

# TEST REPORT FROM RADIO FREQUENCY INVESTIGATION LTD.

Test of: Intel Corporation.  
Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

**Test Report Serial No:**  
RFI/SARB3/RP70438JD10A

**Supersedes Test Report Serial No:**  
RFI/SARB1/RP70438JD01A &  
RFI/SARB2/RP70438JD10A

|                                                                                                                                                                                       |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| This Test Report Is Issued Under The Authority<br>Of Richard Jacklin, Operations Director:<br><br> | Checked By:<br><br> |
| Tested By:<br><br>                                                                                 | Release Version No: PDF01                                                                               |
| Issue Date: 13 March 2003                                                                                                                                                             | Test Dates: 11 October 2002                                                                             |

**It should be noted that the standard, OET Bulletin 65 Supplement C: (2001-01) is not listed on RFI's current UKAS schedule and is therefore "not UKAS accredited".**

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields. Furthermore, the date of creation must match the issue date stated above. This report may be copied in full. The results in this report apply only to the sample(s) tested.

|                                                                                                                                                               |                                                                                                                       |                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Radio Frequency Investigation Ltd, Ewhurst Park, Ramsdell,<br>Basingstoke, Hampshire, RG26 5RQ, ENGLAND.<br>Tel: +44 (0) 1256 851193 Fax: +44 (0) 1256 851192 | Registered in England, No. 211 7901.<br>Registered Office: Ewhurst Park, Ramsdell,<br>Basingstoke, Hampshire RG26 5RQ | <br>UKAS<br>TESTING<br>0644 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|

**RADIO FREQUENCY INVESTIGATION LTD.**

**EMC Department**

**Test Of: Intel Corporation.**

**Pro/Wireless GPRS 3110 PC Card**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

**TEST REPORT**

**S.No. RFI/SARB3/RP70438JD10A**

**Page 2 of 34**

**Issue Date: 13 March 2003**

This page has been left intentionally blank.

---

Table of Contents

|                                                    |    |
|----------------------------------------------------|----|
| 1. Client Information.....                         | 4  |
| 2. Equipment Under Test (EUT) .....                | 5  |
| 3. Test Specification, Methods And Procedures..... | 8  |
| 4. Deviations From The Test Specification .....    | 9  |
| 5. Operation Of The EUT During Testing .....       | 10 |
| 6. Summary Of Test Results.....                    | 11 |
| 7. SAR Measurement System.....                     | 15 |
| 8. SAR Safety Limits .....                         | 16 |
| 9. Details of SAR Evaluation .....                 | 17 |
| 10. Evaluation Procedures .....                    | 18 |
| 11. System Validation .....                        | 19 |
| 12. Simulated Tissues.....                         | 20 |
| 13. Tissue Parameters .....                        | 21 |
| 14. DASY3 Systems Specifications .....             | 22 |
| 15. Validation results .....                       | 23 |
| 16. Measurement Uncertainty .....                  | 24 |
| Appendix 1. Test Equipment Used .....              | 26 |
| Appendix 2. Measurement Methods .....              | 27 |
| Appendix 3. SAR Distribution Scans.....            | 29 |
| Appendix 4. Test Configuration Photograph.....     | 31 |
| Appendix 5. Calibration Data .....                 | 33 |

Note: Test Report Serial No: RFI/SARB3/RP70438JD10A supersedes Test Report  
Serial No: RFI/SARB1/RP70438JD01A & RFI/SARB2/RP70438JD10A

RADIO FREQUENCY INVESTIGATION LTD.

EMC Department

TEST REPORT

S.No. RFI/SARB3/RP70438JD10A

Page 4 of 34

Issue Date: 13 March 2003

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

## 1. Client Information

### 1.1. Client Details

|                      |                                                                     |
|----------------------|---------------------------------------------------------------------|
| <b>Company Name:</b> | Intel Corporation.                                                  |
| <b>Address:</b>      | 1357 Garden of the Gods Road<br>Colorado Springs<br>CO 80907<br>USA |
| <b>Contact Name:</b> | Mr K Rice                                                           |

### 1.2. Test Laboratory

|                      |                                                                   |
|----------------------|-------------------------------------------------------------------|
| <b>Company Name:</b> | Radio Frequency Investigation Ltd.                                |
| <b>Address:</b>      | Ewhurst Park<br>Ramsdell<br>Basingstoke<br>Hampshire<br>RG26 5RQ. |
| <b>Contact Name:</b> | Mr. J. Lomako                                                     |

Test Of: Intel Corporation.  
Pro/Wireless GPRS 3110 PC Card  
To: OET Bulletin 65 Supplement C: (2001-01)

---

## 2. Equipment Under Test (EUT)

The following information (with the exception of the Date of Receipt) has been supplied by the client:

### 2.1. Identification Of Equipment Under Test (EUT)

|                                   |                                |
|-----------------------------------|--------------------------------|
| <b>Brand Name</b>                 | Intel                          |
| <b>Model Name or Number</b>       | Pro/Wireless GPRS 3110 PC Card |
| <b>Unique Type Identification</b> | 1G 3110                        |
| <b>Serial Number</b>              | 299                            |
| <b>FCC Identification</b>         | PUKIG3110                      |
| <b>Country Of Manufacture</b>     | Malaysia                       |
| <b>Date Of Receipt</b>            | 07 October 2002                |

|                                   |                           |
|-----------------------------------|---------------------------|
| <b>Brand Name</b>                 | Plantronics               |
| <b>Model Name or Number</b>       | PHF (Personal Hands Free) |
| <b>Unique Type Identification</b> | None stated by client     |
| <b>Serial Number</b>              | None stated by client     |
| <b>Country Of Manufacture</b>     | None stated by client     |
| <b>Date Of Receipt</b>            | 07 October 2002           |

### 2.2. Modifications Incorporated In EUT

The client has stated that the EUT has not been modified from what is described by the Model Name and Unique Type Identification stated above.

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

**2.3. Additional Information Related to the EUT**

|                                                                         |                                                                   |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|
| <b>Equipment Class:</b>                                                 | PCMCIA Card                                                       |
| <b>FCC Rule Part(s):</b>                                                | OET Bulletin 65 Supplement C                                      |
| <b>Application Type:</b>                                                | Certification                                                     |
| <b>Transmitter Frequency Range</b>                                      | 1850 MHz to 1910 MHz                                              |
| <b>1900 MHz Band (MHz):</b>                                             |                                                                   |
| <b>Receiver Frequency Range</b>                                         | 1930 MHz to 1990 MHz                                              |
| <b>1900 MHz Band (MHz):</b>                                             |                                                                   |
| <b>Transmit Frequency Allocation Of EUT When Under Test (Channels):</b> | Bottom Channel – 512<br>Centre Channel – 660<br>Top Channel – 810 |
| <b>Modulation(s):</b>                                                   | GSM 1900                                                          |
| <b>Modulation Scheme (Crest Factor)</b>                                 | GPRS (Crest Factor 4)                                             |
| <b>Equipment Type</b>                                                   | Portable                                                          |
| <b>Measured Output Power (Max Conducted):</b>                           | 28.62 dBm                                                         |
| <b>Battery Type(s):</b>                                                 | Not Applicable. The EUT is powered by the host support equipment. |
| <b>Antenna Length and Type:</b>                                         | External                                                          |
| <b>Number Of Antenna Positions</b>                                      | 2 (Antenna up/down)                                               |
| <b>Intended Operating Environment:</b>                                  | Residential, Commercial, Light Industry                           |
| <b>Weight:</b>                                                          | Approx. 72 g                                                      |
| <b>Dimensions (without Antenna) mm:</b>                                 | Approx. 115 x 54 x 10 mm                                          |
| <b>Power Supply Requirement:</b>                                        |                                                                   |
| <b>DC Supply (Volts/Amps)</b>                                           | 3 V via supplied laptop                                           |
| <b>AC Supply (Volts/Amps)</b>                                           | Not applicable                                                    |
| <b>Internal Battery (Volts/Amps)</b>                                    | Not applicable                                                    |
| <b>Port(s):</b>                                                         | Enclosure<br>Card Slot to PC                                      |

Test Of: Intel Corporation.  
Pro/Wireless GPRS 3110 PC Card  
To: OET Bulletin 65 Supplement C: (2001-01)

---

#### 2.4. Support Equipment

|                       |              |
|-----------------------|--------------|
| Description:          | Laptop       |
| Brand Name:           | IBM          |
| Model Name or Number: | Thinkpad T20 |
| Serial Number:        | 1Z10D0360P4  |
| Connected to Port:    | PCMCIA       |

|                       |                |
|-----------------------|----------------|
| Description:          | Laptop         |
| Brand Name:           | Toshiba        |
| Model Name or Number: | Satellite S221 |
| Serial Number:        | 72100202IP     |
| Connected to Port:    | PCMCIA         |

|                       |                          |
|-----------------------|--------------------------|
| Description:          | Laptop                   |
| Brand Name:           | DELL                     |
| Model Name or Number: | Latitude C600/C500       |
| Serial Number:        | TW-09C748-12800-17Q-6510 |
| Connected to Port:    | PCMCIA                   |

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

### **3. Test Specification, Methods And Procedures**

#### **3.1. Test Specification**

|                         |                                                                                                        |
|-------------------------|--------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>       | OET Bulletin 65 Supplement C: (2001-01)                                                                |
| <b>Title:</b>           | Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. |
| <b>Purpose of Test:</b> | To determine whether the equipment complied with the requirements of the specification.                |

#### **3.2. Methods And Procedures**

The methods and procedures used were as detailed in:

EN 50361: 2001

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

ANSI/IEEE C95.1: 1999

IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz.

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

#### **3.3. Definition Of Measurement Equipment**

The measurement equipment used complied with the requirements as detailed in OET Bulletin 65 Supplement C, Appendix D.

RADIO FREQUENCY INVESTIGATION LTD.

EMC Department

TEST REPORT

S.No. RFI/SARB3/RP70438JD10A

Page 9 of 34

Issue Date: 13 March 2003

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **4. Deviations From The Test Specification**

None

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **5. Operation Of The EUT During Testing**

The equipment under test is a standard production model.

### **5.1. Operating Modes**

The EUT was tested in the following operating configurations:

Transmitter GPRS transmitting on 2 timeslots.

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **6. Summary Of Test Results**

### **6.1. Summary Of Tests**

| Test Name                      | Specification Reference      | Compliance Status                 |
|--------------------------------|------------------------------|-----------------------------------|
| Specific Absorption Rate (SAR) | OET Bulletin 65 Supplement C | Complied<br>(Not UKAS accredited) |

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

## **6.2. Test Results For Specific Absorption Rate - 1900 MHz**

### **6.2.1. Specific Absorption Rate - 1900 MHz Band – EUT connected to IBM Laptop**

#### **Environmental Conditions**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 21.5 to 22.0 |
| Temperature Variation in Liquid (°C): | 19.5 to 19.8 |

|                              |                     |
|------------------------------|---------------------|
| Conducted Power before Test: | Refer to Appendix 2 |
| Conducted Power after Test:  | Refer to Appendix 2 |

| Position                                      | Side of Head | Frequency Channel No | Distance from antenna to phantom (mm) | SAR Level (W/kg) 1g | SAR Limit (W/kg) 1g | Margin (W/kg) 1g | Result   |
|-----------------------------------------------|--------------|----------------------|---------------------------------------|---------------------|---------------------|------------------|----------|
| 0 degrees to phantom with antenna down        | Flat         | 660                  | 10                                    | 1.044               | 1.6                 | 0.556            | Complied |
| 0 degrees to phantom with antenna up          | Flat         | 660                  | 10                                    | 0.820               | 1.6                 | 0.780            | Complied |
| 90 degrees to phantom with antenna down       | Flat         | 660                  | 15                                    | 0.420               | 1.6                 | 1.180            | Complied |
| 90 degrees to phantom with antenna up         | Flat         | 660                  | 15                                    | 0.343               | 1.6                 | 1.257            | Complied |
| 0 degrees to phantom with antenna down        | Flat         | 512                  | 10                                    | 1.330               | 1.6                 | 0.270            | Complied |
| 0 degrees to phantom with antenna down        | Flat         | 810                  | 10                                    | 0.954               | 1.6                 | 0.646            | Complied |
| 0 degrees to phantom with antenna up with PHF | Flat         | 512                  | 10                                    | 0.978               | 1.6                 | 0.622            | Complied |
| 0 degrees to phantom with antenna up and PHF  | Flat         | 660                  | 10                                    | 0.706               | 1.6                 | 0.894            | Complied |
| 0 degrees to phantom with antenna up and PHF  | Flat         | 810                  | 10                                    | 0.570               | 1.6                 | 1.030            | Complied |

#### **Note:**

1. The measured SAR level has been scaled up by 2.3293% to compensate for conducted power measurement shown in the FCC report RFI/MPTB1/RP70438JD06A.

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

### **6.3. Test Results For Specific Absorption Rate - 1900 MHz**

#### **6.3.1. Specific Absorption Rate - 1900 MHz Band - EUT connected to Toshiba Laptop**

##### **Environmental Conditions**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 21.5 to 21.5 |
| Temperature Variation in Liquid (°C): | 19.8 to 19.7 |

|                              |                     |
|------------------------------|---------------------|
| Conducted Power before Test: | Refer to Appendix 2 |
| Conducted Power after Test:  | Refer to Appendix 2 |

| Position                                | Side of Head | Frequency Channel No | Distance from antenna to phantom (mm) | SAR Level (W/kg) 1g | SAR Limit (W/kg) 1g | Margin (W/kg) 1g | Result   |
|-----------------------------------------|--------------|----------------------|---------------------------------------|---------------------|---------------------|------------------|----------|
| 0 degrees to phantom with antenna down  | Flat         | 660                  | 13                                    | 0.746               | 1.6                 | 0.854            | Complied |
| 0 degrees to phantom with antenna up    | Flat         | 660                  | 13                                    | 0.605               | 1.6                 | 0.995            | Complied |
| 90 degrees to phantom with antenna down | Flat         | 660                  | 15                                    | 0.347               | 1.6                 | 1.253            | Complied |
| 90 degrees to phantom with antenna up   | Flat         | 660                  | 15                                    | 0.339               | 1.6                 | 1.261            | Complied |
| 0 degrees to phantom with antenna down  | Flat         | 512                  | 13                                    | 0.876               | 1.6                 | 0.724            | Complied |
| 0 degrees to phantom with antenna down  | Flat         | 810                  | 13                                    | 0.594               | 1.6                 | 1.006            | Complied |

##### **Note:**

1. The measured SAR level has been scaled up by 2.3293% to compensate for conducted power measurement shown in the FCC report RFI/MPTB1/RP70438JD06A.

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

**6.4. Test Results For Specific Absorption Rate - 1900 MHz****6.4.1. Specific Absorption Rate - 1900 MHz Band - EUT connected to Dell Laptop****Environmental Conditions**

|                                       |              |
|---------------------------------------|--------------|
| Temperature Variation in Lab (°C):    | 21.5 to 21.5 |
| Temperature Variation in Liquid (°C): | 19.6 to 19.8 |

|                              |                     |
|------------------------------|---------------------|
| Conducted Power before Test: | Refer to Appendix 2 |
| Conducted Power after Test:  | Refer to Appendix 2 |

| Position                                | Side of Head | Frequency Channel No | Distance from antenna to phantom (mm) | SAR Level (W/kg) 1g | SAR Limit (W/kg) 1g | Margin (W/kg) 1g | Result   |
|-----------------------------------------|--------------|----------------------|---------------------------------------|---------------------|---------------------|------------------|----------|
| 0 degrees to phantom with antenna down  | Flat         | 660                  | 15                                    | 0.845               | 1.6                 | 0.755            | Complied |
| 0 degrees to phantom with antenna up    | Flat         | 660                  | 15                                    | 0.627               | 1.6                 | 0.973            | Complied |
| 90 degrees to phantom with antenna down | Flat         | 660                  | 15                                    | 0.532               | 1.6                 | 1.068            | Complied |
| 90 degrees to phantom with antenna up   | Flat         | 660                  | 15                                    | 0.434               | 1.6                 | 1.166            | Complied |
| 0 degrees to phantom with antenna down  | Flat         | 512                  | 15                                    | 1.003               | 1.6                 | 0.597            | Complied |
| 0 degrees to phantom with antenna down  | Flat         | 810                  | 15                                    | 0.678               | 1.6                 | 0.922            | Complied |

**Note:**

1. The measured SAR level has been scaled up by 2.3293% to compensate for conducted power measurement shown in the FCC report RFI/MPTB1/RP70438JD06A.

**Test Of: Intel Corporation.****Pro/Wireless GPRS 3110 PC Card****To: OET Bulletin 65 Supplement C: (2001-01)**

---

## **7. SAR Measurement System**

7.1. Radio Frequency Investigation SAR measurement facility utilises the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the SAM phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilises a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

RADIO FREQUENCY INVESTIGATION LTD.

