

Fractus Compact Reach Xtend™

Bluetooth[®], 802.11b/g WLAN *Chip Antenna*

Antenna Part Number: FR05-S1-N-0-102

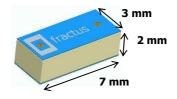
TABLE OF CONTENTS

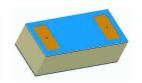
NOTES	2
ANTENNA DESCRIPTION	
QUICK REFERENCE GUIDE	3
ELECTRICAL PERFORMANCE	4
FRACTUS EVALUATION BOARD	4
CAPABILITIES AND MEASUREMENT SYSTEMS	6
MECHANICAL CHARACTERISTICS	
DIMENSIONS, TOLERANCES & MATERIALS	7
SPECIFICATIONS FOR INK	8
ASSEMBLY PROCESS	9
ANTENNA FOOTPRINT	11
PACKAGING	12

Fractus is an <u>ISO 9001:2000</u> certified company All our antennas are lead-free and <u>RoHS</u> compliant

NOTES

The product described in this document is protected worldwide by the following Patents and Patent Applications owned by Fractus: US7148850, US7164386, US7202822; PAT.PEND.WO0154225. Any update on new patents linked to this product will appear in http://www.fractus.com/index.php/fractus/patents


All information contained within this document is property of Fractus and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.



ANTENNA DESCRIPTION

Fractus® Compact Reach Xtend™ chip antenna is engineered specifically for Bluetooth®, WLAN 802.11 b/g and other wireless devices operating at the ISM 2.4 GHz band. Compact Reach Xtend combines small form factor size and high performance to improve the functionality of your wireless devices.

The Compact Reach Xtend is a low-cost antenna solution that combines small form factor and high performance with integration flexibility making it ideal for small consumer electronics devices such as wireless headsets and USB dongles.

Front

APPLICATIONS

- Wireless Headsets
- WLAN 802.11 b/g USB-dongles
- Bluetooth USB and serial Dongles
- Compact Flash (CF) and Secure Digital (SD) cards
- Cellular handsets
- Digital Cameras

Back

- Low cost
- High efficiency

BENEFITS

Small form factor

QUICK REFERENCE GUIDE

Technical Features		
Frequency range	2400-2500 MHz	
Radiation Efficiency	> 70%	
Radiation Pattern	Omnidirectional	
Peak Gain	> 1 dBi	
VSWR	< 2:1	
Polarization	Linear	
Weight	0.1 g	
Temperature	-40 to + 85°C	
Impedance	50Ω	
Dimensions	7x3x2 mm (L x W x H)	

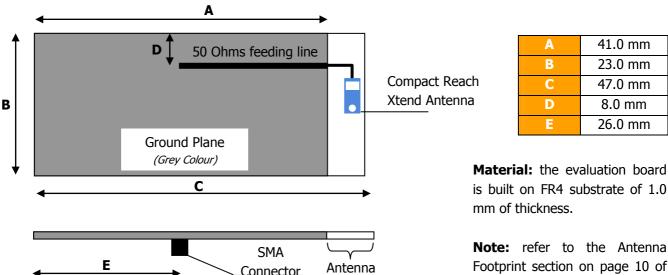
Table 1 - Technical Features

Note: results measured in a reference evaluation board of 47x23 mm described in the following section.

Please contact your sales representative at wireless@fractus.com if you require additional information on antenna integration or optimisation on your PCB.

FRACTUS S.A.

www.fractus.com


Tel: +34 935442690 Fax: +34 935442691

ELECTRICAL PERFORMANCE

FRACTUS EVALUATION BOARD

The Fractus configuration used in testing the Compact Reach Xtend chip antenna is displayed in Figure 1.

Clearance

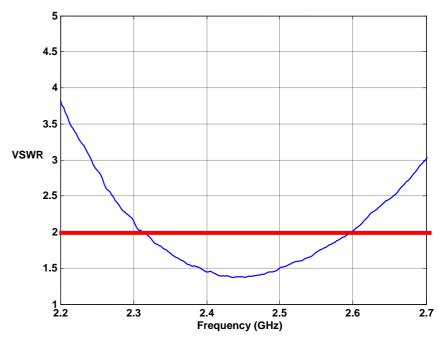
Figure 1 – Compact Reach Xtend Evaluation Board

Note: refer to the Antenna Footprint section on page 10 of this User Manual for additional information about the clearance area and antenna footprint.

