

6 Randolph Way Hillsborough, NJ 08876 Tel: (732) 560-9010

Fax: (732) 560-9173

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

HTz TRANSMITTER MODEL: Tran-HTz-001 FCC ID: PUDTRANHZ001

August 15, 2001

This report concerns (check one): Original grant <u>x</u> Class II change Equipment type: <u>LOW POWER TRANSMITTER</u> (remote Controller)				
	•			
Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for to [10-1-90 Edition] provision.	yes nox unintentional radiators - the new 47 CFR			
Report prepared for: Report prepared by: Report number:	SIMU U.S. Inc. Advanced Compliance Lab 0048-010719-01			

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.3 Product Information	6
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement of the Document Use	
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	<mark>9</mark>
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS	12
5. RADIATED EMISSION DATA	13
5.1 Field Strength Calculation	13
5.2 Test Methods and Conditions	13
5.3 Test Data	13
5.4 Occupied Bandwidth	15
6. PHOTOS OF TESTED EUT	18

Figures

Figure 2.1 FCC ID Label8
Figure 2.2 Location of Label on Back of the EUT
Figure 3.1 Radiated Test Setup, Position 110
Figure 3.2 Radiated Test Setup, Position 210
Figure 3.3 Radiated Test Setup, Position 311
Figure 4.1 EUT Schematics
Figure 5.1 Pulse Train Timing16
Figure 5.2 Occupied Bandwidth17
Figure 6.1 Front View19
Figure 6.2 Rear View20
Figure 6.3 Component Side21
Figure 6.4 Foil Side

Date: August 15, 2001

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: HTZ TRANSMITTER

Model: Tran-HTz-001

Applicant: SIMU U.S. Inc.

Test Type: FCC Part 15C CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LAB

Test Date: August 15, 2001

Report Number: 0048-010719-01

The above equipment was tested by Advanced Compliance Laboratory for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

1.	2	Equi	pment	Mod	lifications
----	---	------	-------	-----	-------------

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	HTz TRANSMITTER	PUDTRANHZ001	
Housing	PLASTICS		
Power Supply	3VDC BATTERY		
Clock/OSC Freq.	433.42 MHz		
Device Type	Periodic Operation		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-1992 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at 50 Randolph Road, Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Last Cal dd/mm/yy	Cal Due
				33	dd/mm/yy
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	08/01/01	08/01/02
Fischer Custom	LISN-2	900-4-008	Line Impedance Stabilization Networks	14/06/01	14/06/02
Fischer Custom	LISN-2	900-4-009	Line Impedance Stabilization Networks	14/06/01	14/06/02
EMCO	3115	4945	Double Ridge Guide Horn Antenna	24/01/01	24/01/02
EMCO	3104C	4396	30-200MHz Biconical Antenna	19/05/01	19/05/02
EMCO	3146	3350	200-1000MHz Log-Periodic Antenna	12/01/01	12/01/02

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

See attachment: fcclabel.pdf

Fig 2.1 FCC ID Label

Fig. 2.2 Location of Label

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would no	ormally use it). And its
antenna was permanently attached to the EUT (Made on the PCB). Two LEDs on $$	the front appearance.
This manually operated transmitter will deactivate immediately after releasing "	"1 tton.

Testing was performed in either "UP arrow", "Down arrow" and "O" button. It is the worst case.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 and Figure 3.3 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup, Position 1

Figure 3.3 Radiated Test Setup, Position 3

4. SYSTEM SCHEMATICS

See attachment: schematic.pdf

Figure 4.1 System Schematics

FCC ID: PUDTRANHZ001

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

The pulse train timing plots are showed in Figure 5.1.

The pulse train timing plots as follows:

The total time for each pulse train is 139.62 ms (only 100ms used for calculation per FCC requirements). The short pulse is 0.640ms, The middle pulse is 2.5 ms, The long pulse is 4.8m.

Coeff. =
$$(56x0.640+2.5x4+0.38+4.8x1)/100 = 0.51$$

The maximum average field strength should be 0.51 of the peak field strength measured. So we use peak value minus 5.85dB as calculated maximum average field strength.