EMC Department

TEST REPORT

S.No. RFI/SARB3/RP70438JD10A

Page 16 of 34

Issue Date: 13 March 2003

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **8. SAR Safety Limits**

| <b>Exposure Limits</b><br>(General populations/Uncontrolled Exposure Environment) | <b>SAR</b><br>(W/Kg) |
|-----------------------------------------------------------------------------------|----------------------|
| Spatial Peak (averaged over any 1 g of tissue)                                    | 1.60                 |

### **Notes:**

1. The FCC SAR safety limits specified in the table above apply to devices operated in the General Population / Uncontrolled Exposure Environment.
2. Uncontrolled environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

## **9. Details of SAR Evaluation**

9.1. The equipment under test was found to be compliant for localised specific absorption rate (SAR) based on the following provisions and conditions:

- a) The Laptop was placed in a normal operating position with the test device reference point aligned with the centre of the flat section of the phantom.
- b) The EUT was tested in the following configurations:
  - 1) 0 degrees with antenna down
  - 2) 0 degrees with antenna up
  - 3) 90 degrees with antenna down
  - 4) 90 degrees with antenna down
- c) The EUT was then tested in the with the (PHF) personal handsfree kit in the laptop with the highest measured SAR value.
- d) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- e) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- f) The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the handset and its antenna.
- g) The EUT was tested with a fully charged battery.

**Test Of: Intel Corporation.**

**Pro/Wireless GPRS 3110 PC Card**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

## **10. Evaluation Procedures**

10.1. The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by FCC OET bulletin 65 Supplement C.  
(ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY3 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm.
- c) A 7x7x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.
- e) Testing was performed and evaluated according to Radiofrequency Radiation Exposure Limits, 2.1093.

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

## **11. System Validation**

11.1. Prior to the assessment, the system was verified in the flat region of the phantom. A 1900 MHz dipole. A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of  $\pm 5\%$ . The applicable verification (normalised to 1 Watt) is as follows:

| Dipole Validation Kit | Target SAR 1g (w/kg) | Measured SAR 1g (w/kg) |
|-----------------------|----------------------|------------------------|
| D1900V2               | 42.4                 | 41.6                   |

**Test Of: Intel Corporation.****Pro/Wireless GPRS 3110 PC Card****To: OET Bulletin 65 Supplement C: (2001-01)**

## **12. Simulated Tissues**

12.1. The brain and muscle mixtures consist of water and organic solvent. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

| <b>Ingredient</b>          | <b>Frequency</b>          |                            |
|----------------------------|---------------------------|----------------------------|
|                            | <b>1900 MHz<br/>Brain</b> | <b>1900 MHz<br/>Muscle</b> |
| Water                      | 10.96 Litres              | 14.01 Litres               |
| D.G.B.E. (Organic Solvent) | 8.97 Litres               | 6.0 Litres                 |
| Salt                       | 0.064 grams               | 42 grams                   |

Test Of: Intel Corporation.  
Pro/Wireless GPRS 3110 PC Card  
To: OET Bulletin 65 Supplement C: (2001-01)

---

### **13. Tissue Parameters**

13.1. The dielectric parameters of the fluids were verified prior to the SAR evaluation using a 58070C Dielectric Probe Kit and an 8753E Network Analyser. The measured dielectric parameters of the fluid are as follows:

| Frequency (MHz) | Equivalent Tissue | Dielectric Constant $\epsilon_r$ | Conductivity $\sigma$ (mho/m) |
|-----------------|-------------------|----------------------------------|-------------------------------|
| 1850-1910       | Brain             | 38.06 $\pm$ 10%                  | 1.46 $\pm$ 10%                |
| 1850-1910       | Muscle            | 54.15 $\pm$ 10%                  | 1.60 $\pm$ 10%                |

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

## 14. DASY3 Systems Specifications

### Robot System

|                       |                                            |
|-----------------------|--------------------------------------------|
| Positioner:           | Stäubli Unimation Corp. Robot Model: RX90L |
| Repeatability:        | 0.025 mm                                   |
| No. of axis:          | 6                                          |
| Serial Number:        | F00/SD89A1/A/01                            |
| Reach:                | 1185 mm                                    |
| Payload:              | 3.5 kg                                     |
| Control Unit:         | CS7                                        |
| Programming Language: | V+                                         |

### Data Acquisition Electronic (DAE) System

#### Cell Controller

|                   |                     |
|-------------------|---------------------|
| PC:               | Dell Optiplex GX110 |
| Operating System: | Windows NT          |
| Data Card:        | DASY3 PC-Board      |
| Serial Number:    | 220                 |

#### Data Converter

|                   |                                                                                      |
|-------------------|--------------------------------------------------------------------------------------|
| Features:         | Signal Amplifier, multiplexer, A/D converter and control logic.                      |
| Software:         | DASY3 Software                                                                       |
| Connecting Lines: | Optical downlink for data and status info.<br>Optical uplink for commands and clock. |

### PC Interface Card

|           |                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function: | 24 bit (64 MHz) DSP for real time processing Link to DAE3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### E-Field Probe

|                       |                                              |
|-----------------------|----------------------------------------------|
| Model:                | ET3DV6                                       |
| Serial No:            | 1529                                         |
| Construction:         | Triangular core fibre optic detection system |
| Frequency:            | 10 MHz to 3 GHz                              |
| Linearity:            | ±0.2 dB (30 MHz to 3 GHz)                    |
| Probe Length (mm):    | 337                                          |
| Probe Diameter (mm):  | 12                                           |
| Tip Length (mm):      | 10                                           |
| Tip Diameter (mm):    | 6.8                                          |
| Sensor X Offset (mm): | 2.7                                          |
| Sensor Y Offset (mm): | 2.7                                          |
| Sensor Z Offset (mm): | 2.7                                          |

### Phantom

|                 |             |
|-----------------|-------------|
| Phantom:        | SAM Phantom |
| Shell Material: | Fibreglass  |
| Thickness:      | 2.0 ±0.1 mm |

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

## **15. Validation results**

### **15.1. System Validation**

15.1.1. Validation of the system test configuration was carried out prior to testing.

| Validation Dipole Type and Serial No. | Calibrated Value of SAR in 1g volume (W/kg) at 1900 MHz | Measured Value of SAR in 1g volume (W/kg) at 1900 MHz | Percentage Difference (<5%) |
|---------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------|
| D1900V2 / 540                         | 42.4                                                    | 41.6                                                  | Yes                         |

### **15.2. Liquid Properties - Body**

15.2.1. Properties of the tissue simulating liquid were measured prior to testing.

| Property              | Target Value (1900 MHz) | Measured/Calculated Value (1900 MHz) | Percentage Difference (<10%) |
|-----------------------|-------------------------|--------------------------------------|------------------------------|
| Relative Permittivity | 53.3                    | 54.15                                | Yes                          |
| Conductivity          | 1.52                    | 1.60                                 | Yes                          |

### **15.3. Temperature Variation**

15.3.1. The temperature of the laboratory and within the tissue simulating liquid for this test shall not exceed the range +15°C to +25°C.

15.3.2. The actual temperature measured at the beginning and end of each test was recorded and the maximum range is shown below:

| Measurement              | Maximum Temperature | Minimum Temperature |
|--------------------------|---------------------|---------------------|
| Laboratory               | 22.0                | 21.5                |
| Tissue Simulating Liquid | 19.8                | 19.5                |

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

## **16. Measurement Uncertainty**

16.1. No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

16.2. The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

16.3. The uncertainty of the result may need to be taken into account when interpreting the measurement results.

16.4. The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type         | Range    | Confidence Level | Calculated Uncertainty |
|--------------------------|----------|------------------|------------------------|
| Specific Absorption Rate | 1900 MHz | 95%              | ± 18.02%               |

16.5. The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

16.6. Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environment. However, the estimated measurement uncertainties in SAR are less than 30%.

16.7. According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ±1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ±2 dB can be expected.

16.8. According to CENELEC, typical worst-case uncertainty of field measurements is ±5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ±3 dB.

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

**Specific Absorption Rate Uncertainty at 1900 MHz, GSM Modulation Scheme calculated in accordance with IEEE 1528-200X**

| Type of Uncertainty | Source of uncertainty                            |  |  | Value ±%   | Probability distribution | Divisor | C <sub>i</sub> | U <sub>i</sub> ( ) ± | V <sub>i</sub> or V <sub>eff</sub> |
|---------------------|--------------------------------------------------|--|--|------------|--------------------------|---------|----------------|----------------------|------------------------------------|
| B                   | Probe Calibration                                |  |  | 9.5000     | Normal                   | 2.0000  | 1.0000         | 4.7500               | ∞                                  |
| B                   | Axial Isotropy                                   |  |  | 2.3000     | Rectangular              | 1.7321  | 0.7000         | 0.9295               | ∞                                  |
| B                   | Hemispherical Isotropy                           |  |  | 4.7000     | Rectangular              | 1.7321  | 0.7000         | 1.8995               | ∞                                  |
| B                   | Spatial Resolution                               |  |  | 0.5000     | Rectangular              | 1.7321  | 1.0000         | 0.2887               | ∞                                  |
| B                   | Boundary Effect                                  |  |  | 0.7390     | Rectangular              | 1.7321  | 1.0000         | 0.4267               | ∞                                  |
| B                   | Linearity                                        |  |  | 2.3300     | Rectangular              | 1.7321  | 1.0000         | 1.3452               | ∞                                  |
| B                   | Detecton Limits                                  |  |  | 0.2000     | Rectangular              | 1.7321  | 1.0000         | 0.1155               | ∞                                  |
| B                   | Readout Electronics                              |  |  | 0.6500     | Normal                   | 2.0000  | 1.0000         | 0.3250               | ∞                                  |
| B                   | Response time                                    |  |  | 0.0000     | Rectangular              | 1.7321  | 1.0000         | 0.0000               | ∞                                  |
| B                   | Integration Time                                 |  |  | 0.0040     | Rectangular              | 1.7321  | 1.0000         | 0.0023               | ∞                                  |
| B                   | RF Ambient Conditions                            |  |  | 3.0000     | Rectangular              | 1.7321  | 1.0000         | 1.7321               | ∞                                  |
| B                   | Probe Positioner Mech. Restrictions              |  |  | 6.6700     | Rectangular              | 1.7321  | 1.0000         | 3.8509               | ∞                                  |
| B                   | Probe Positioning with regard to Phantom Shell   |  |  | 2.8500     | Rectangular              | 1.7321  | 1.0000         | 1.6454               | ∞                                  |
| B                   | Extrapolation and Integration/Max SAR Evaluation |  |  | 5.0800     | Rectangular              | 1.7321  | 1.0000         | 2.9329               | ∞                                  |
| A                   | Test Sample Positioning                          |  |  | 0.5840     | Normal                   | 1.0000  | 1.0000         | 0.5840               | 10                                 |
| A                   | Device Holder Uncertainty                        |  |  | 0.1540     | Rectangular              | 1.7321  | 1.0000         | 0.0889               | 10                                 |
| B                   | Drift of output power                            |  |  | 5.0000     | Rectangular              | 1.7321  | 1.0000         | 2.8868               | ∞                                  |
| B                   | Phantom Uncertainty                              |  |  | 4.0000     | Rectangular              | 1.7321  | 1.0000         | 2.3094               | ∞                                  |
| B                   | Liquid conductivity (target value)               |  |  | 5.0000     | Rectangular              | 1.7321  | 0.7000         | 2.0207               | ∞                                  |
| B                   | Liquid conductivity (measured value)             |  |  | 2.4400     | Rectangular              | 1.7321  | 0.7000         | 0.9861               | ∞                                  |
| B                   | Liquid Permittivity (target value)               |  |  | 5.0000     | Rectangular              | 1.7321  | 0.6000         | 1.7321               | ∞                                  |
| B                   | Liquid Permittivity (measured value)             |  |  | 2.4400     | Rectangular              | 1.7321  | 0.6000         | 0.8452               | ∞                                  |
|                     | Combined standard uncertainty                    |  |  | normal     |                          |         |                | 9.01                 | >500                               |
|                     | Expanded uncertainty                             |  |  | normal k=2 |                          |         |                | 18.02                | >500                               |

**Statement of Confidence:-**

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

**Appendix 1. Test Equipment Used**

| Instrument                | Manufacturer         | Model Number     | RFI No. |
|---------------------------|----------------------|------------------|---------|
| Narda 20W Termination     | Narda                | 374BNM           | A034    |
| Handset Positioner        | Schmid & Partners    | V3.0             | A1182   |
| Probe 1529                | Schmid & Partners    | ET3 DV6          | A1186   |
| Low noise Amplifier       | Mini Circuits        | ZHL-42           | A1225   |
| 1900MHz Validation Dipole | Schmid & Partners    | D1900V2          | A1237   |
| SAM Phantom               | Schmid & Partners    | 001              | A1238   |
| 20 dB Attenuator          | Narda                | 766-20           | A215    |
| Rosenberger Cable         | Rosenberger          | FA210A-1-020m    | C1024   |
| Cable                     | Utiflex              | FA210A0030M3030  | C1052   |
| Cable                     | Utiflex              | FA210A0003M3030  | C1053   |
| Cable                     | Utiflex              | FA210A0001M3050A | C1054   |
| Signal Generator          | Gigatronics          | 7100/.01-20      | G046    |
| Robot Power Supply        | Schmid & Partner     | Dasy3            | G0528   |
| PSU                       | Thurlby Thandar      | CPX200           | G088    |
| RF Power Meter            | Rohde & Schwarz      | URY              | M037    |
| 10V Insertion Unit        | Rohde & Schwarz      | URY-Z2           | M096    |
| HP 437B                   | Hewlett Packard      | 437B             | M1009   |
| Network Analyser          | Agilent Technologies | 8753ES           | M1015   |
| Robot Arm                 | Staubli              | RX908 L          | M1047   |
| Power meter head          | Rohde & Schwarz      | URY Z2           | M1049   |
| Diode Power Sensor        | Rohde & Schwarz      | NRV-Z2           | M1069   |
| SAR Lab                   | RFI                  | N/A              | S256    |

Test Of: Intel Corporation.  
 Pro/Wireless GPRS 3110 PC Card  
 To: OET Bulletin 65 Supplement C: (2001-01)

---

## Appendix 2. Measurement Methods

### Conducted Power Output.

Before and after each test case, the antenna was removed from the EUT and a direct coaxial cable was connected. The conducted output power was then measured. Once the measurements were complete, the coaxial cable was removed and the antenna replaced. The EUT was then re-assembled.

The conducted power output of the EUT are as follows:-

#### 1900 MHz Body:

##### IBM Laptop

| Position                                     | Side of Head | ARFCN | Tx Power Before test | Tx Power After test |
|----------------------------------------------|--------------|-------|----------------------|---------------------|
| 0 Degrees to Phantom with Antenna Down       | Flat         | 660   | 28.33                | 28.27               |
| 0 Degrees to Phantom with Antenna Up         | Flat         | 660   | 28.27                | 28.29               |
| 90 Degrees to Phantom with Antenna Down      | Flat         | 660   | 28.29                | 28.30               |
| 90 Degrees to Phantom with Antenna Up        | Flat         | 660   | 28.30                | 28.30               |
| 0 Degrees to Phantom with Antenna Down       | Flat         | 512   | 28.07                | 28.06               |
| 0 Degrees to Phantom with Antenna Down       | Flat         | 810   | 27.88                | 27.87               |
| 0 Degrees to Phantom with Antenna UP and PHF | Flat         | 660   | 28.30                | 28.20               |
| 0 Degrees to Phantom with Antenna UP and PHF | Flat         | 512   | 28.20                | 27.91               |
| 0 Degrees to Phantom with Antenna UP and PHF | Flat         | 810   | 27.91                | 27.97               |

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

**Toshiba Laptop**

| Position                                | Side of Head | ARFCN | Tx Power Before test | Tx Power After test |
|-----------------------------------------|--------------|-------|----------------------|---------------------|
| 0 Degrees to Phantom with Antenna Down  | Flat         | 660   | 28.47                | 28.46               |
| 0 Degrees to Phantom with Antenna Up    | Flat         | 660   | 28.46                | 28.42               |
| 90 Degrees to Phantom with Antenna Down | Flat         | 660   | 28.42                | 28.40               |
| 90 Degrees to Phantom with Antenna Up   | Flat         | 660   | 28.12                | 28.06               |
| 0 Degrees to Phantom with Antenna Down  | Flat         | 512   | 28.07                | 28.06               |
| 0 Degrees to Phantom with Antenna Down  | Flat         | 810   | 27.04                | 27.98               |

**DELL Laptop**

| Position                                | Side of Head | ARFCN | Tx Power Before test | Tx Power After test |
|-----------------------------------------|--------------|-------|----------------------|---------------------|
| 0 Degrees to Phantom with Antenna Down  | Flat         | 660   | 28.52                | 28.36               |
| 0 Degrees to Phantom with Antenna Up    | Flat         | 660   | 28.36                | 28.38               |
| 90 Degrees to Phantom with Antenna Down | Flat         | 660   | 28.37                | 28.35               |
| 90 Degrees to Phantom with Antenna Up   | Flat         | 660   | 28.35                | 28.35               |
| 0 Degrees to Phantom with Antenna Down  | Flat         | 512   | 27.97                | 28.12               |
| 0 Degrees to Phantom with Antenna Down  | Flat         | 810   | 27.97                | 27.84               |

**RADIO FREQUENCY INVESTIGATION LTD.**

**EMC Department**

**TEST REPORT**

**S.No. RFI/SARB3/RP70438JD10A**

**Page 29 of 34**

**Issue Date: 13 March 2003**

**Test Of: Intel Corporation.**

**Pro/Wireless GPRS 3110 PC Card**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

### **Appendix 3. SAR Distribution Scans**

This appendix contains the SAR distribution scans..