41.0 mm

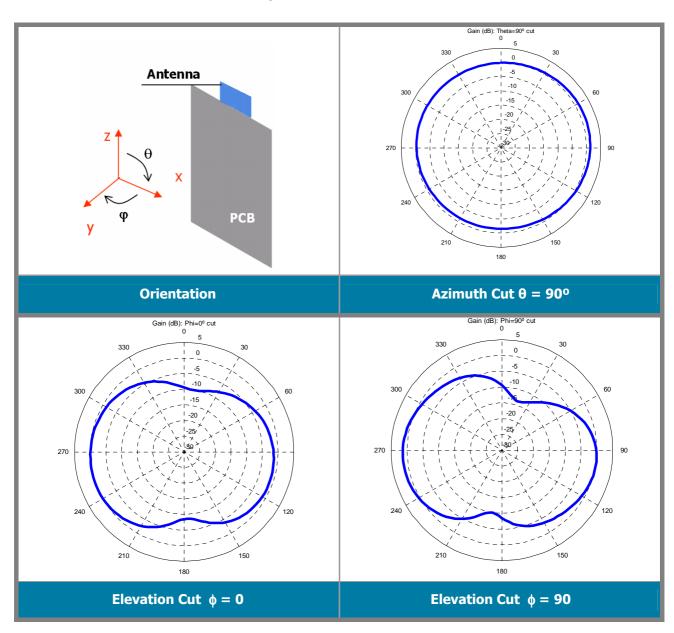
23.0 mm

47.0 mm


8.0 mm

26.0 mm

VSWR


VSWR (Voltage Standing Wave Ratio) versus Frequency (GHz)

- <2:1 within the ISM-2.4 GHz band
 - o 2.4-2.483 in US and Europe
 - o 2.471-2.497 in Japan

Radiation Pattern, Gain and Efficiency

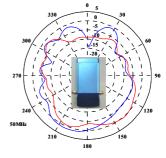
Gain	Peak Gain	1.5 dBi
	Average Gain	-2.3 dBi
Efficiency	Peak Efficiency	75 %
	Average Efficiency	70 %

Table 2 – Antenna Gain and Efficiency within the 2.4-2.5 GHz band

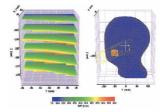
CAPABILITIES AND MEASUREMENT SYSTEMS

Fractus specialises in designing and manufacturing optimsed antennas for wireless applications and providing our clients with RF expertise. We offer turn-key antenna products and antenna integration support to minimise your time requirement and maximize your return on investment during your product development efforts. We also provide our clients with the opportunity to leverage our in-house testing and measurement facilities to obtain accurate results quickly and efficiently.

R&S VNA 20Khz-8GHz ZVCE

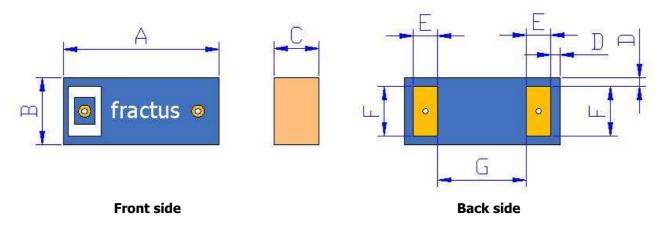

VSWR & S Parameters

SATIMO's STARGATE 32


Radiation
Pattern
&
Efficiency

DASY-4 (SPEAG)

SAR Levels



Anechoic and semi-anechoic chambers and full equipped in-house lab

MECHANICAL CHARACTERISTICS

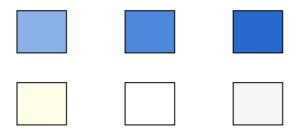
DIMENSIONS, TOLERANCES & MATERIALS

Figure 2 – *Antenna Dimensions and Tolerances*

A	7.00 ± 0.20	E	1.10 ± 0.10
В	3.00 ± 0.20	F	2.20 ± 0.10
С	2.00 ± 0.20	G	4.00 ± 0.20
D	0.40 ± 0.15		

All dimensions are in millimetres (mm)

The white rectangle located on the front side of the antenna provides you with a visual cue to mount the antenna. It is located physically above the feed point of the antenna and has been included to decrease possible manufacturing error.


Fractus Compact Reach Xtend chip antenna is compliant with the directive **2002/95/EC** on the restriction of the use of hazardous substances (**RoHS**). Should you require a green certificate (RoHS report), please contact your sales representative at wireless@fractus.com.

SPECIFICATIONS FOR INK

Blue (pantone 312)	•	50% Blue CARAPACE EMP 110-3245 50% White ink CARAPACE
White	•	White ink CARAPACE
Black (solder mask)	•	Black Taiyo PSR4000

Next figure shows the correct colours of the antenna:

Acceptable colour range

ASSEMBLY PROCESS

Figure 3 shows the back and front view of the Compact Reach Xtend chip antenna, which indicates the location of the feeding point and the mounting pad:

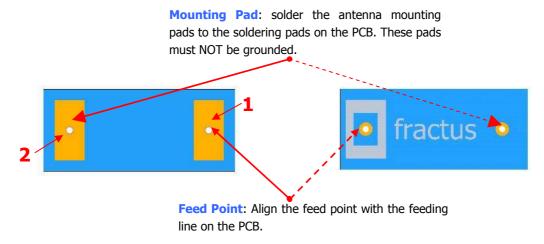


Figure 3 – Views of the Compact Reach Xtend Chip Antenna.

