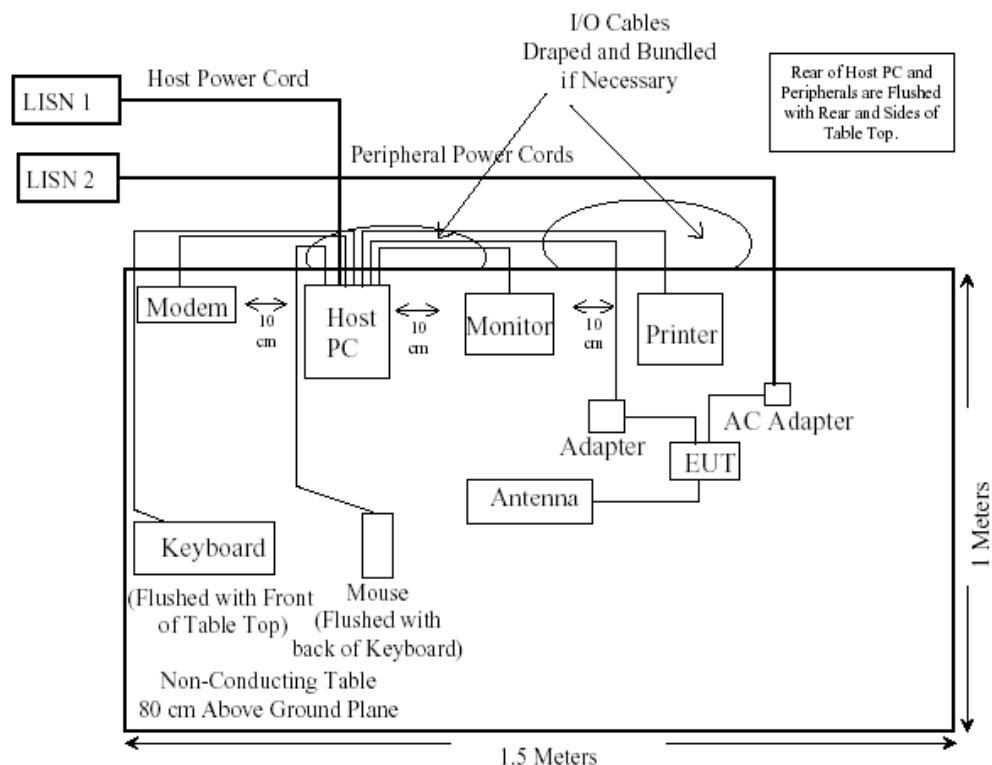
The sequence used is as follows:

1. Run the Change Mode utility from Start – Atmel Utilities – Change Mode Menu
2. Click on the Production Mode under SNMP Manager settings to make unit ready for RF tests, then click on Exit
3. Run the AP Configuration from the Start – Program – Atmel Utilities – AP Configuration Menu
4. Proceed to the Radio Menu & select the Radio Test sub-menu
5. Select the Continuous Tx with Modulation

This process is continuous throughout all tests.


2.3 Special Accessories

As shown in section 2.5, all interface cables used for compliance testing are shielded as normally supplied by their respective support equipment manufacturers.


2.4 Equipment Modifications

No modifications were made by BACL Corporation to ensure the EUT to comply with the applicable limits and requirements.

2.5 Configuration of Test System

2.6 Test Setup Block Diagram

3 - SUMMARY OF TEST RESULTS

FCC Rules	Description	Result
§ 15.205	Restricted Bands	Complied
§ 2.1091	RF Safety Requirements	Complied
§15.207 (a)	Conducted Emission	Complied
§15.209 (a)	Radiated Emission	Complied
§15.209 (f)	Spurious Emission	Complied
§15.247 (a) (2)	6dB Bandwidth	Complied
§15.247 (b) (2)	Output Power	Complied
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edges	Complied
§15.247 (d)	Peak Power Spectral Density	Complied

Note: The test data was good for test sample only. It may have deviation for other product samples.