**RADIO FREQUENCY INVESTIGATION LTD.**

**EMC Department**

**Test Of: Intel Corporation.**

**Pro/Wireless GPRS 3110 PC Card**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

**TEST REPORT**

**S.No. RFI/SARB3/RP70438JD10A**

**Page 30 of 34**

**Issue Date: 13 March 2003**

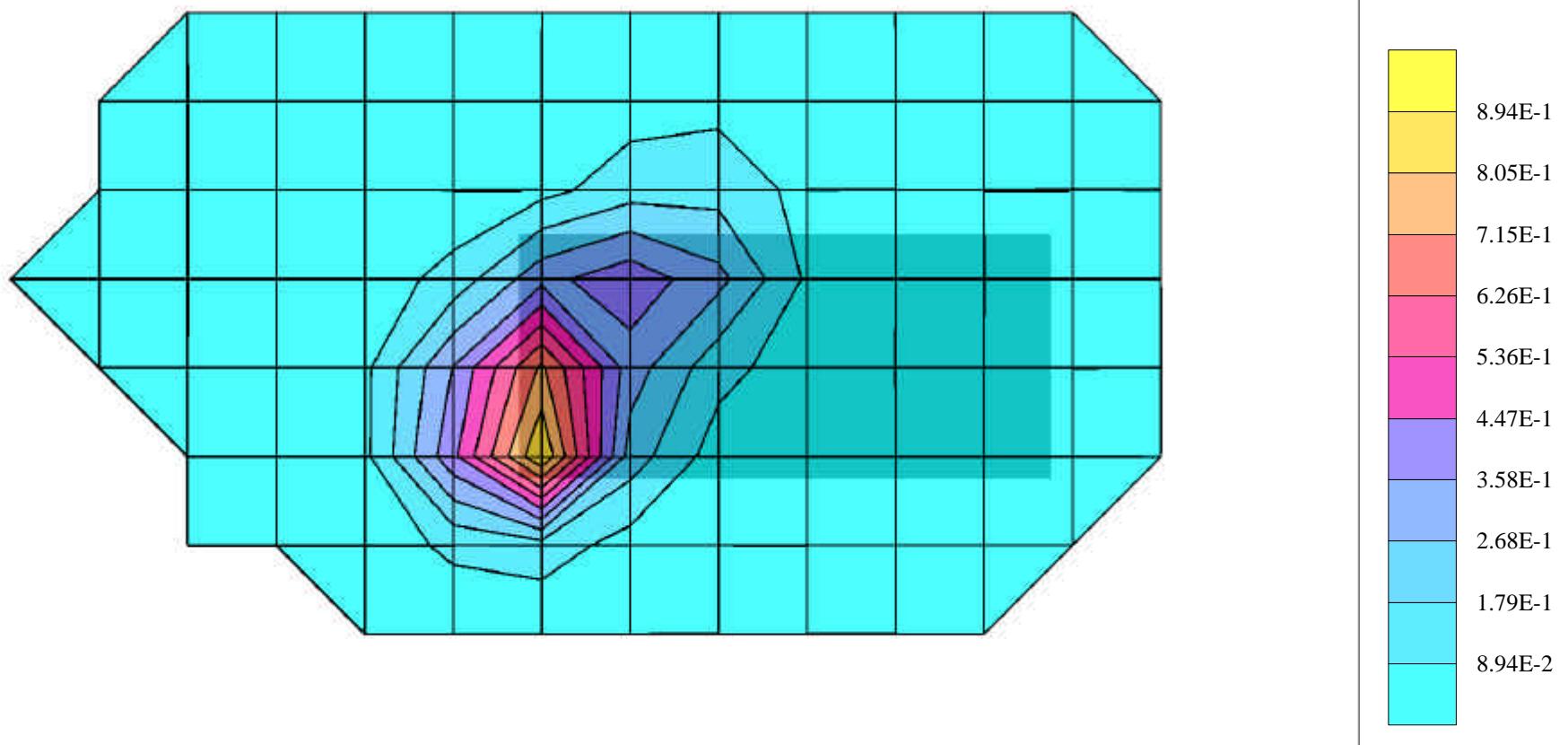
This page has been left intentionally blank.

## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 7.0%

10/11/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.53 mW/g, SAR (1g): 0.826 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 7.0%

10/11/02

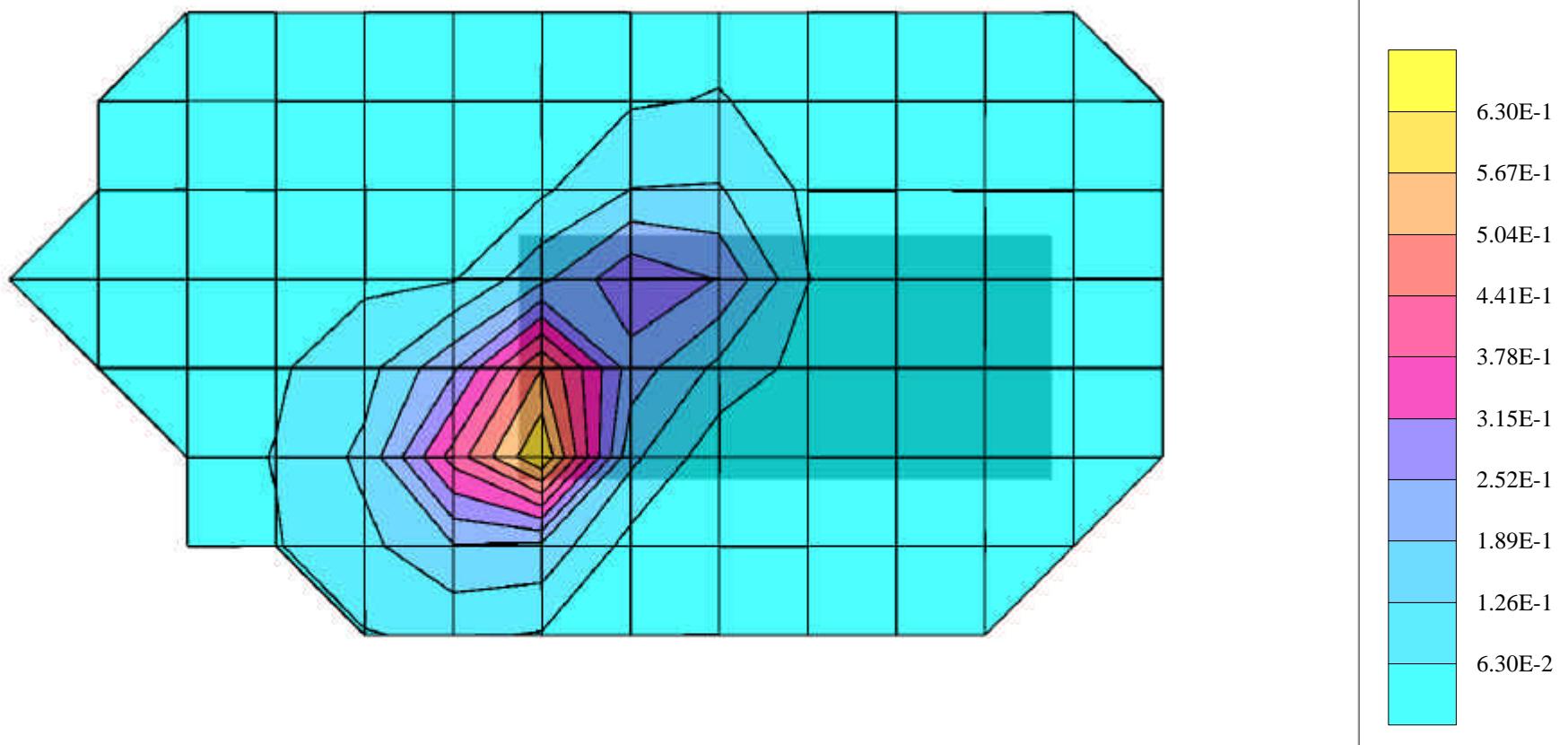


# GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.3%

10/11/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.10 mW/g, SAR (1g): 0.613 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.3%

10/11/02

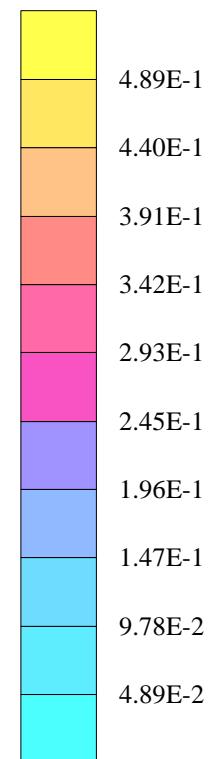
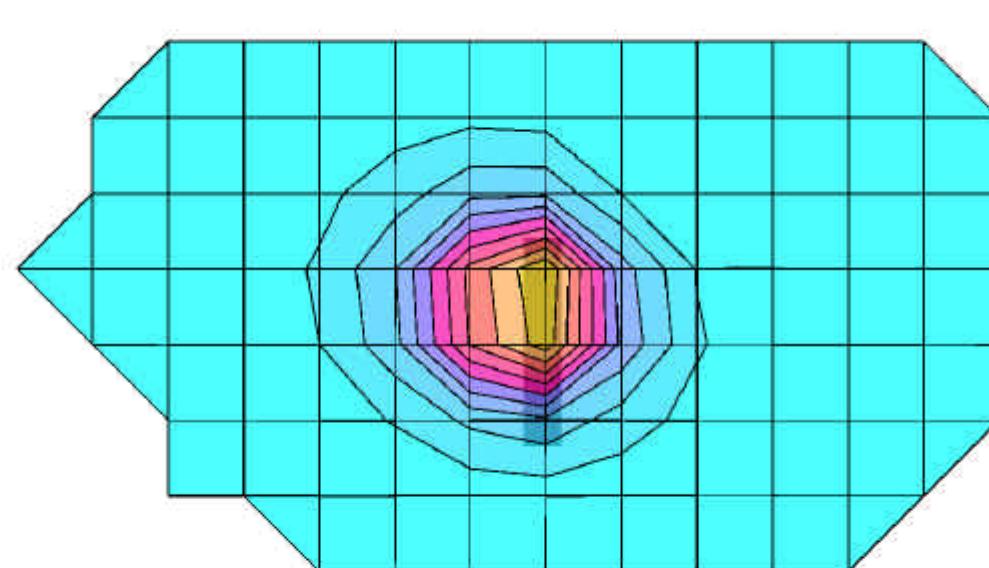


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/11/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 0.917 mW/g, SAR (1g): 0.520 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/11/02

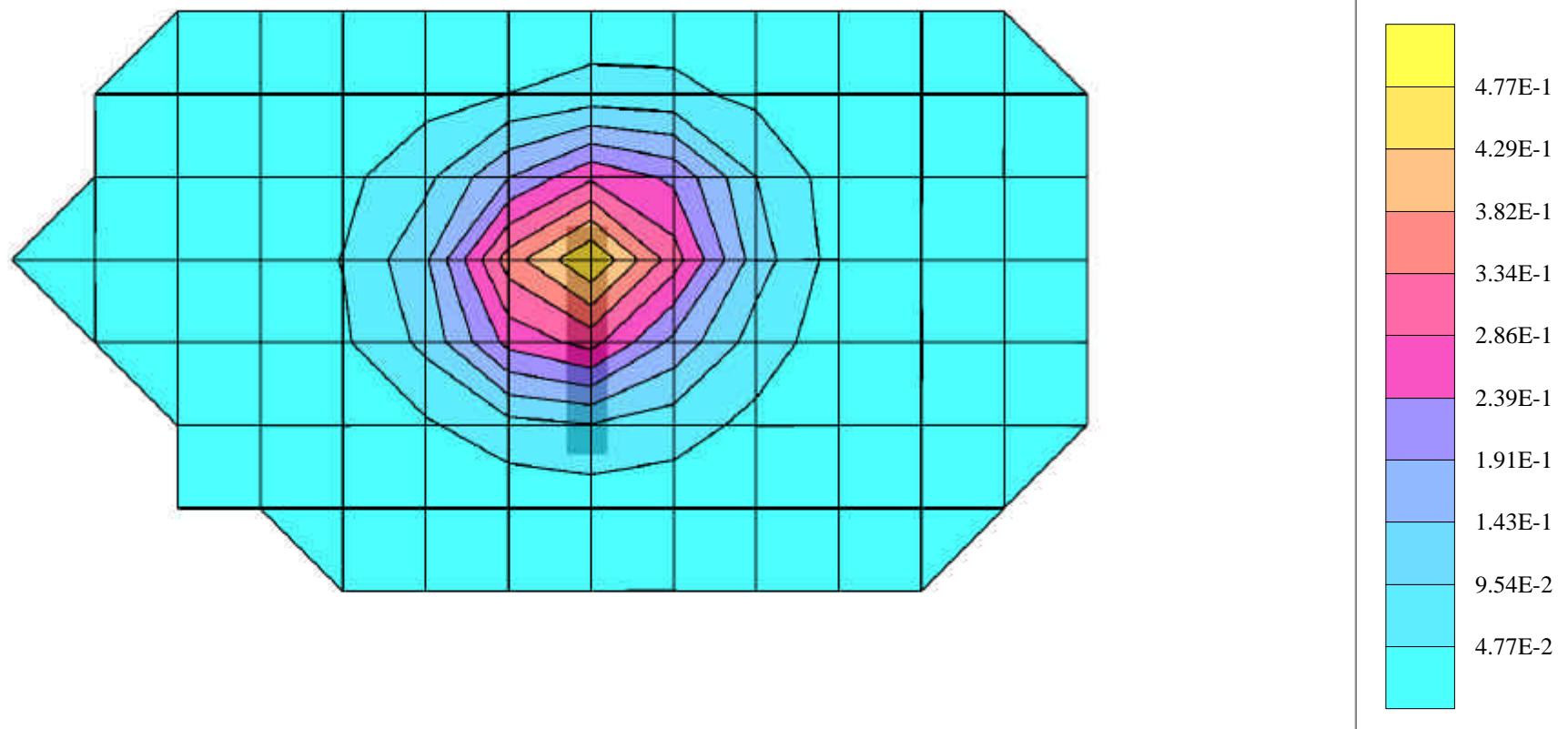


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.6%

10/11/02

SAR<sub>Tot</sub> [mW/g]

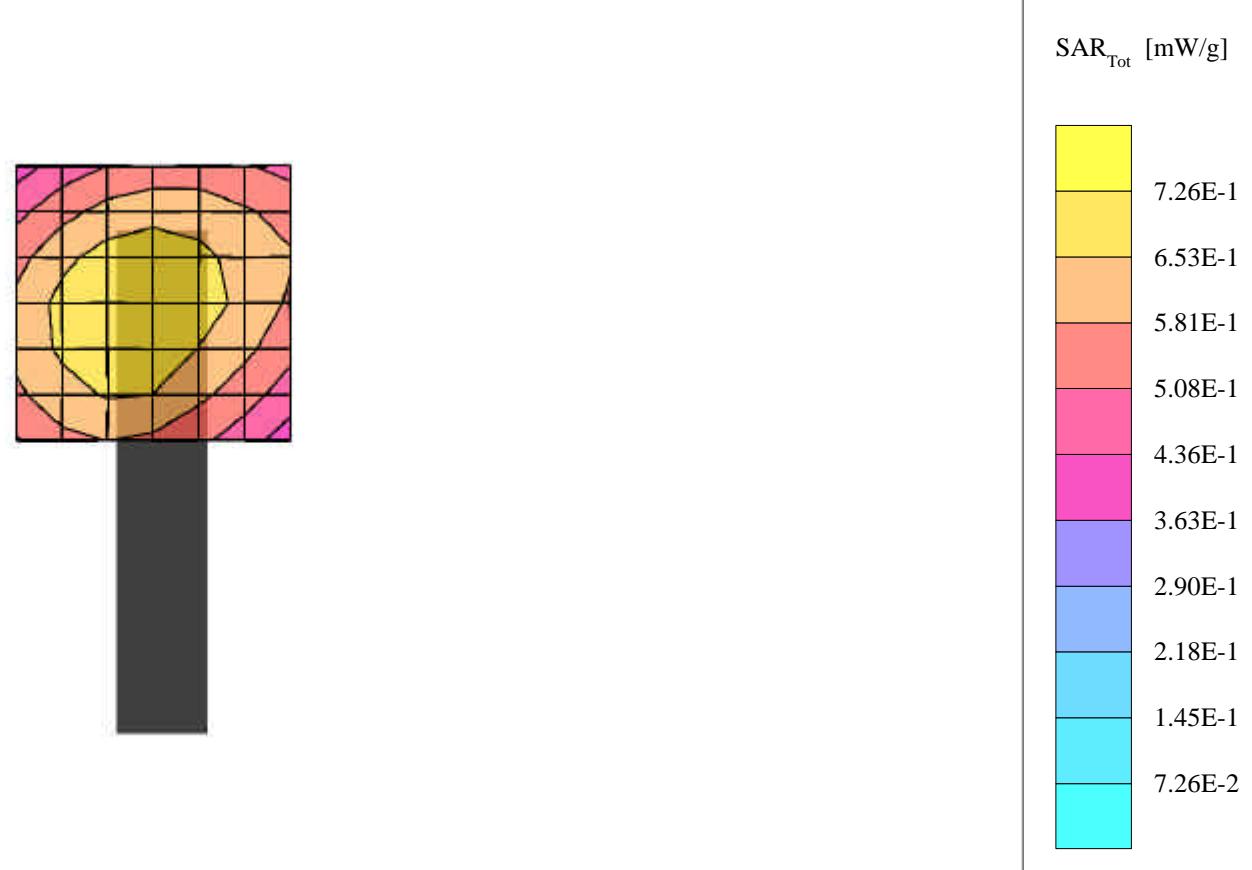


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 0.731 mW/g, SAR (1g): 0.424 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.6%

