

Inter**Lab**

FCC Measurement/Technical Report on

WLAN transceiver WiBear11n-DF1

FCC ID PV7-WIBEAR11N-DF1 IC: 7738A-WB11NDF1

Report Reference: MDE_LESSW_1401_FCCa

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Applied Standards and Test Summary	3
0.1	Technical Report Summary	3
0.2	FCC and IC Correlation Table	4
0.3	Measurement Summary	5
1	Administrative Data	7
1.1	Testing Laboratory	7
1.2	Project Data	7
1.3	' '	7
1.4	Manufacturer Data	7
2	Test object Data	8
2.1	General EUT Description	8
2.2	EUT Main components	9
2.3	Ancillary Equipment	9
2.4	Auxiliary Equipment	10
2.5	EUT Setups	10
2.6	Operating Modes	11
2.7	Special software used for testing	11
2.8	Product labelling	11
3	Test Results	12
3.1	Spurious radiated emissions	12
3.2	Band edge compliance	17
4	Test Equipment	19
5	Photo Report	26
6	Setup Drawings	26

0 Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r02, 2014-06-05".

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

Test report Reference: MDE_LESSW_1401_FCCa Page 3 of 26

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS devices (e.g. WLAN 2.4/5 GHz) equipment

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3 RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4 2009

Final Result OP-Mode Setup Port

AC port N/A

FCC Part 15, Subpart C § 15.247 (a) (1)

Occupied bandwidth

The measurement was performed according to FCC § 15.31 10-1-13 Edition **Final Result**

OP-Mode Setup Port

N/P Temp.ant.connector

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement was performed according to FCC § 15.31 10-1-13 Edition

OP-Mode Final Result Setup Port

Temp.ant.connector N/P

FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.207

Spurious conducted emissions

The measurement was performed according to ANSI C63.4 2009

OP-Mode Port Final Result Setup

Temp.ant.connector N/P

§ 15.247 (d), § 15.35 (b), § 15.209 FCC Part 15, Subpart C

Spurious radiated emissions

The measurement was performed according to ANSI C63.4 2009

OP-Mode Final Result Setup Port op-mode 1b(*) Setup_01 Enclosure Passed op-mode 2b(*) Setup_01 Enclosure Passed op-mode $3b^{(*)}$ Setup_01 Enclosure Passed op-mode 3n+(#) Setup 01 Enclosure **Passed**

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

10-1-13 Edition / The measurement was performed according to FCC § 15.31 /

ANSI C63.4

OP-Mode Final Result Port Setup

Setup_01 Enclosure Passed op-mode 3n+

FCC Part 15, Subpart C § 15.247 (e)

Power density

10-1-13 Edition The measurement was performed according to FCC § 15.31

OP-Mode **Final Result** Setup Port

Temp.ant.connector N/P

2009

N/A not applicable (the EUT is powered by DC)

N/P not performed

(*) performed between 30 MHZ – 1 GHz (#) performed between 1 – 26.5 GHz

Only the test cases "Spurious radiated emissions" in the frequency range from 30 MHz – 26.5 GHz and "Band edge compliance" (only radiated measurement) have been performed in the stated operating modes.

The EUT, in the same hardware and software configuration, was already completely tested.

For details please refer to the 7 Layers test report MDE_LESSW_1302_FFCa. The purpose of this test report is to show the compliance of the EUT for the performed test cases with a new external antenna (see ANC1 for details).

Responsible for	Responsible	
Accreditation Scope:	 for Test Report:	

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2014-08-22

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Date of Test(s): 2014-08-27 to 2014-08-28

Date of Report: 2014-10-06

1.3 Applicant Data

Company Name: Lesswire AG

Address: Rudower Chaussee 30

12489 Berlin Germany

Contact Person: Dr. Daniel Dietterle

1.4 Manufacturer Data

Company Name: PRETTL Electronics AG

Address: Robert-Bosch-Straße 10,

01454 Radeberg, Germany

Contact Person: Kerstin Sauer

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11a/b/g/n WLAN transceiver

Type Designation: WiBear11n - DF1 **Kind of Device:** Transceiver module

(optional)

Voltage Type: DC

Voltage Level: 1.8 V and 3.3 V

Tested Modulation Type: DBPSK; OFDM:64-QAM

General product description:

The EUT is industrial universal module, targeted for integration into different Original Equipment Manufacturer products. The module is designed for both - simultaneous and independent operation of the following:

IEEE 802.11a/b/g/n payload data rates for Wireless Local Area Network (WLAN), Bluetooth 3.0+High Speed (HS) and Bluetooth 2.1+EDR. It provides a complete end-to-end solution for low power applications. It includes an integrated MAC/Baseband processor and RF front-end components, and can connect to a host processor via SDIO interface.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 a/b/g/n, 2.4 and 5 GHz) and Bluetooth module with one joint antenna connector for WLAN and Bluetooth. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 a/b/g/n modes, working in 2.4 GHz and 5 GHz bands. In IEEE 802.11n mode, it was tested with 20 MHz and 40 MHz channel bandwidth.