4 - CONDUCTED OUTPUT POWER MEASUREMENT

4.1 Standard Applicable

According to §15.247(b) (2), the maximum peak output power of the intentional radiator shall not exceed 1 Watt.

4.2 Measurement Procedure

1. Place the EUT on the turntable and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

4.3 Test Equipment

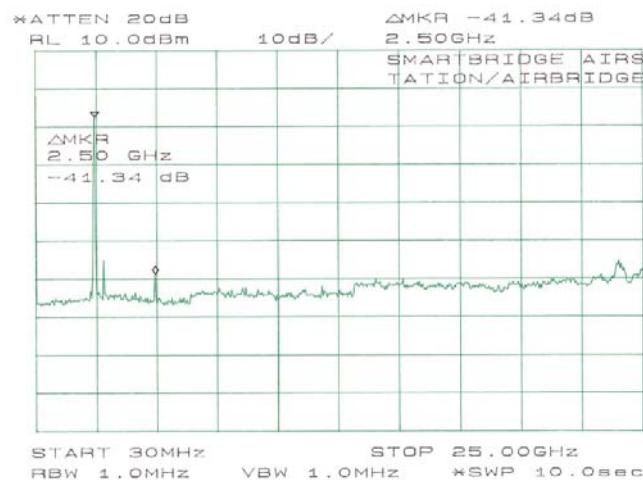
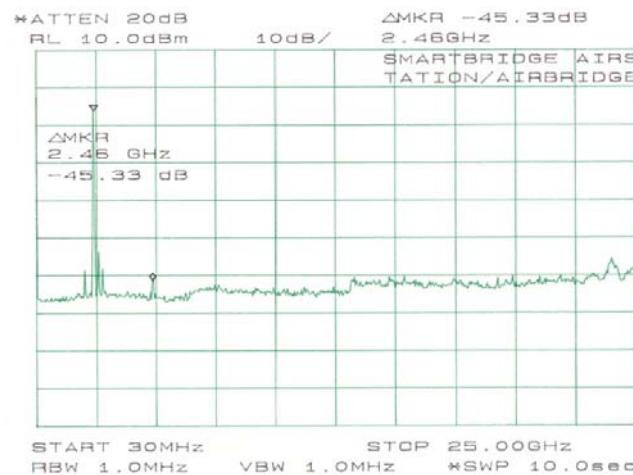
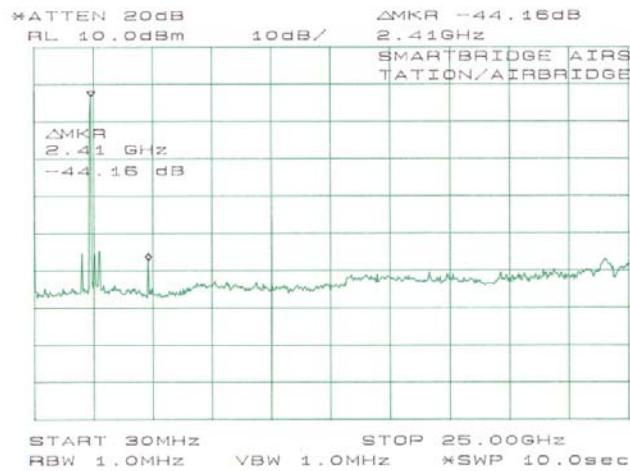
Manufacturer	Model No.	Serial No.	Calibration Due Date
Agilent	E4419b	GB40202891	4/8/03
Agilent	E4412a	US38486529	4/8/03

4.4 Test Result

Frequency (MHz)	Output Power in dBm	Output Power in W	Standard Limit	Result	Page Reference
Low	19.94	0.099	≤ 1W	Compliant	Page 10
Middle	19.92	0.098	≤ 1W	Compliant	Page 10
High	20.00	0.10	≤ 1W	Compliant	Page 10

5 – Spurious Emission

5.1 Standard Applicable




According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.