10/11/02

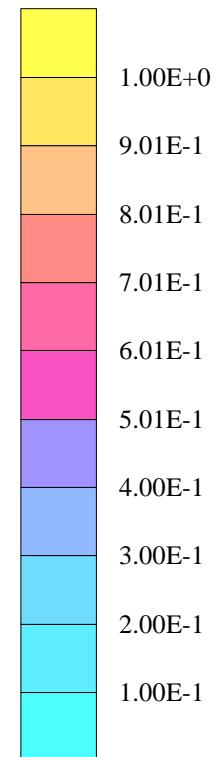
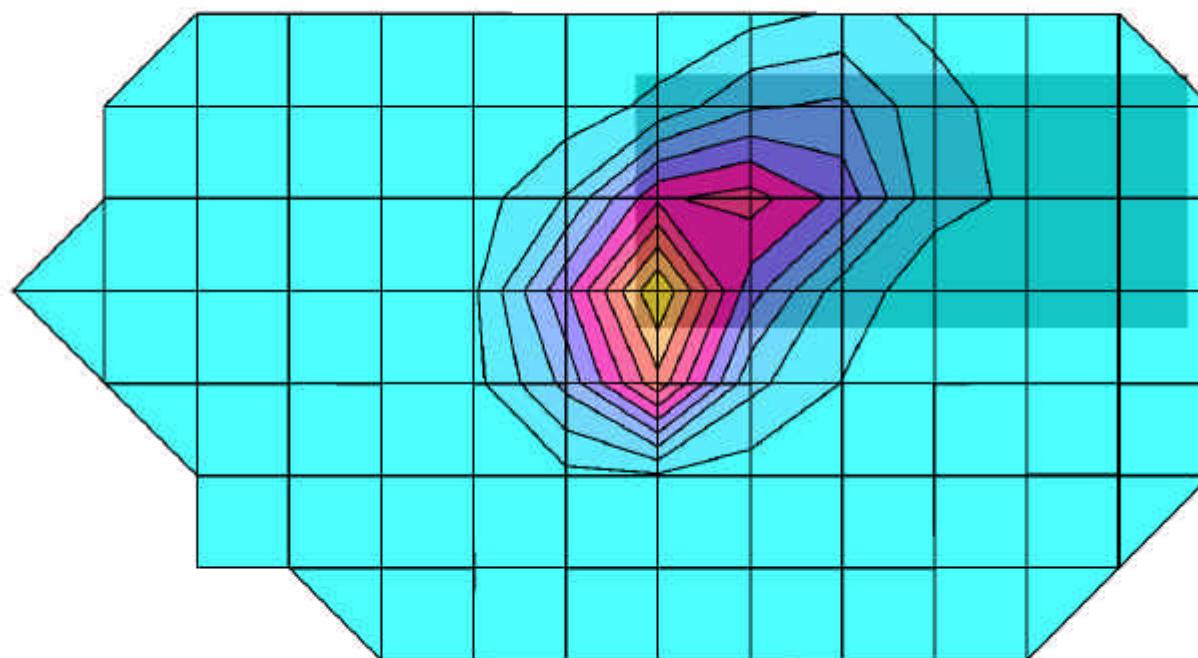


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 5.1%

10/11/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.79 mW/g, SAR (1g): 0.980 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 5.1%

10/11/02

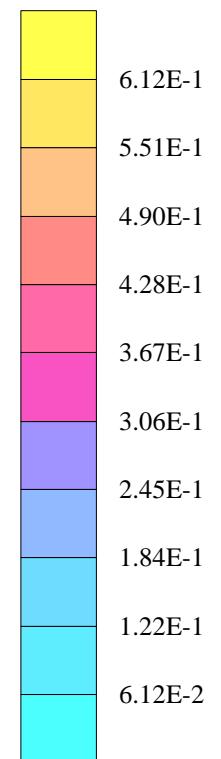
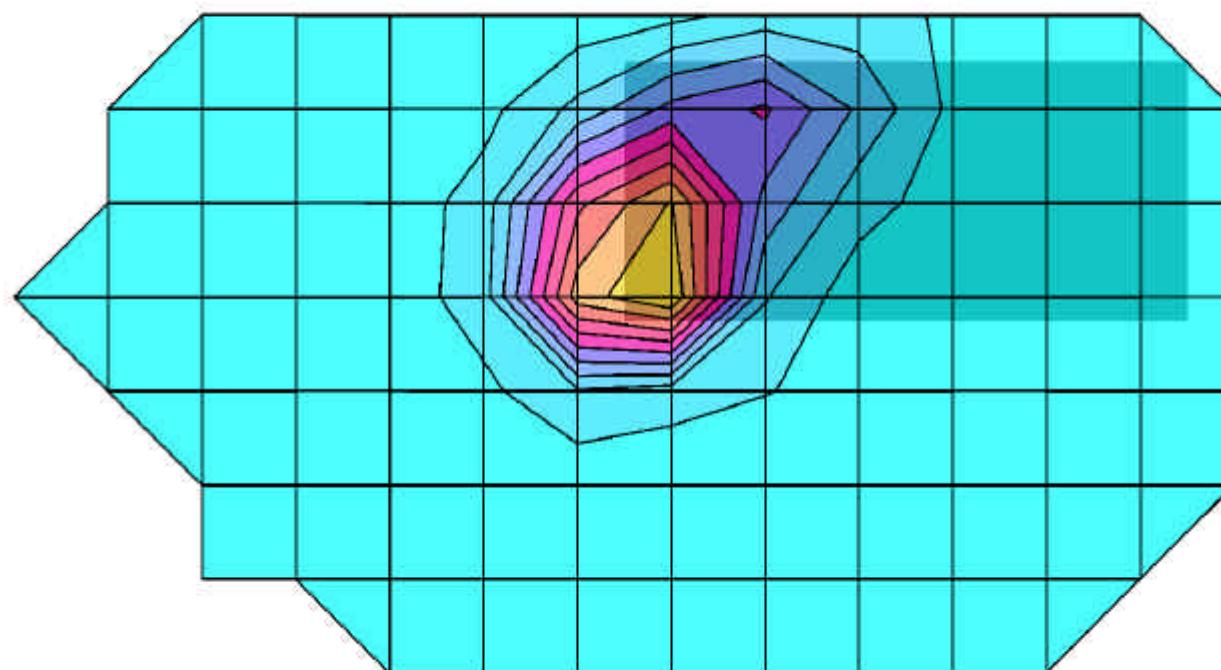


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.5%

10/11/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.23 mW/g, SAR (1g): 0.663 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.5%

10/11/02

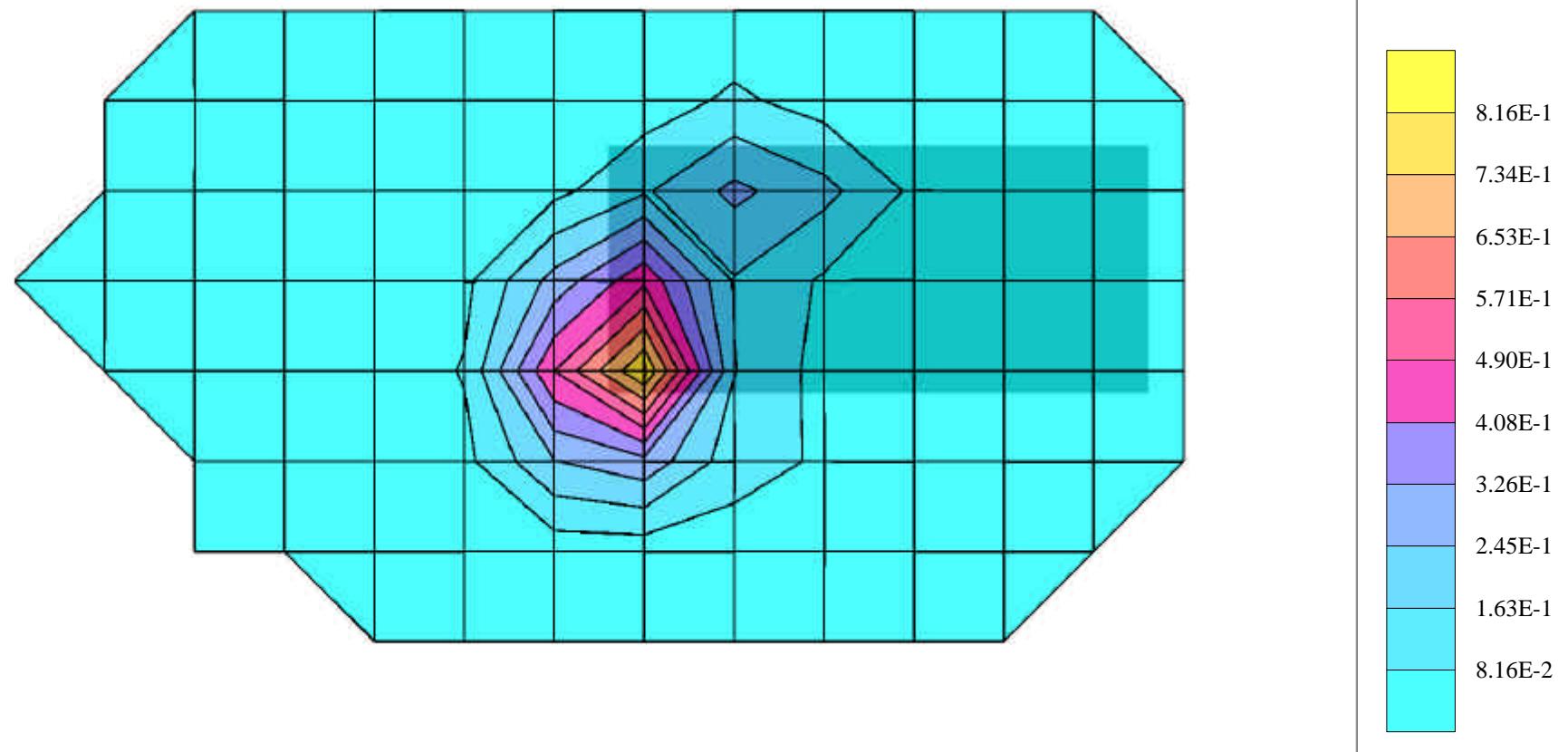


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.34 mW/g, SAR (1g): 0.729 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/10/02

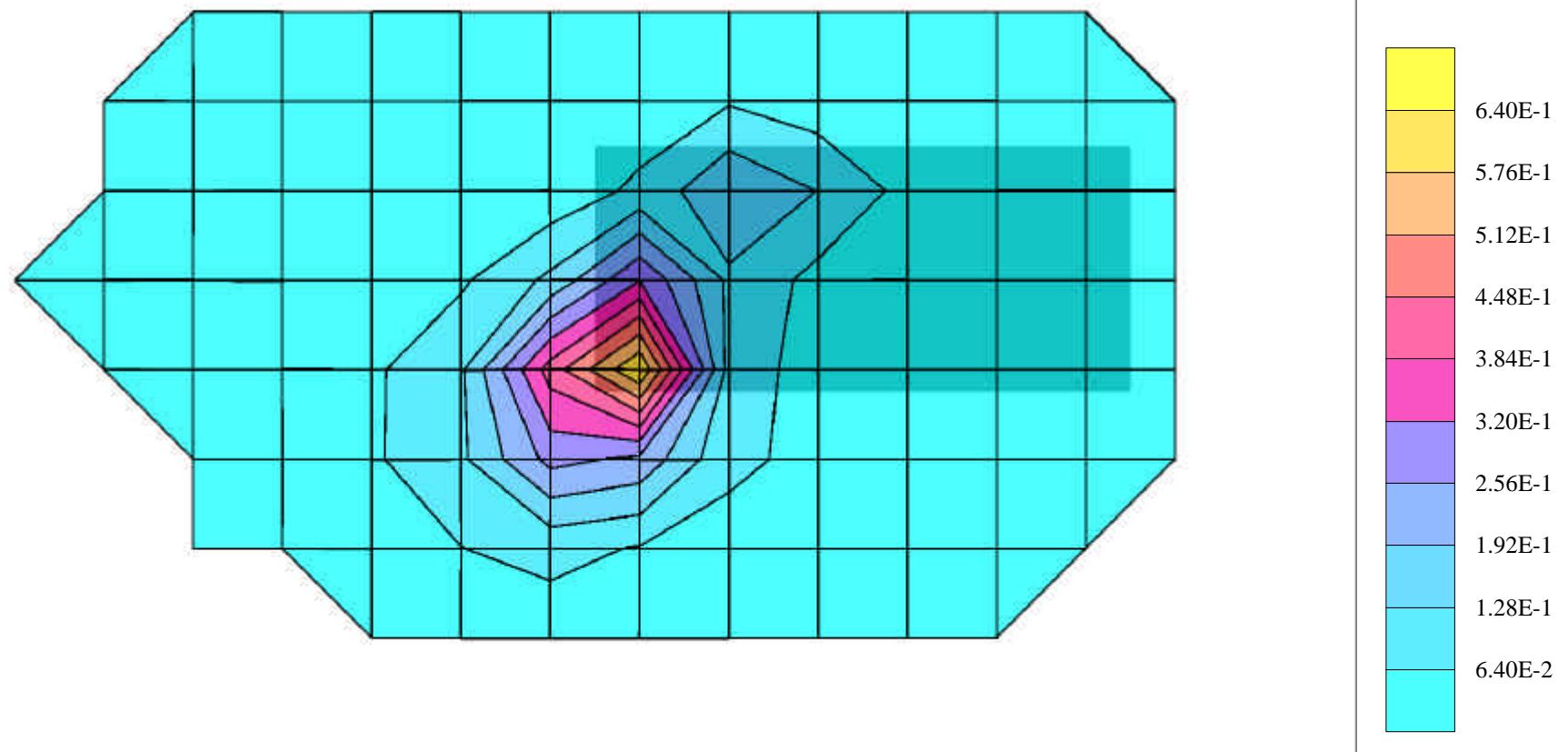


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.4%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.06 mW/g, SAR (1g): 0.591 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.4%