5.2 Test Methods and Conditions

The EUT exercise program was loaded during the radiated emission test. The initial step in collecting radiated data is a EMI Receiver scan of the measurement range 30MHz - 5GHz using peak detector. IF bandwidth is 120kHz and video bandwidth is 300kHz for measuring 30MHz-1GHz. Both bandwidth are 1MHz for above 1GHz measurement.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, calculated average reading, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Tester Signature

Typed/Printed Name: <u>David Tu</u> Date: <u>August 15, 2001</u>

Radiated Test Data

Frequency	Polarity	Height	Azimuth	Peak	Calculated	FCC	Difference
requestey	[H or V],	11018111	1 IZIIIGUI	Reading	Average	3m Limit	from limit
(MHz)	Position	(m)	(Dograa)	_	_	(dBµV/m)	(dB)
(MITIZ)		(m)	(Degree)	(dBµV/m)	Reading	(αδμ ν/ΙΙΙ)	(ub)
	(X,Y,Z)				(dBµV/m)	(2)	
433.4	Н,Х	1.9	218	79.0	73.1	80.8 ⁽³⁾	-7.7
866.8	Н,Х	1.4	170	57.8	51.9	60.8 ⁽⁴⁾	-8.9
1300.2	Н,Х	1.0	180	46.9	41	54.0 ⁽²⁾	-13
1733.6	Н,Х	1.0	180	50.6	44.7	60.8	-16.1
2167.0	Н,Х	1.0	210	53.4	47.5	60.8	-13.3
2600.0	Н,Х	1.0	180	50.0	44.1	60.8	-16.7
433.4	V,X	2.2	180	75.0	69.1	80.8	-11.7
866.8	V,X	1.4	190	56.0	50.1	60.8	-10.7
1300.2	V,X	1.0	160	46.5	40.6	54.0	-13.4
1733.6	V,X	1.0	140	49.4	43.5	60.8	-17.3
2167.0	V,X	1.0	180	56.8	50.9	60.8	-9.9
2600.0	V,X	1.0	170	57.5	51.6	60.8	-9.2
3900.0	V,X	1.0	170	51.2	45.3	54.0	-8.7
433.4	H,Y	1.0	180	78.0	72.1	80.8	-8.7
866.8	H,Y	1.2	190	59.0	53.1	60.8	-7.7
1300.2	H,Y	1.0	180	48.0	42.1	54.0	-11.9
1733.6	H,Y	1.0	180	57.6	51.7	60.8	-9.1
2167.0	H,Y	1.0	170	57.3	51.4	60.8	-9.4
2600.0	H,Y	1.0	180	54.0	48.1	60.8	-12.7
433.4	V,Y	1.4	180	84.5	78.6	80.8	-2.2
866.8	V,Y	1.3	180	61.5	55.6	60.8	-5.2
1300.2	V,Y	1.0	180	47.0	41.1	54.0	-12.9
1733.6	V,Y	1.0	180	49.7	43.8	60.8	-17
2167.0	V,Y	1.0	180	61.5	55.6	60.8	-5.2
3900.0	V,Y	1.0	180	47.2	41.3	54.0	-12.7
433.4	H,Z	2.0	180	83.4	77.5	80.8	-3.3
866.8	H,Z	1.0	170	61.5	55.6	60.8	-5.2
1300.2	H,Z	1.0	180	51.0	45.1	54.0	-8.9
1733.6	H,Z	1.0	180	56.5	50.6	60.8	-10.2
2167.0	H,Z	1.0	210	60.7	54.8	60.8	-6
2600.0	H,Z	1.0	180	54.0	48.1	60.8	-12.7
433.4	V,Z	1.4	180	82.0	76.1	80.8	-4.7
866.8	V,Z	1.4	180	62.5	56.6	60.8	-4.2
1300.2	V,Z	1.0	170	46.5	40.6	54.0	-13.4
1733.6	V,Z	1.0	90	50.2	44.3	60.8	-16.5
2167.0	V,Z	1.0	180	56.1	50.2	60.8	-10.6
2600.0	V,Z	1.0	180	58.9	53	60.8	-7.8
3900.0	V,Z	1.0	180	47.2	41.3	54.0	-12.7

- (1) See Figure 3.1, 3.2 and 3.3 for definition of position X-1, Y-2, Z-3.
- (2) Restricted band.
- (3) Fundamental limit is 3750-12500 microvolts/meter linear interpolations.
- (4) Spurious limit is 375-1250 microvolts/meter linear interpolations.

5.4 Occupied Bandwidth

The bandwidth of the emission shall be no wider than 0.25% of the center frequency, in this case, 1.084MHz(433.5x0.25%). Bandwidth is determined at the points 20dB down from the modulated carrier. Figure 5.1 shows the occupied bandwidth plot.

See attachment: Pulsetrain.pdf

Figure 5.1 Pulse Train Timing

See attachment: occupiedbandwidth.pdf

Figure 5.2 Occupied Bandwidth

6. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.

See Attachments: frontview.pdf, rearview.pdf, componentside.pdf, foilside.pdf