5.2 Measurement Procedure

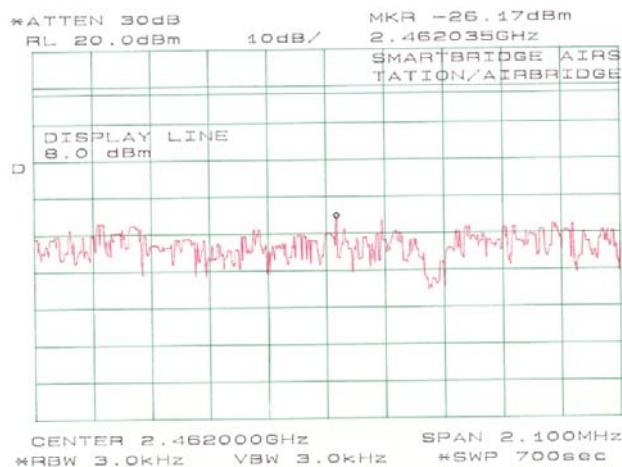
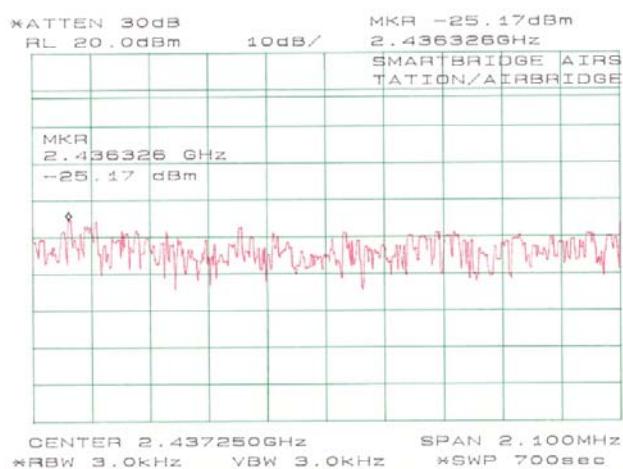
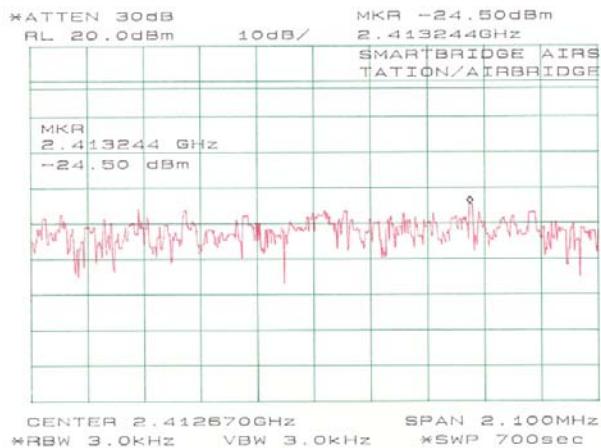
1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

5.3 Measurement Data

Plot(s) of Spurious Emission was presented hereinafter as reference.

6 - POWER DENSITY

6.1 Standard Applicable




According to §15.247 (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2 Measurement Procedure