10/10/02

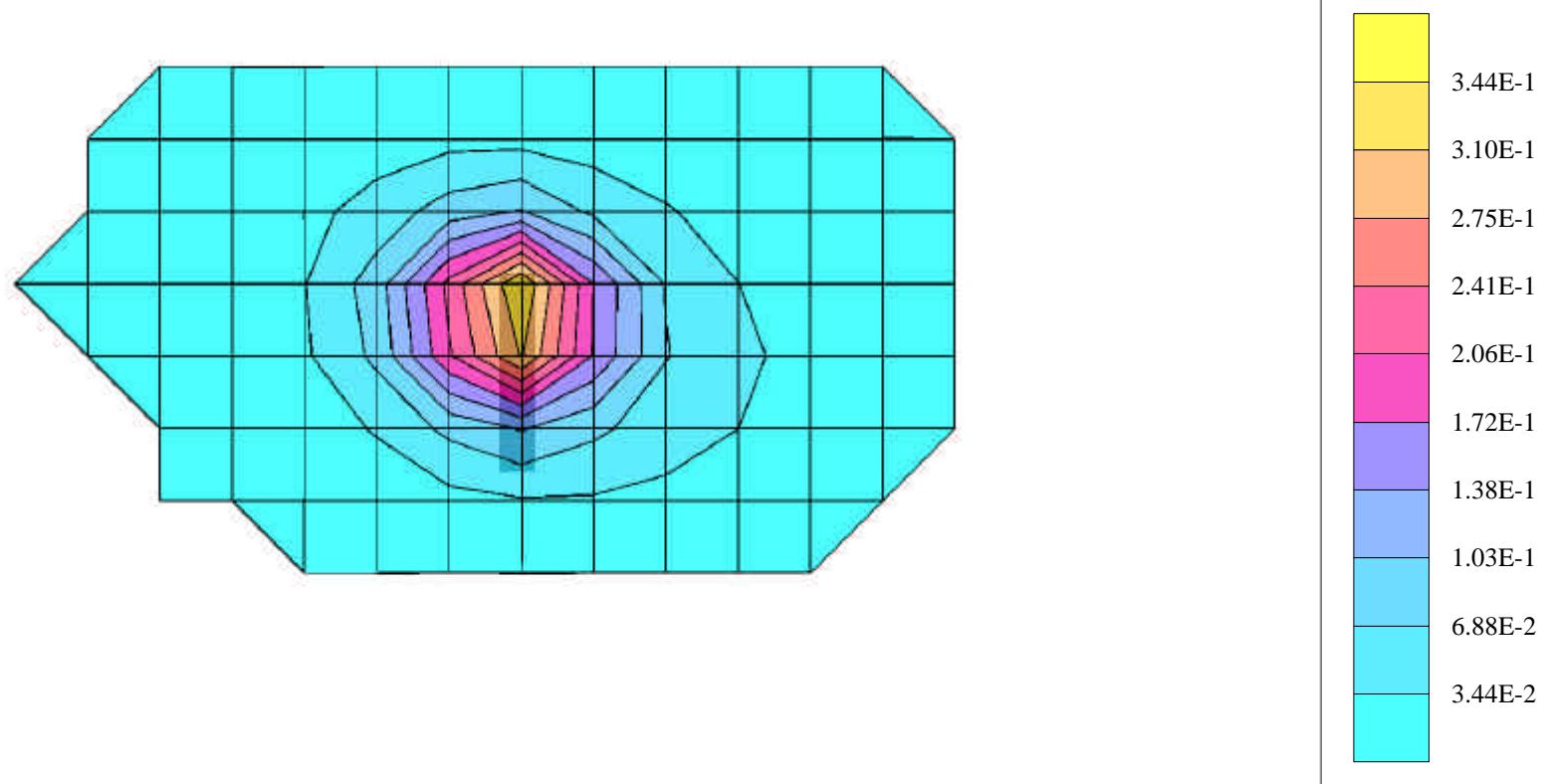


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

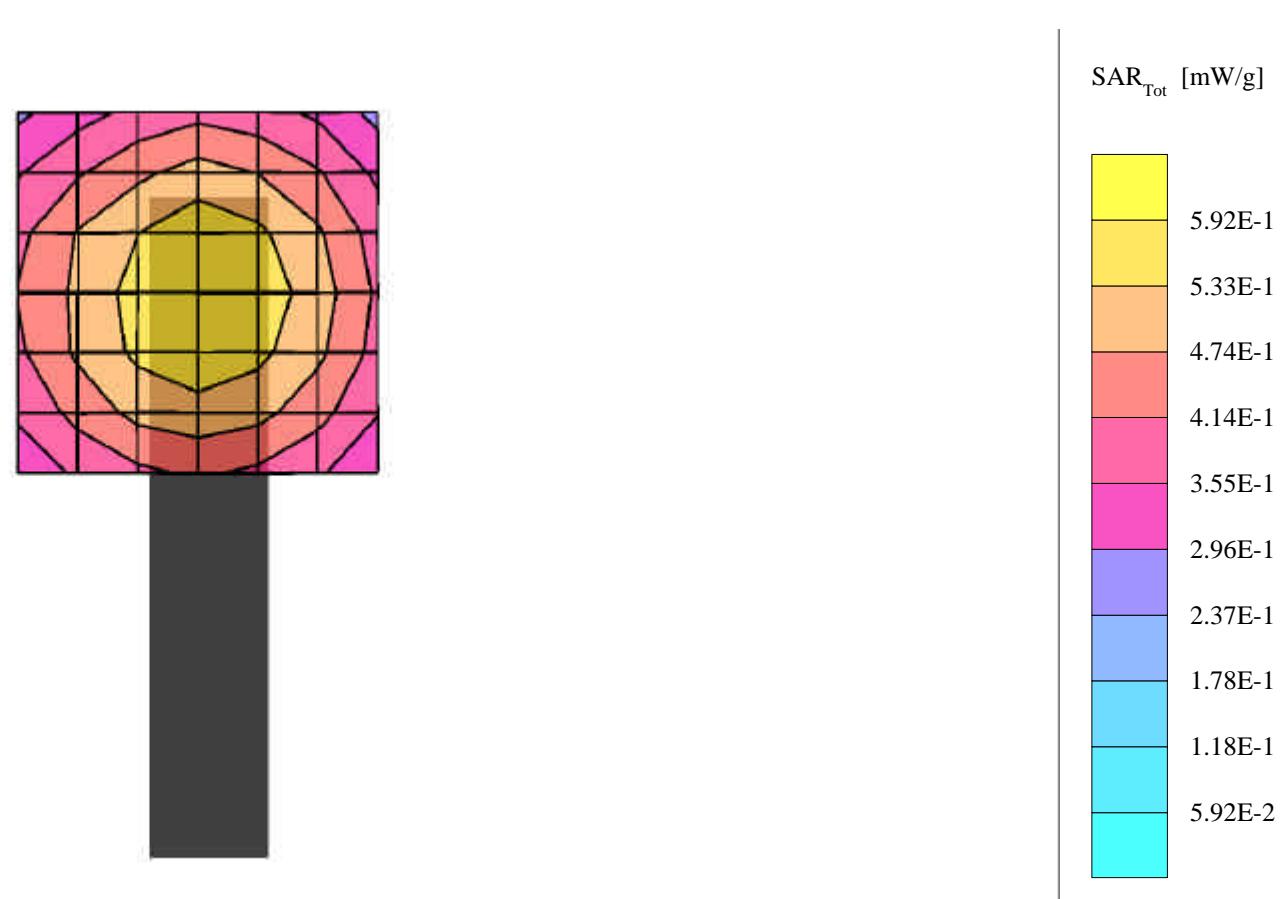
10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)  
SAM Phantom; Flat


Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$   
Peak: 0.592 mW/g, SAR (1g): 0.339 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

10/10/02

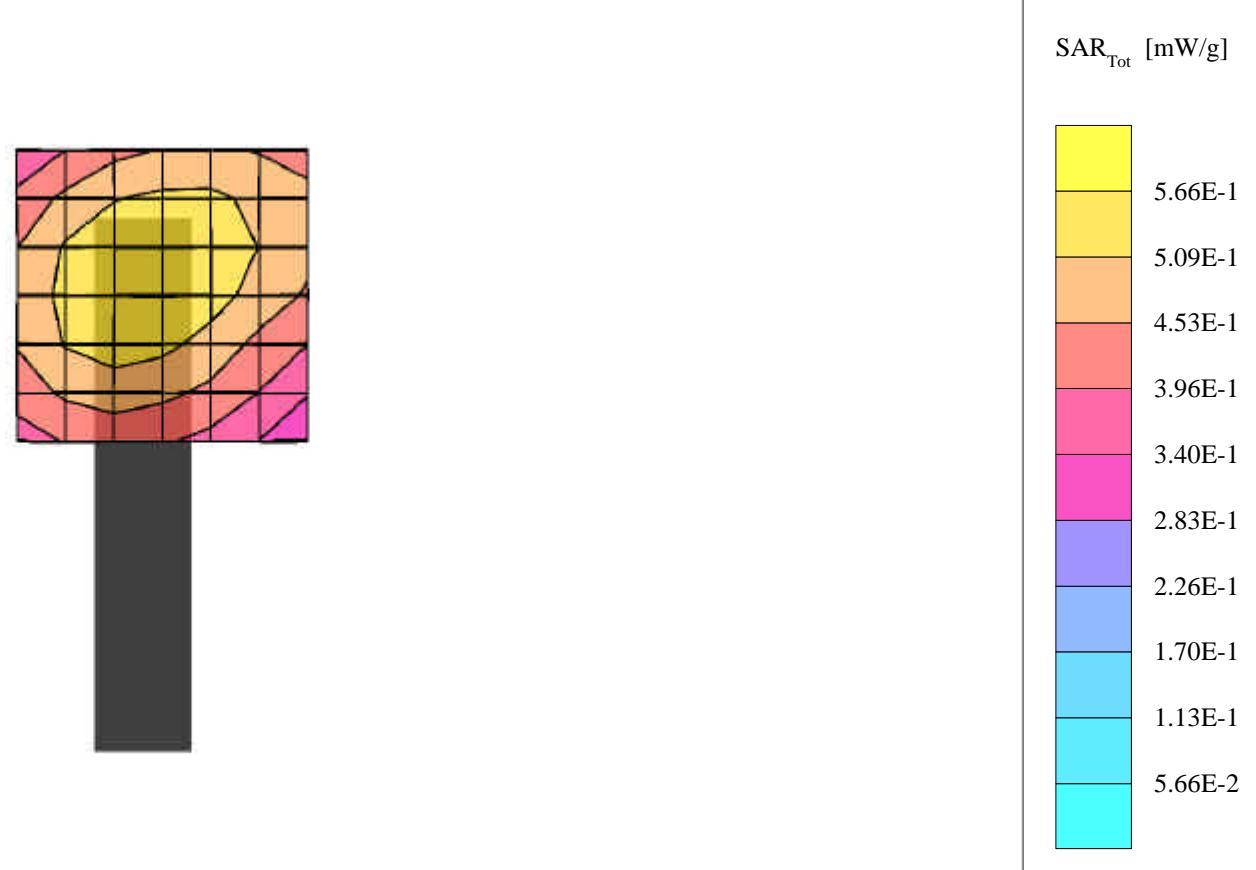


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 0.567 mW/g, SAR (1g): 0.331 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.3%

10/10/02

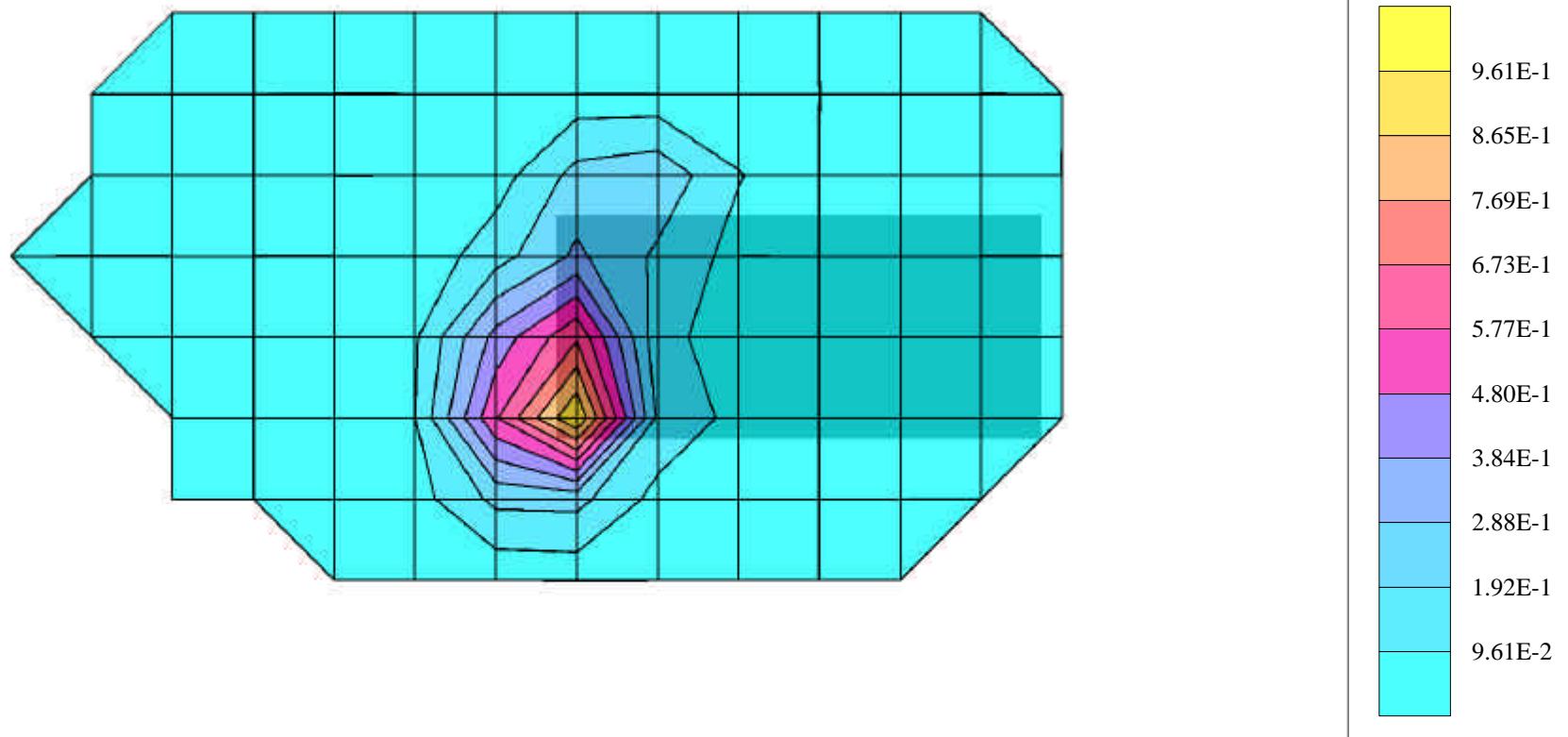


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.61 mW/g, SAR (1g): 0.859 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

10/10/02

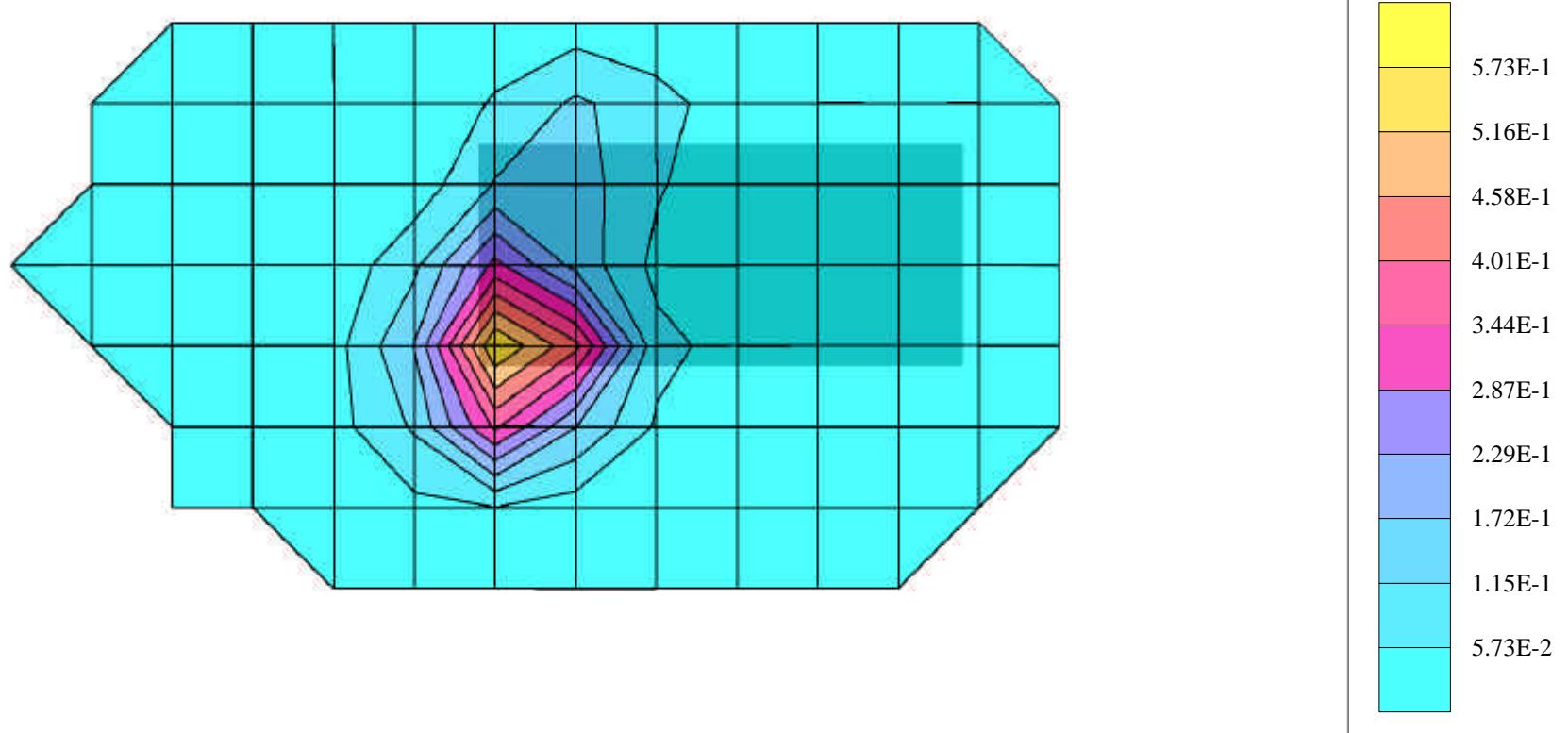


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.0%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.07 mW/g, SAR (1g): 0.580 mW/g

Lab Temperature 21.5 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.0%

10/10/02

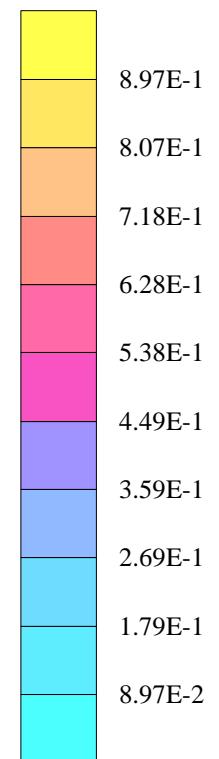
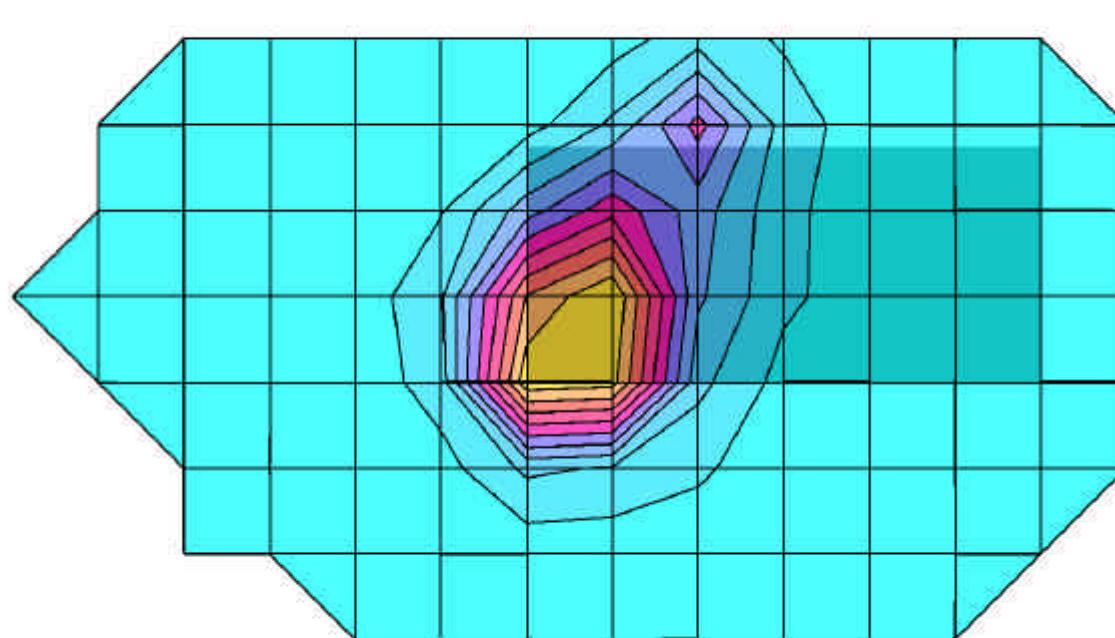