The EUT provides the following ports:

Ports

Enclosure DC port Data Port Antenna connector

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Descripti	Equip on under		Type esignation	Serial No.	HW Status	SW Status
EUT A (Code: LS000a01)	WLAN transceiver	WiBear11n DF1	- AN00J93 C433 800 5499		n 14.44.35.p200	-
Remark: EUT 2.4 GHz Band		vith joint ante	enna connecto	r. It was connecte	d to ANC1 (max. ga	ain in the

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
ANC1	Antenna	Taoglas GW.40.2153	_	_	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
-	_	_	_	_	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_01	EUT A + ANC1	setup for radiated radio measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

20 MHz Test Channels: Channel: Frequency [MHz]

40 MHz Test Channels: Channel: Frequency [MHz]

Band:					
900 MHz			2.4 GHz ISM 2400 - 2483.5 MHz		
902 - 928 MHz					
Bottom	Middle	Top	Bottom	Middle	Тор
	_	_	1	6	11
_			_	•	

Bottom	Middle	Тор	Bottom	Middle	Тор
-	-	-	-	-	11
_		_	-	-	2462

2.6.2 Datarates

SISO:

	01001		
WLAN b-Mode; 20 MHz; 1 Mbit/s			
	WLAN n-Mode; 40 MHz; 150 Mbit/s (MCS7)		

Data rate / frequency	2412	2437	2462
b-mode, 20 MHz, 1 Mbit/s	1b	2b	3b
n-Mode, 40 MHz, 150 Mbit/s	-	-	3n+
(MCS7)			

2.7 Special software used for testing

Marvell Labtool SW is used to set the EUT at different operating modes.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.1.3 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300 →10	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F(kHz)	30 →10	(48.9 - 23.0) + 19.1 dB	60.0 - 42.1
1.705 - 30	30	30 →10	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Test report Reference: MDE_LESSW_1401_FCCa

3.1.4 Test Protocol

Temperature: 26 °C Air Pressure: 1005 hPa Humidity: 43 %

	N n-Mode 150 Mbit	•		Applied duty cycle correction (AV) [dB]: 0.0				
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2390.0	56.0	PEAK	1000	74.0	18.0	RB
11	2462	2390.0	41.8	AV	1000	54.0	12.3	RB
11	2462	2484.5	57.0	PEAK	1000	74.0	17.0	RB
11	2462	2484.5	40.5	AV	1000	54.0	13.5	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

3.2 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.2.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on lowest channel:

 $CH1 = 2412 \, MHz / CH3 = 2422 \, MHz$ for a channel bandwidth of 20 / 40 MHz.

The lower band edge is 2400 MHz for 2.4 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on highest channel:

 $CH11 = 2462 \ MHz \ or \ CH13 = 2472 \ MHz \ / \ CH11 = 2462 \ MHz \ for a channel bandwidth of 20 / 40 \ MHz.$

The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.2.2 Test Requirements / Limits

FCC Part 15.247 (d)

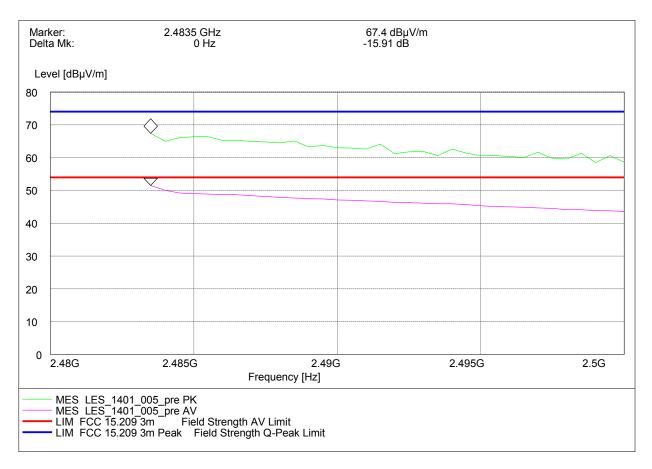
"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

Test report Reference: MDE_LESSW_1401_FCCa

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".


3.2.3 Test Protocol

3.2.3.1 Radiated measurement, higher band edge

Temperature: 26 °C Air Pressure: 1005 hPa Humidity: 43 %

WLA	N n-Mode;	40 MHz;	150 Mbit/s					
Ch. No	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	67.4	PEAK	1000	74.0	6.6	BE
11	2462	2483.5	51.5	AV	1000	54.0	2.5	BE

3.2.3.2 Measurement Plot (showing the highest value, "worst case")

4 Test Equipment

List of Used Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 2Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Calibration DetailsLast ExecutionNext Exec.NSA (FCC)2014/01/092017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer		
Air compressor	none	-	Atlas Copco		
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.		
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08		
Controller Maturo	MCU	961208	Maturo GmbH		
EMC camera	CE-CAM/1	-	CE-SYS		
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi		
Filter ISDN	B84312-C110-E1		Siemens&Matsushita		
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita		

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer:Rohde & Schwarz GmbH & Co.KGDescription:EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31

Test report Reference: MDE_LESSW_1401_FCCa Page 19 of 26

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2014/06/18 2017/11/30
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standart Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Test report Reference: MDE_LESSW_1401_FCCa

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/379070	Maturo GmbH 9

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 2, Lab 3Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab 1, Lab 2, Lab 3

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: μP1 8v50 02.05.06	v22, K58 4v22, v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test report Reference: MDE_LESSW_1401_FCCa

Test Equipment Emission measurement devices

Lab ID: Lab 1, Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 du	ring calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:Lab 4, Lab 5Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

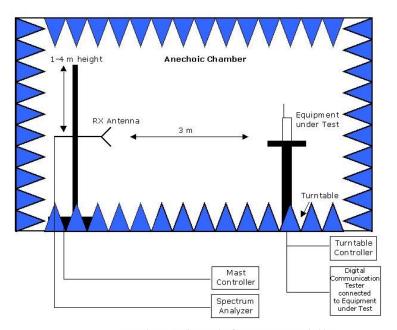
Test report Reference: MDE_LESSW_1401_FCCa Page 24 of 26

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment


Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/24 2014/07/02
	Standard calibration		2014/07/03 2015/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

5 Photo Report

Please refer to external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.