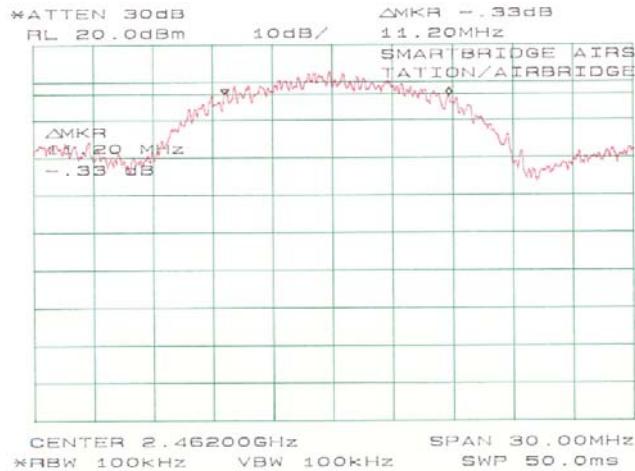
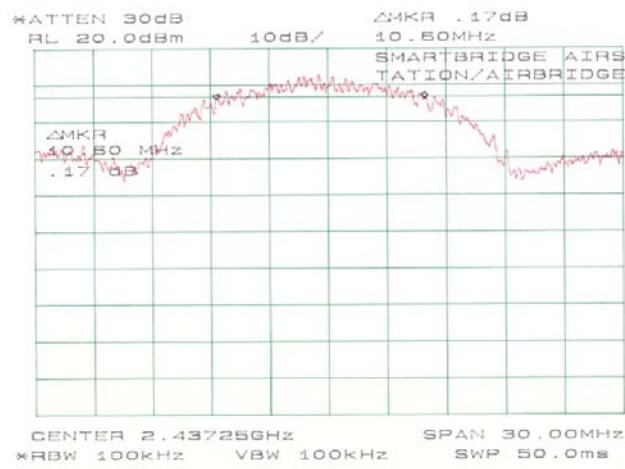
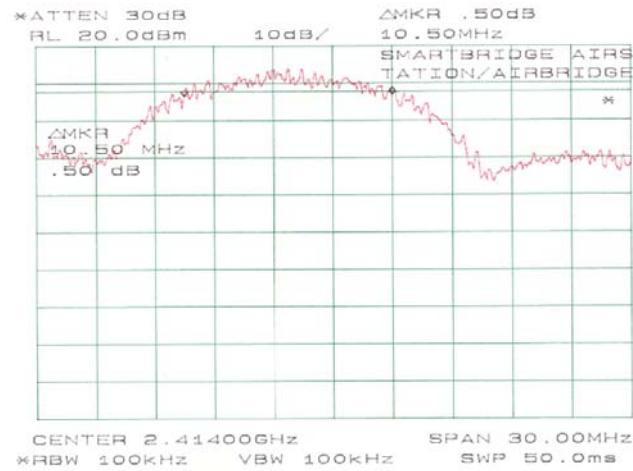
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Repeat above procedures until all frequencies measured were complete.

6.3 Test Results

The plot(s) of power density was presented hereinafter as reference.

7 - 6DB BANDWIDTH

7.1 Standard Applicable




According to §15.247(a)(2), for direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

7.2 Measurement Procedure

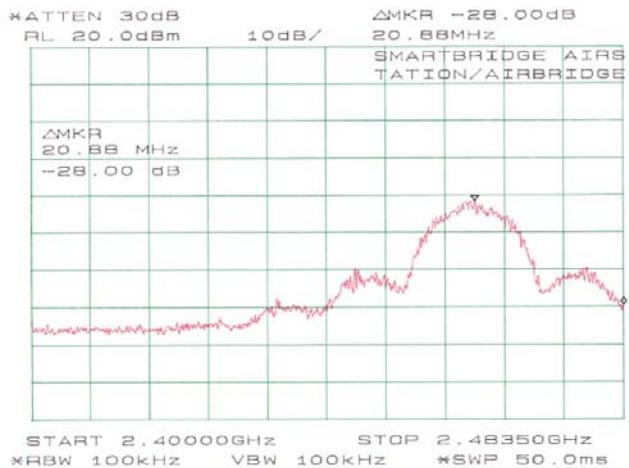
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

7.3 Test Result

The plot(s) of 6dB Bandwidth was presented hereinafter as reference.

8 - 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable



According to §15.247(c), if *any* 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.

8.2 Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

8.3 Test Results

The plot(s) of Band Edge Test Data was presented hereinafter as reference.

9 - CONDUCTED EMISSIONS TEST DATA

9.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

9.2 EUT Setup

The measurement was performed at the **Open Area Test Site**, using the same setup per ANSI C63.4 - 1992 measurement procedure. The specification used was FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

Input / Output cables were draped along the edge of the test table and bundle when necessary.

The host PC system was connected with 110Vac/60Hz power source.