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.89 mW/g, SAR (1g): 1.02 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.8%

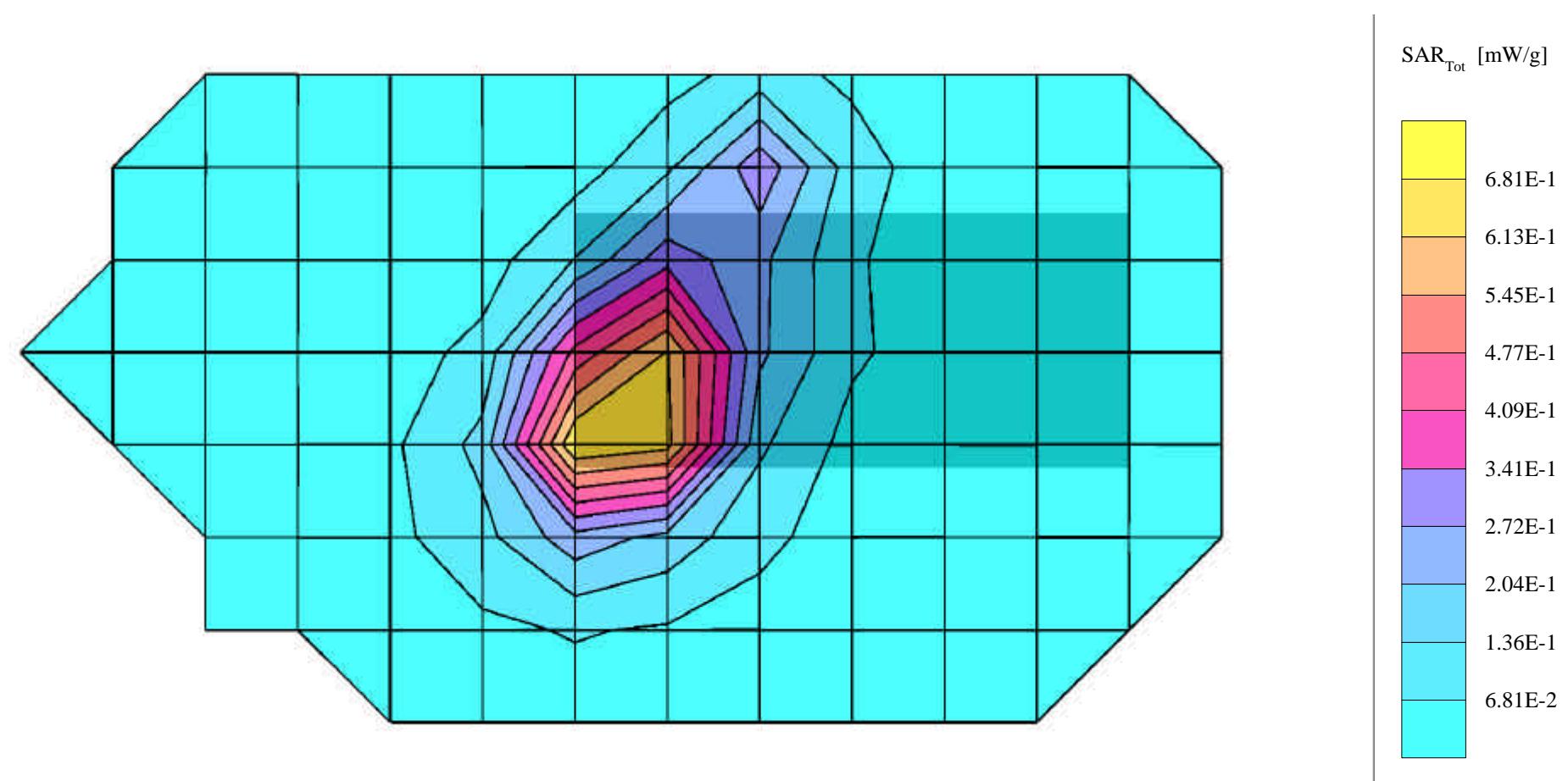
10/10/02



# GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat


Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/10/02



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.46 mW/g, SAR (1g): 0.801 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/10/02

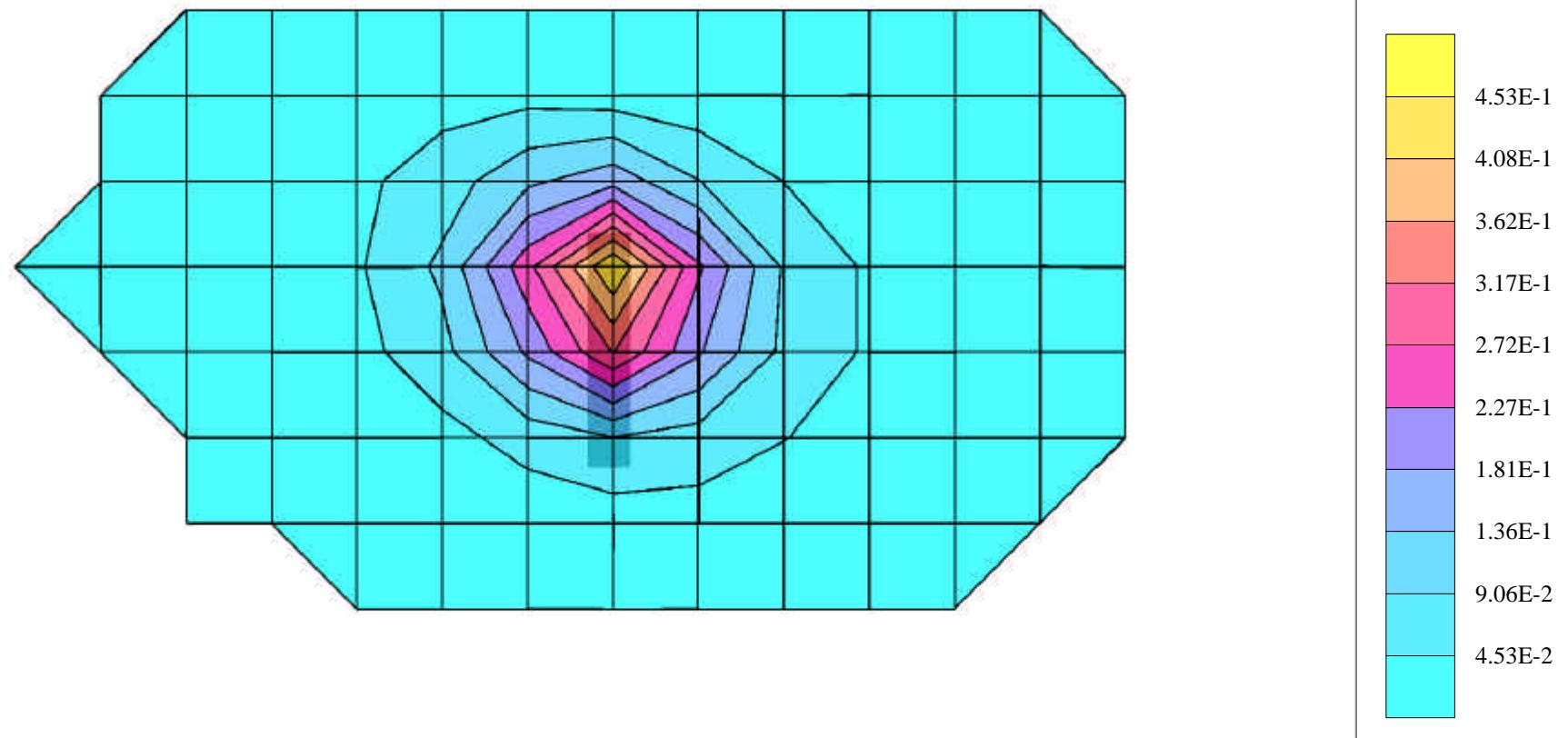


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/10/02

SAR<sub>Tot</sub> [mW/g]

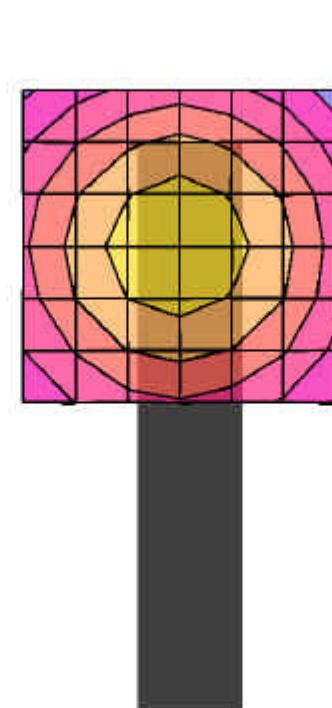


## GPRS 2 Slot Uplink

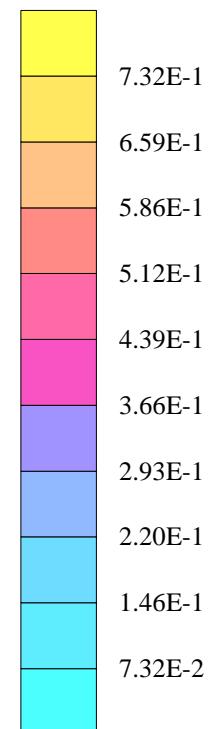
Body Position 90 Degrees to Phantom with Antenna Down Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 0.731 mW/g, SAR (1g): 0.410 mW/g


Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/10/02



SAR<sub>Tot</sub> [mW/g]

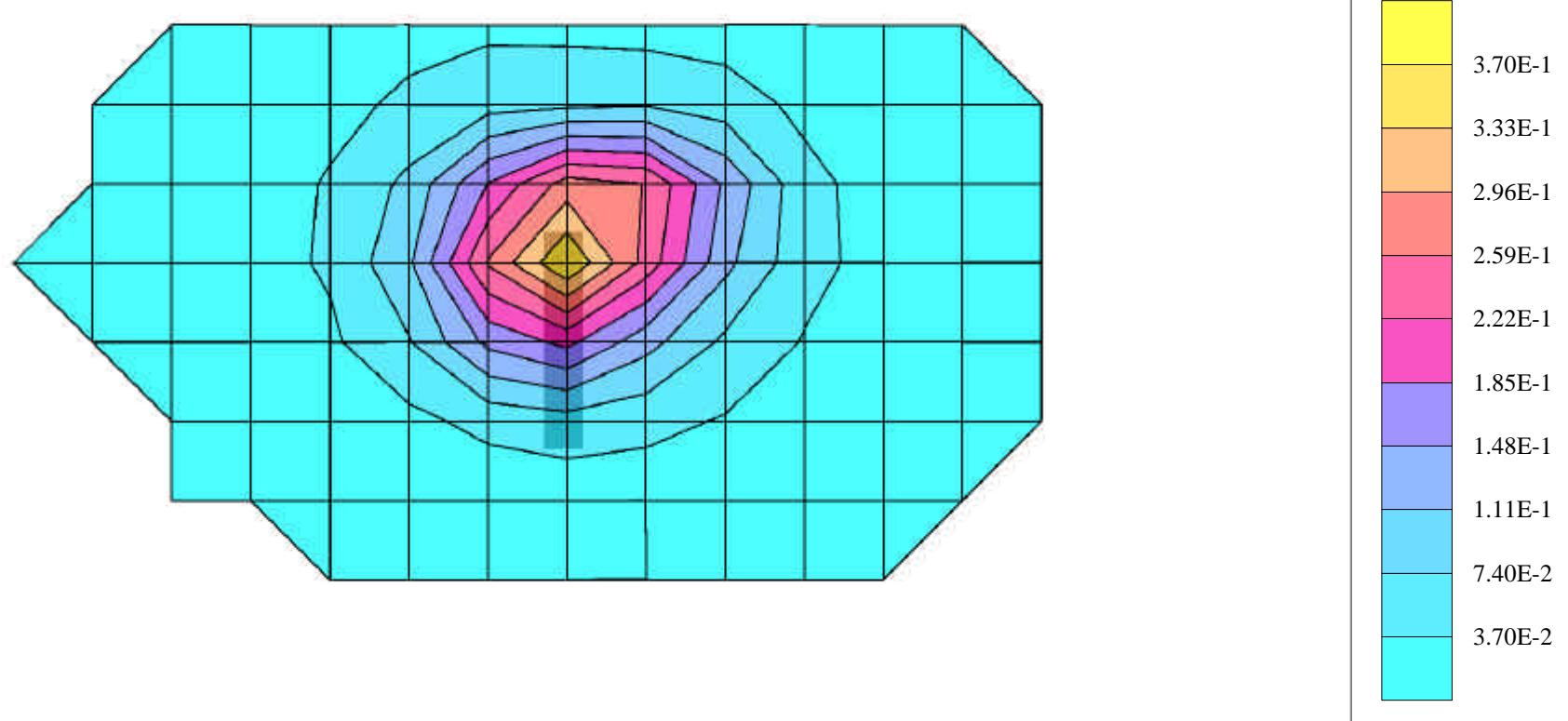


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.7%

10/10/02

SAR<sub>Tot</sub> [mW/g]

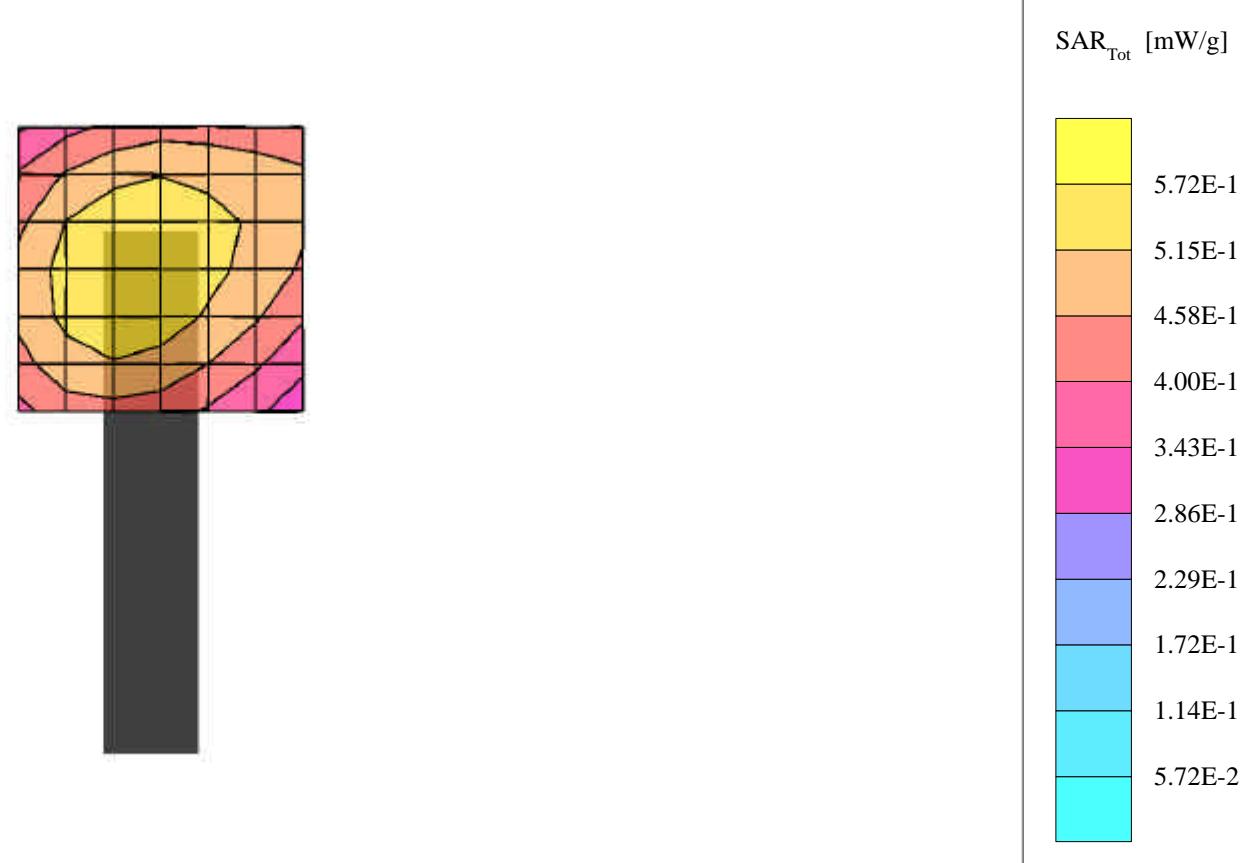


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 0.575 mW/g, SAR (1g): 0.335 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.7%