As a surface mount device (SMD), this antenna is compatible with industry standard soldering processes. The basic assembly procedure for this antenna is as follows:

- 1. Apply a solder paste on the pads of the PCB. Place the antenna on the board.
- 2. Perform a reflow process according to the temperature profile detailed in table 3, figure 5 of page 9.
- 3. After soldering the antenna to the circuit board, perform a cleaning process to remove any residual flux. Fractus recommends conducting a visual inspection after the cleaning process to verify that all reflux has been removed.

The drawing below shows the soldering details obtained after a correct assembly process:

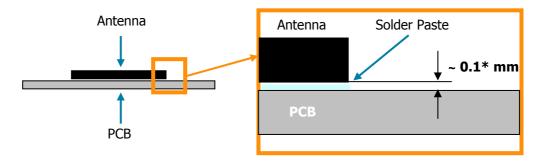


Figure 4 - Soldering Details

NOTE(*): Solder paste thickness after the assembly process will depend on the thickness of the soldering stencil mask. A stencil thickness equal or larger than **127 microns (5 mils)** is required.

Fractus Compact Reach Xtend chip antenna can be assembled following either Sn-Pb or Pb-free assembly processes. According to the Standard **IPC/JEDEC J-STD-020C**, the temperature profile suggested is as follows:

Phase	Profile features	Sn-Pb Assembly	Pb-Free Assembly (SnAgCu)
RAMP-UP	Avg. Ramp-up Rate (Ts _{max} to Tp)	3 °C / second (max.)	3 °C / second (max.)
PREHEAT	 Temperature Min (Tsmin) Temperature Max (Tsmax) Time (tsmin to tsmax) 	100 °C 150 °C 60-120 seconds	150°C 200°C 60-180 seconds
REFLOW	- Temperature (Tι) - Total Time above Tι (t ι)	183 °C 60-150 seconds	217 °C 60-150 seconds
PEAK	- Temperature (T _P) - Time (tp)	235 °C 10-30 seconds	260 °C 20-40 second
RAMP-DOWN	Rate	6 °C / second max.	6 °C/second max.
Time from 25 °C to Peak Temperature		6 minutes max.	8 minutes max.

Table 3 – *Recommended soldering temperatures*

Next graphic shows temperature profile (grey zone) for the antenna assembly process in reflow ovens.

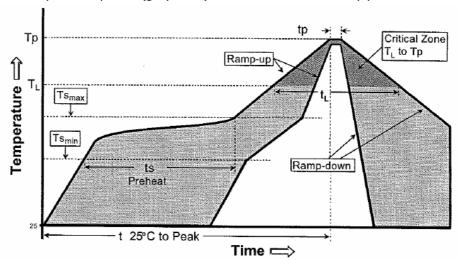


Figure 5 – Temperature profile

Page 10

ANTENNA FOOTPRINT

This antenna footprint applies for the reference evaluation board described in page 4 of this User Manual. Feeding line dimensions over the clearance zone described in figure 6 applies for a 1 mm thickness FR4 PCB.

Letter	Meas.
A	7.00
В	3.00
С	1.50
D	0.20
E	2.60
F	3.60
G	3.00
Н	0.50
I	4.75
J	1.50

All dimensions are in millimetres.

- Soldering pads and feed point
- Clearance (PCB area without ground-plane)

Figure 6 – Antenna Footprint Details

Other PCB form factors and configurations may require a different feeding configuration, feeding line dimensions and clearance areas. If you require support for the integration of the antenna in your industrial design, we would be pleased to assist you with this design process.

Please, contact your sales representative at <u>wireless@fractus.com</u> to get additional information on recommended configurations for different devices:

FRACTUS S.A.

www.fractus.com,

Tel: +34 935442690 Fax: +34 935442691

PACKAGING

The Compact Reach Xtend chip antenna is available in tape and reel packaging.

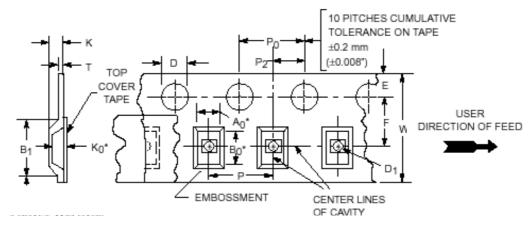
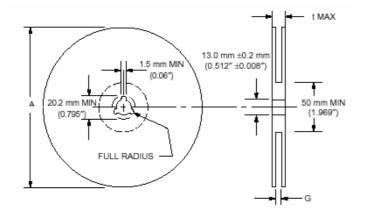



Figure 7 – Tape Dimensions

TAPE WIDTH	16	Wmax	16.3
A0	3.8	E	1.7
В0	7.8	F	7.5
K0	2.3	K	2.6 max
B1	8.2 max	P	8.0
D	1.5	P0	4.0
D1	1.5 min	P2	2.0

All dimensions are in millimetres (mm).

A max	330
G	16.4
t max	22.4

All dimensions are in millimetres (mm)

Reel Capacity: 2500 antennas.

Figure 8 – Reel Dimensions and Capacity