9.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency.....	450 kHz
Stop Frequency.....	30 MHz
Sweep Speed.....	Auto
IF Bandwidth.....	10 kHz
Video Bandwidth.....	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode.....	Normal

9.4 Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

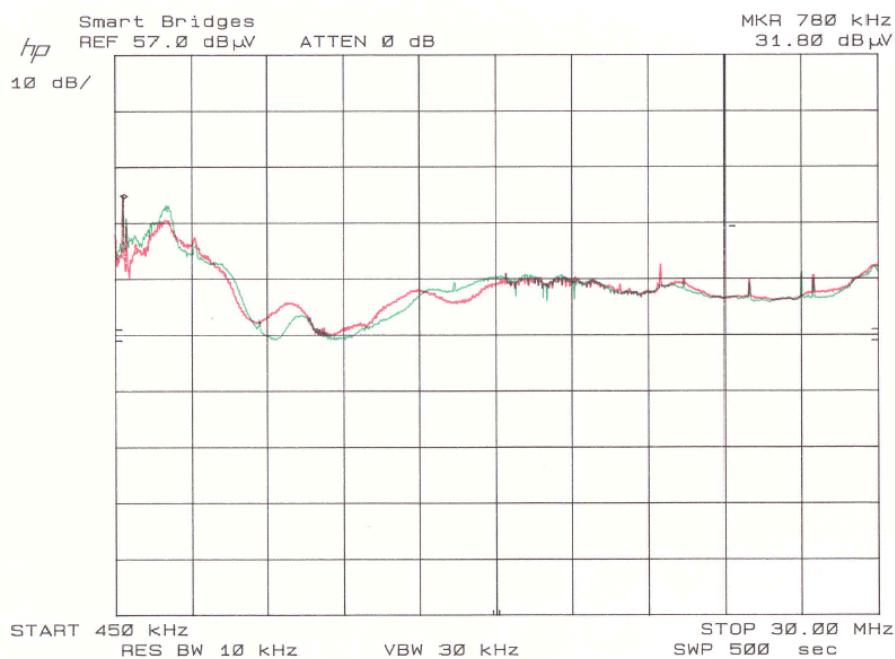
Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "Qp".

9.5 Summary of Test Results

According to the data in section 9.6, the EUT complied with the FCC Conducted margin for a Class B device, with the *worst* margin reading of:

-16.2dB μ V at 0.780 MHz in the Line mode, 450kHz - 30 MHz


9.6 Conducted Emissions Test Data

9.6.1 Test Data, 0.45 - 30 MHz.

LINE CONDUCTED EMISSIONS				FCC CLASS B	
Frequency MHz	Amplitude dB μ V	Detector Qp/Ave/Peak	Phase Line/Neutral	Limit dB μ V	Margin dB
0.780	31.8	Peak	Line	48	-16.2
0.780	31.7	Peak	Neutral	48	-16.3
2.670	27.4	Peak	Neutral	48	-20.6
2.310	27.2	Peak	Line	48	-20.8
21.640	19.6	Peak	Line	48	-28.4
29.880	19.1	Peak	Neutral	48	-28.9

9.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented hereinafter as reference.

10 - RADIATED EMISSION

10.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

10.2 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4-1992. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The host PC system was connected with 110Vac/60Hz power source.

10.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency	1GHz
Stop Frequency	25GHz
Sweep Speed	Auto
IF Bandwidth	1 MHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

10.4 Test Procedure

For the radiated emissions test, the Host PC system and all support equipment power cords were connected to the AC floor outlet since the power supply used in the EUT did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table.