10/10/02

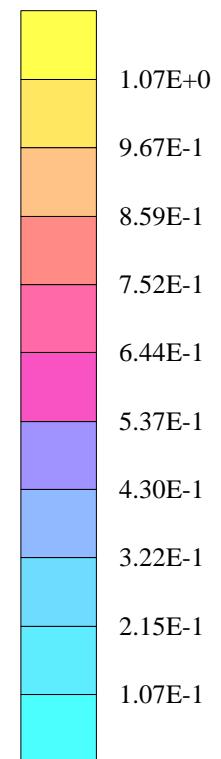
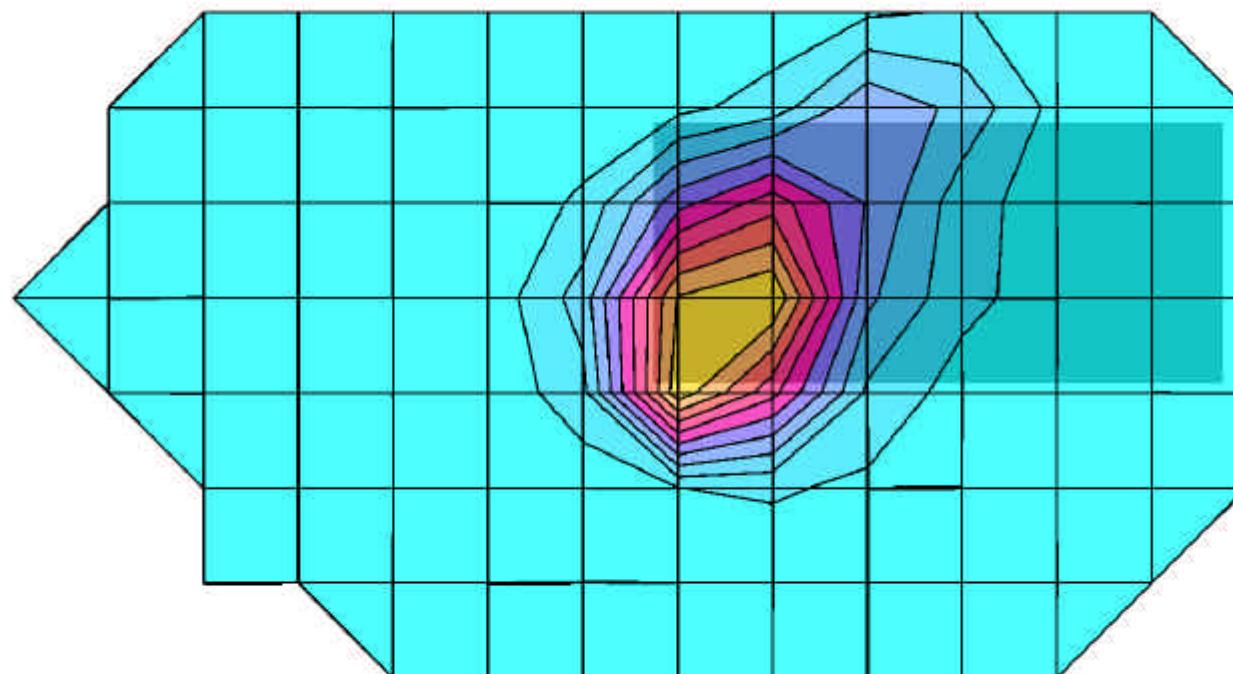


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 2.40 mW/g, SAR (1g): 1.30 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.9%

10/10/02

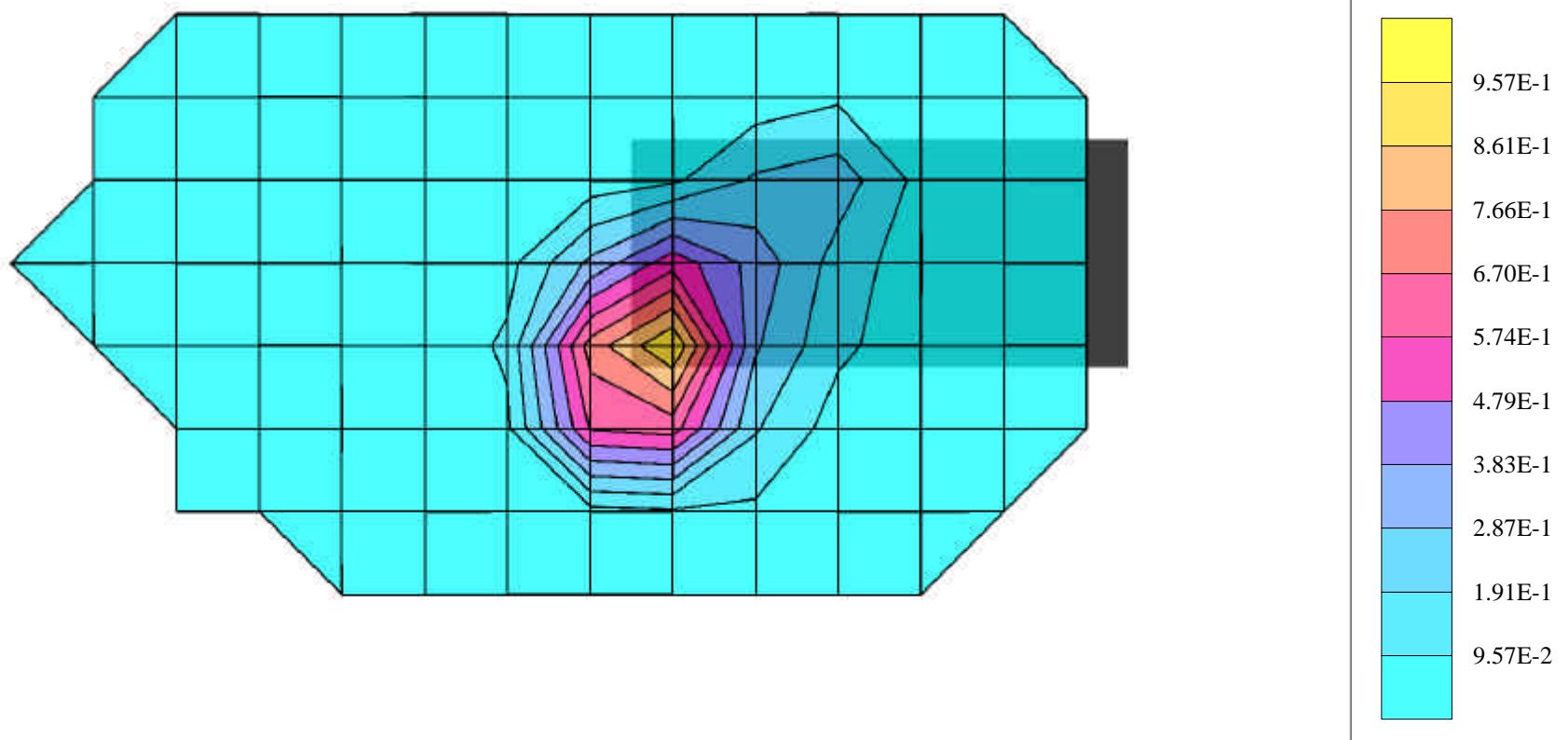


## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.6%

10/10/02

SAR<sub>Tot</sub> [mW/g]



## GPRS 2 Slot Uplink

Body Position 0 Degrees to Phantom with Antenna Down Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);

Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.73 mW/g, SAR (1g): 0.932 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.0%

10/10/02

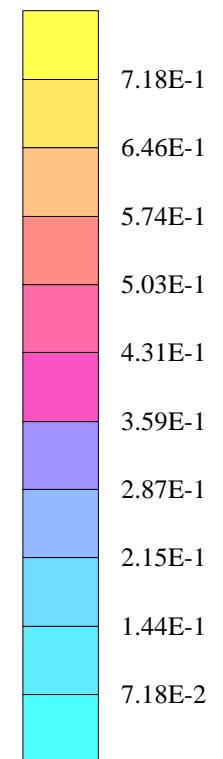
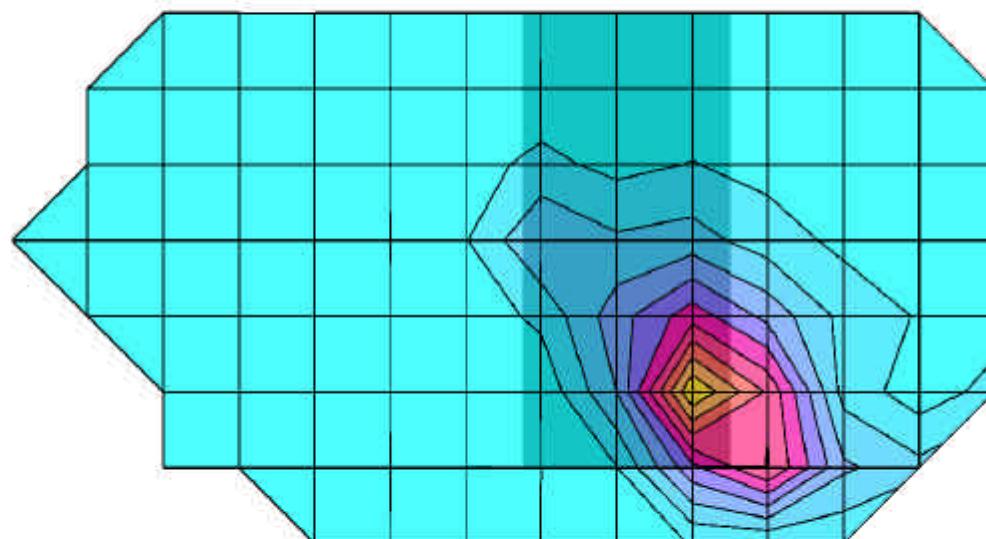


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);



Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.0%

10/11/02

SAR<sub>Tot</sub> [mW/g]

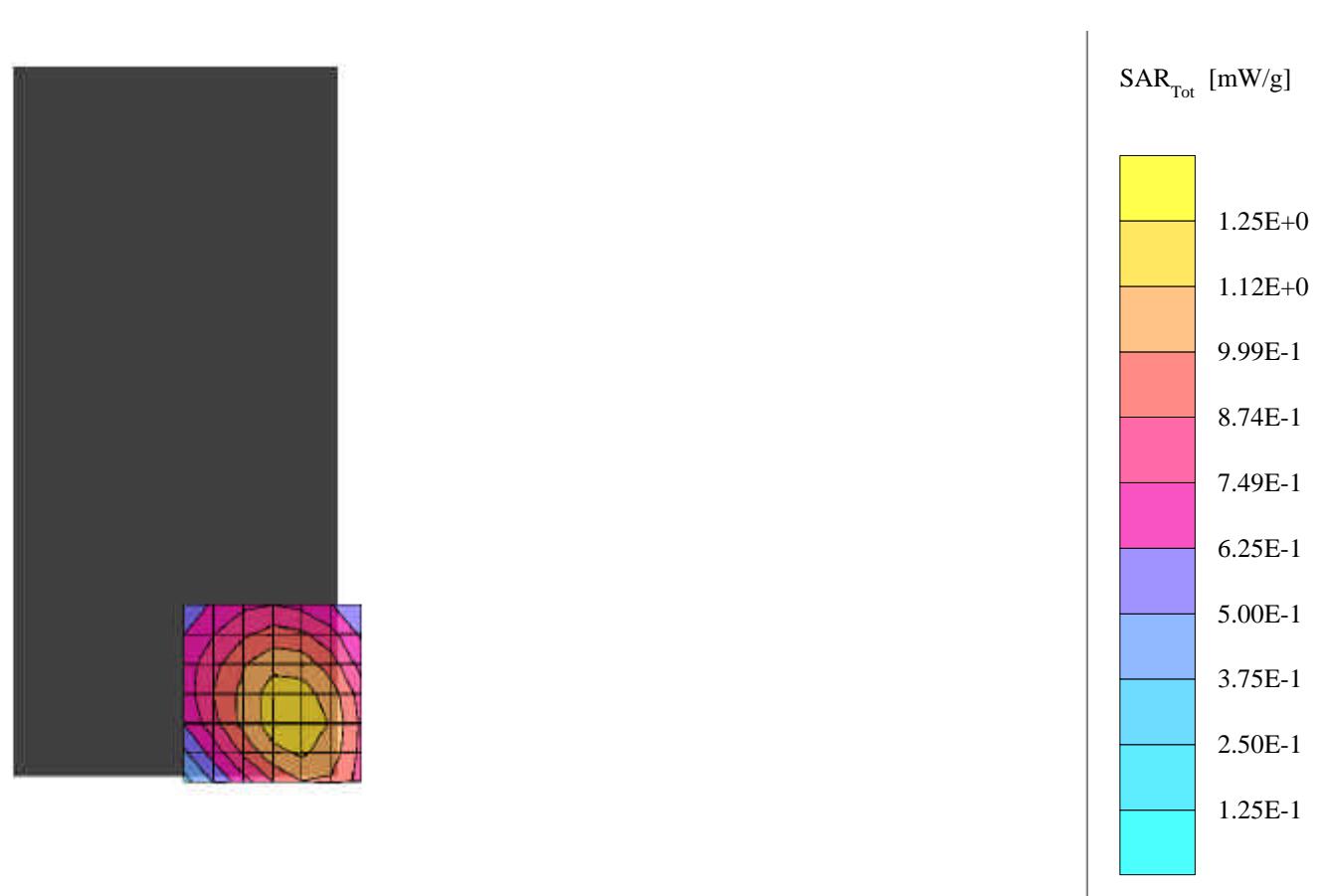


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Centre Channel (660)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.25 mW/g, SAR (1g): 0.690 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 1.0%

10/11/02

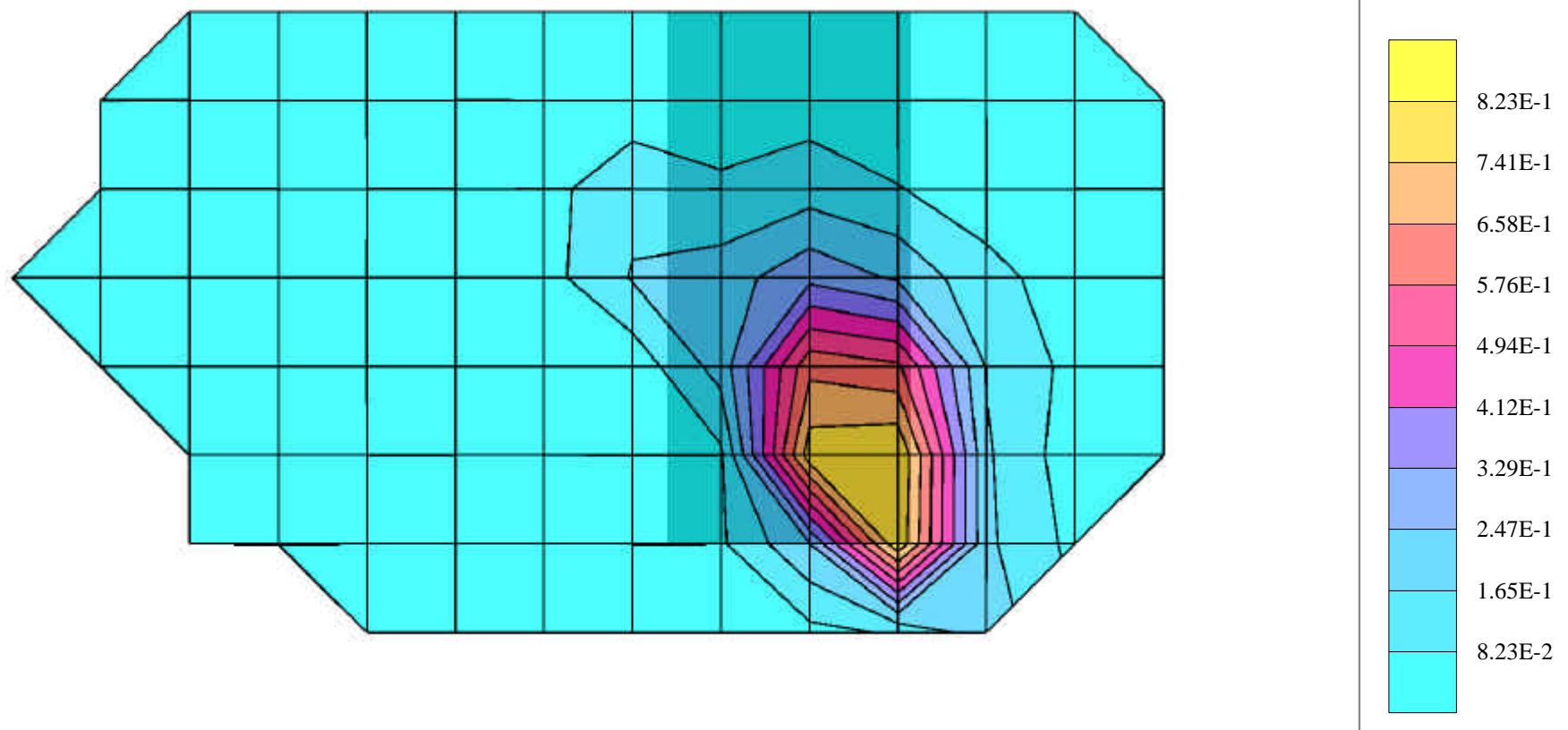


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/11/02

SAR<sub>Tot</sub> [mW/g]

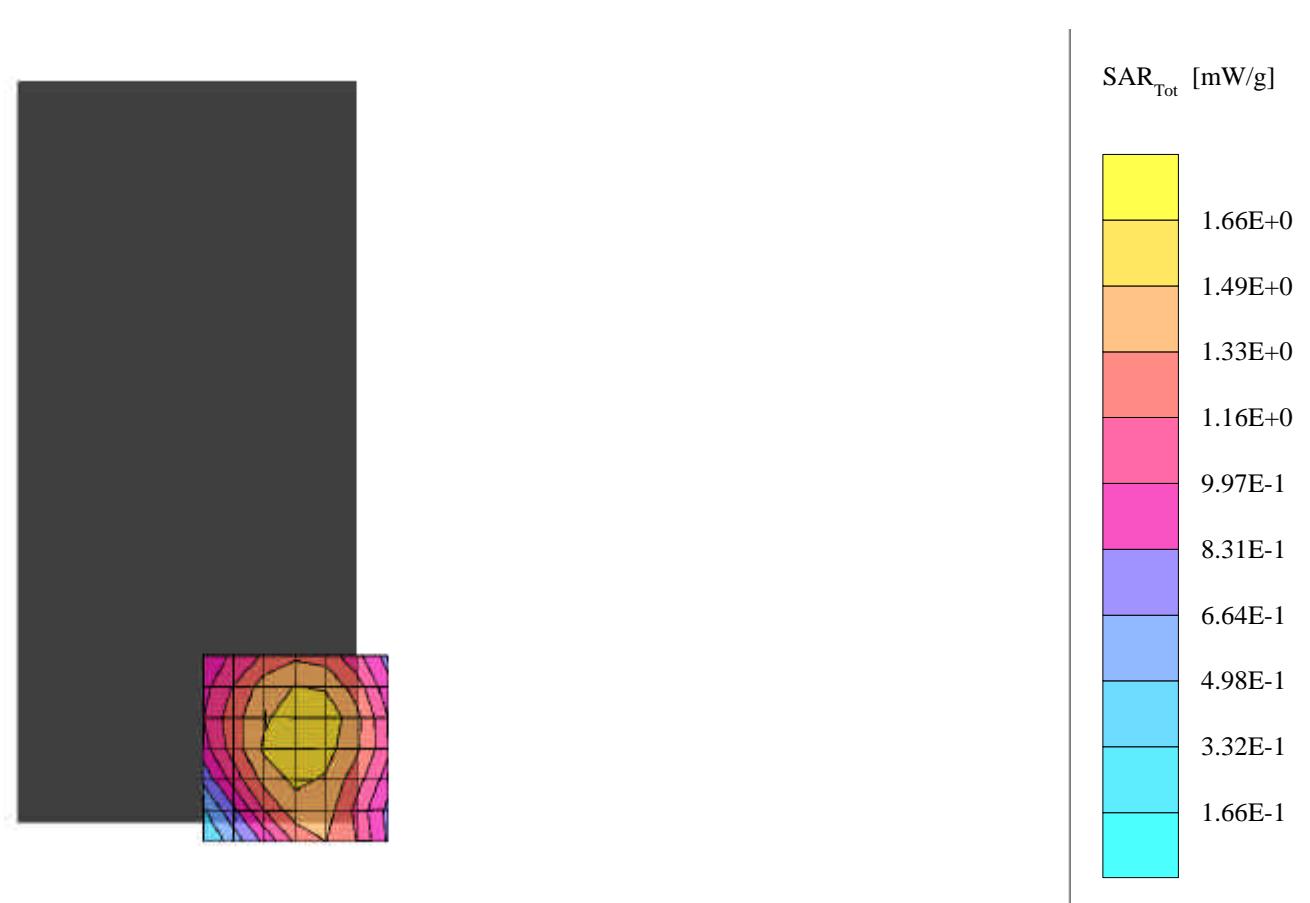


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Bottom Channel (512)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.67 mW/g, SAR (1g): 0.956 mW/g

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 0.8%

10/11/02

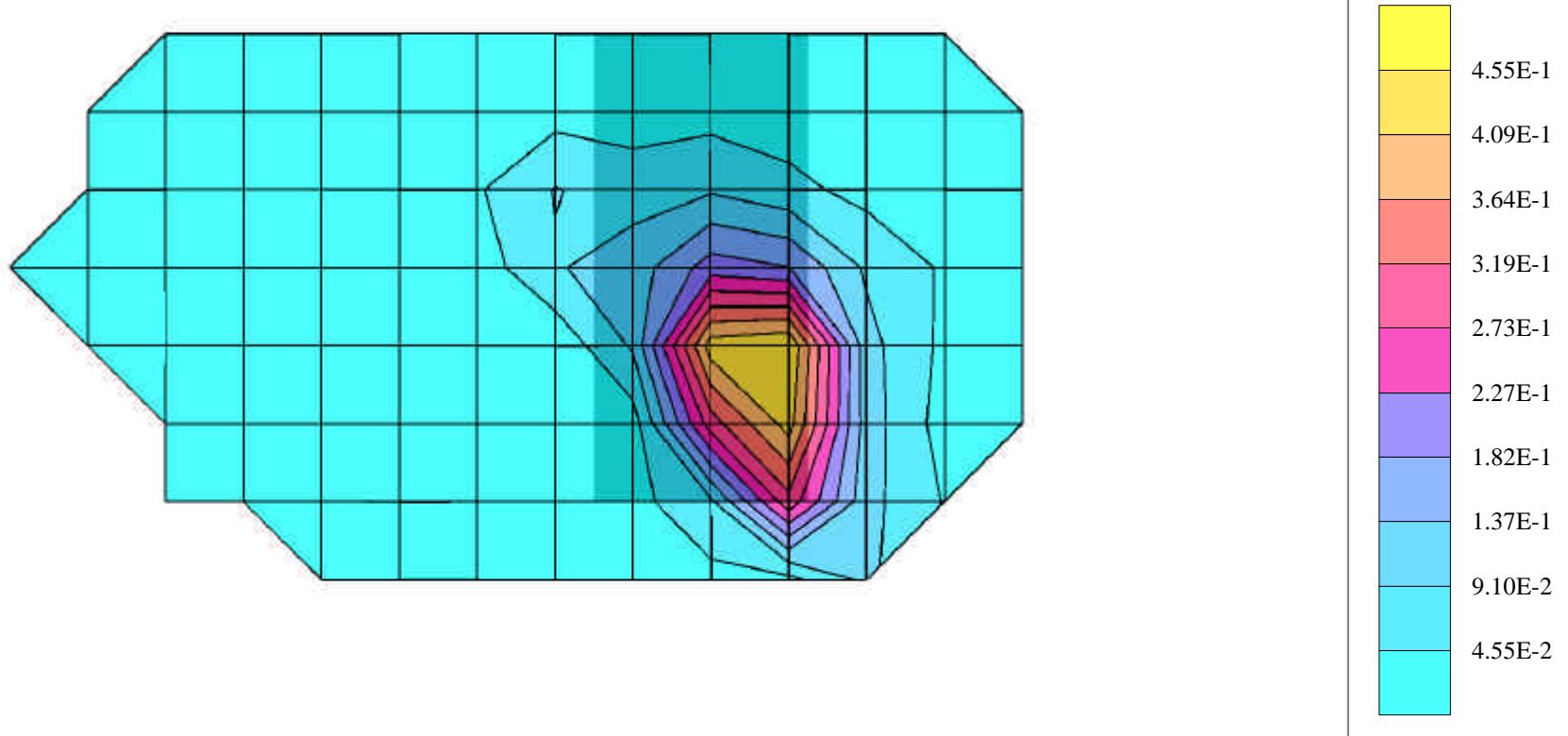


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 5.8%

10/11/02

SAR<sub>Tot</sub> [mW/g]

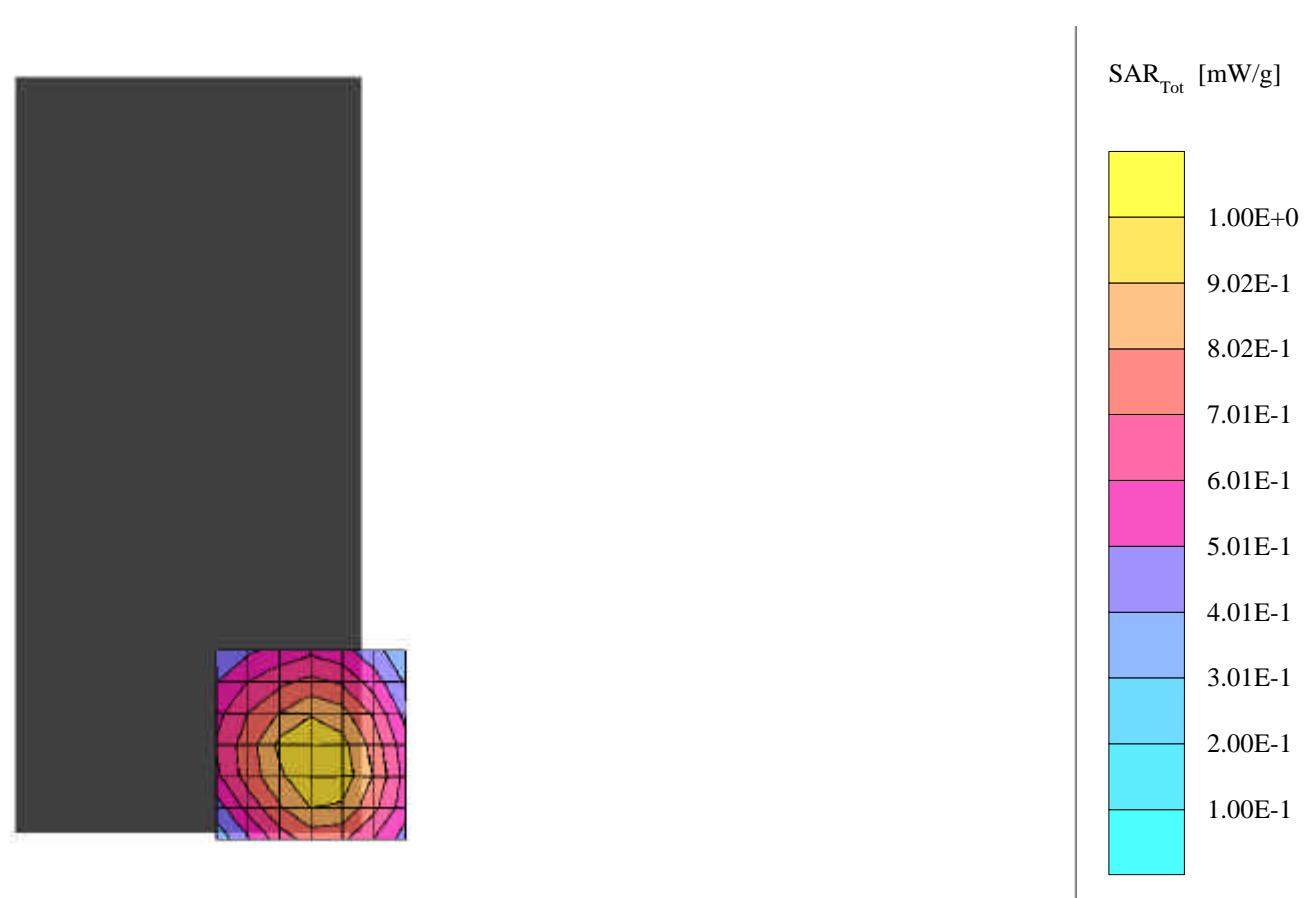


## GPRS 2 Slot Uplink

Body Position 90 Degrees to Phantom with Antenna Up and PHF Top Channel (810)

SAM Phantom; Flat

Probe: ET3DV6 - SN1529; ConvF(4.70,4.70,4.70);


Crest factor: 4.0; Body 1900MHz FCC:  $\sigma = 1.60 \text{ mho/m}$   $\epsilon_r = 54.1$   $\rho = 1.00 \text{ g/cm}^3$

Peak: 1.02 mW/g, SAR (1g): 0.557 mW/g

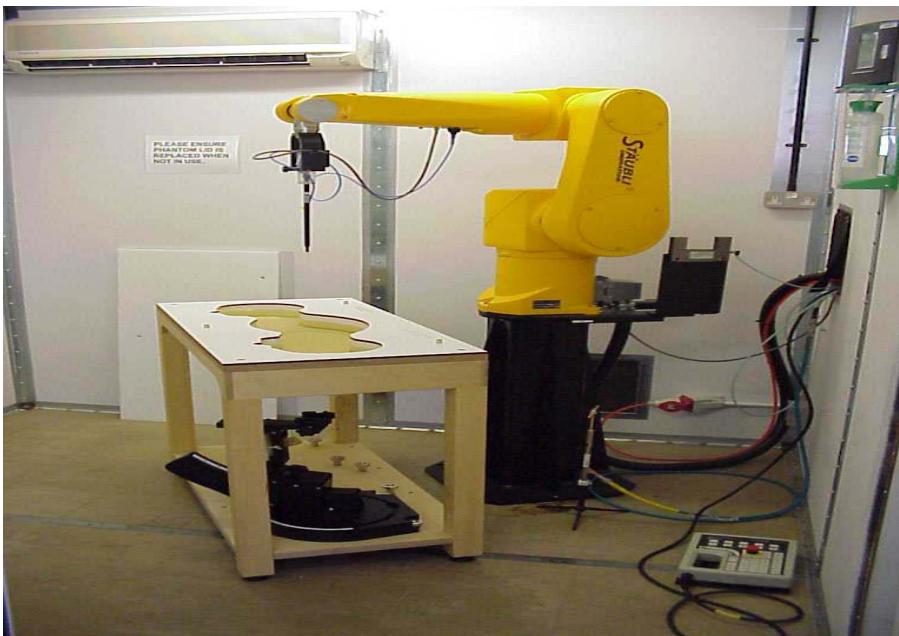
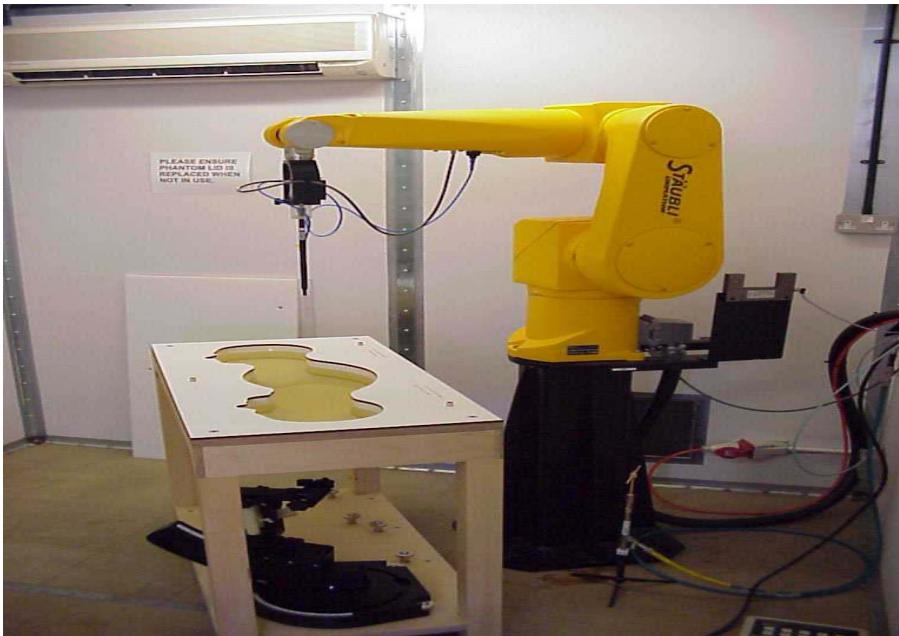
Lab Temperature 22.0 deg C, Fluid Temperature 19.8 deg C

SAR Drift 5.8%

10/11/02



Test Of: Intel Corporation.



Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

#### **Appendix 4. Test Configuration Photograph**

This appendix contains photographs showing the test configuration for the measurement of Specific Absorption Rate (SAR)



RADIO FREQUENCY INVESTIGATION LTD.

EMC Department

TEST REPORT

S.No. RFI/SARB3/RP70438JD10A

Page 32 of 34

Issue Date: 13 March 2003

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

---

**Test Configuration Photograph (Continued)**



RADIO FREQUENCY INVESTIGATION LTD.

EMC Department

Test Of: Intel Corporation.

Pro/Wireless GPRS 3110 PC Card

To: OET Bulletin 65 Supplement C: (2001-01)

TEST REPORT

S.No. RFI/SARB3/RP70438JD10A

Page 33 of 34

Issue Date: 13 March 2003

---

### **Appendix 5. Calibration Data**

This appendix contains the Calibration Data.

**RADIO FREQUENCY INVESTIGATION LTD.**

**EMC Department**

**Test Of: Intel Corporation.**

**Pro/Wireless GPRS 3110 PC Card**

**To: OET Bulletin 65 Supplement C: (2001-01)**

---

**TEST REPORT**

**S.No. RFI/SARB3/RP70438JD10A**

**Page 34 of 34**

**Issue Date: 13 March 2003**

This page has been left intentionally blank.