10.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB μ V means the emission is 7dB μ V below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Class B Limit}$$

10.6 Summary of Test Results

According to the data in section 10.7, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.247, and had the worst margin of:

-2.5 dB μ V at 4824.60 MHz in the **Horizontal** polarization, Low Channel

-2.1 dB μ V at 4876.20 MHz in the **Horizontal** polarization, Middle Channel

-2.3 dB μ V at 4926.00 MHz in the **Horizontal** polarization, High Channel

-3.1 dB μ V at 255.93 MHz in the **Horizontal** polarization, Unwanted Emission

10.7 Final Test Result

90 Degree Antenna, 30MHz to 25GHz, 3 meters

Frequency MHz	Indicated Ampl. dB μ V/m	Direction Degree	Table Height Meter	Polar	Antenna dB μ V/m	Correction Factor Cable Loss dB μ V/m	Amp. dB	Corr. Ampl. dB μ V/m	FCC Subpart C Limit dB μ V/m	Margin dB	Mode
Low Channel, 1 – 25GHz											
2412.30	118.1	90	1.8	H	28.1	3.4	30.0	119.6			AVG
2412.30	112.4	30	1.5	V	28.1	3.4	30.0	113.9			AVG
4824.60	44.1	110	1.5	H	32.5	4.9	30.0	51.5	54	-2.5	AVG
4824.60	42.5	30	1.8	V	32.5	4.9	30.0	49.9	54	-4.1	AVG
7236.90	39.1	210	1.5	H	35.1	5.6	30.0	49.8	54	-4.2	AVG
7236.90	36.5	270	1.2	V	35.1	5.6	30.0	47.2	54	-6.8	AVG
9649.20	32.1	90	1.5	H	35.1	5.6	30.0	42.8	54	-11.2	AVG
2351.00	41.3	0	1.2	H	28.1	3.4	30.0	42.8	54	-11.3	AVG
9649.20	30.2	45	1.5	V	35.1	5.6	30.0	40.9	54	-13.1	AVG
2351.00	38.7	330	1.5	V	28.1	3.4	30.0	40.2	54	-13.9	AVG
4824.60	49.6	110	1.5	H	32.5	4.9	30.0	57.0	74	-17.0	PEAK
4824.60	47.8	30	1.8	V	32.5	4.9	30.0	55.2	74	-18.8	PEAK
7236.90	43.7	210	1.5	H	35.1	5.6	30.0	54.4	74	-19.6	PEAK
7236.90	40.6	270	1.2	V	35.1	5.6	30.0	51.3	74	-22.7	PEAK
9649.20	36.9	90	1.5	H	35.1	5.6	30.0	47.6	74	-26.4	PEAK
2351.00	46.2	0	1.2	H	28.1	3.4	30.0	47.7	74	-26.4	PEAK
9649.20	34.5	45	1.5	V	35.1	5.6	30.0	45.2	74	-28.8	PEAK
2351.00	43.1	330	1.5	V	28.1	3.4	30.0	44.6	74	-29.5	PEAK
Middle Channel, 1 – 25GHz											
2438.10	118.3	90	1.5	H	28.1	3.4	30.0	119.8			AVG
2438.10	105.2	110	1.5	V	28.1	3.4	30.0	106.7			AVG
4876.20	44.5	90	1.2	H	32.5	4.9	30.0	51.9	54	-2.1	AVG
7314.30	39.5	210	1.5	H	35.1	5.6	30.0	50.2	54	-3.8	AVG
4876.20	40.3	45	1.5	V	32.5	4.9	30.0	47.7	54	-6.3	AVG
7314.30	36.7	270	1.5	V	35.1	5.6	30.0	47.4	54	-6.6	AVG
9752.40	32.6	90	1.8	H	35.1	5.6	30.0	43.3	54	-10.7	AVG
2362.00	41.6	0	1.5	H	28.1	3.4	30.0	43.1	54	-11.0	AVG
9752.40	30.5	45	1.5	V	35.1	5.6	30.0	41.2	54	-12.8	AVG
2362.00	38.9	330	1.2	V	28.1	3.4	30.0	40.4	54	-13.7	AVG
4876.20	49.8	90	1.2	H	32.5	4.9	30.0	57.2	74	-16.8	PEAK
7314.30	43.9	210	1.5	H	35.1	5.6	30.0	54.6	74	-19.4	PEAK
4876.20	46.2	45	1.5	V	32.5	4.9	30.0	53.6	74	-20.4	PEAK
7314.30	40.8	270	1.5	V	35.1	5.6	30.0	51.5	74	-22.5	PEAK
9752.40	37.7	90	1.8	H	35.1	5.6	30.0	48.4	74	-25.6	PEAK
2362.00	46.5	0	1.5	H	28.1	3.4	30.0	48.0	74	-26.1	PEAK
9752.40	34.9	45	1.5	V	35.1	5.6	30.0	45.6	74	-28.4	PEAK
2362.00	43.7	330	1.2	V	28.1	3.4	30.0	45.2	74	-28.9	PEAK

Frequency MHz	Indicated Ampl. dB μ V/m	Direction Degree	Table Height Meter	Antenna		Correction Factor			FCC Subpart C		
				Polar	Antenna dB μ V/m	Cable Loss dB μ V/m	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB	Mode
High Channel, 1 – 25GHz											
2463.20	118.2	310	2.0	H	28.1	3.4	30.0	119.7			AVG
2463.20	106.5	270	1.8	V	28.1	3.4	30.0	108.0			AVG
4926.40	44.3	0	1.5	H	32.5	4.9	30.0	51.7	54	-2.3	AVG
7389.60	39.4	90	1.5	H	35.1	5.6	30.0	50.1	54	-3.9	AVG
4926.40	41.6	45	1.8	V	32.5	4.9	30.0	49.0	54	-5.0	AVG
7389.60	36.8	120	1.5	V	35.1	5.6	30.0	47.5	54	-6.5	AVG
9852.8	32.3	270	1.2	H	35.1	5.6	30.0	43.0	54	-11.0	AVG
9852.8	30.9	230	1.5	V	35.1	5.6	30.0	41.6	54	-12.4	AVG
4926.40	49.7	0	1.5	H	32.5	4.9	30.0	57.1	74	-16.9	PEAK
7389.60	43.5	90	1.5	H	35.1	5.6	30.0	54.2	74	-19.8	PEAK
4926.40	45.2	45	1.8	V	32.5	4.9	30.0	52.6	74	-21.4	PEAK
7389.60	41.1	120	1.5	V	35.1	5.6	30.0	51.8	74	-22.2	PEAK
9852.8	38.1	270	1.2	H	35.1	5.6	30.0	48.8	74	-25.2	PEAK
9852.8	35.4	230	1.5	V	35.1	5.6	30.0	46.1	74	-27.9	PEAK
Unintentional Emission, 30 – 1000 MHz											
255.93	52.4	30	1.5	H	13.3	2.2	25.0	42.9	46	-3.1	
352.11	50.1	0	1.2	H	15.5	2.3	25.0	42.9	46	-3.1	
223.86	53.2	270	1.2	H	11.8	2.2	25.0	42.2	46	-3.8	
192.47	47.9	110	1.5	V	13.7	2.1	25.0	38.7	43.5	-4.8	
128.13	46.8	60	1.8	V	11.9	1.6	25.0	35.2	43.5	-8.3	
575.98	39.7	320	1.5	H	19.3	3.0	25.0	37.0	46	-9.0	
448.25	41.3	90	1.5	H	16.9	2.9	25.0	36.1	46	-9.9	

11 - RF EXPOSURE

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-15000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 20.00 (dBm)

Maximum peak output power at antenna input terminal: 100 (mW)

Predication distance: 20 (cm)

Predication frequency: 2400 (MHz)

Antenna Gain (typical): 14.5 (dBi)

Maximum antenna gain: 28.18 (numeric)

Power density at predication frequency at 20 cm: 0.56 (mW/cm²)

MPE distance at maximum power density (1 mW/cm²): 14.97 cm

MPE limit for uncontrolled exposure at predication frequency: 1 (mW/cm²)

Test Result

The predicted power density level at 20cm is 0.56 mW/cm². This is below the uncontrolled exposure limit of 1mW/cm² at 2400 MHz. MPE calculated distance at maximum power density is 14.97 cm. The EUT is used at least 20 cm away from user's body, it is defined as mobile device.