

Test Report

Test Report No.:	KTI01E-F0731		
Registration No.:	99058		
Applicant:	STORMBLUE CO.,LTD.		
Applicant Address:	3 rd Floor 144-9 Doksan-Dong Kumchun-Gu Seoul 153-011 Korea		
Product:	Universal Smart Drive		
FCC ID:	PU9USD	Model No.	Universal Smart Drive
Receipt No.:	KTI20010827	Date of receipt:	Aug, 27, 2001
Date of Issue:	Aug, 28, 2001		
Testing location	Korea Technology Institute Co., Ltd. 51-19, Sanglim3-Ri, Docheok-Myeon, Gwangju-Shi, Gyeungki-Do, Korea		
Test Standards:	ANSI. C63.4 : 1992		
Rule Parts:	FCC Part 15, Subpart B		
Equipment Class:	JBP		
Test Result:	The above mentioned product has been tested and passed.		

Prepare by: J. H. Lee

Tested by: S. B. Kim/ Engineer

Approved by: G. C. Min/ President

Signature Date

Signature Date

Signature Date

Other Aspects :

Abbreviations : OK, Pass=passed Fail=failed N/A=not applicable

- ▲ This test report is not permitted to copy partly without our permission.
- ▲ This test result is dependent on only equipment to be used.
- ▲ This test result is based on a single evaluation of one sample of the above mentioned.
- ▲ This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.
- ▲ We certify this test report has been based on the measurement standards that is traceable to the national or international standards.

Contents

Contents	2
List of Tables	2
List of Figures	2
List of Photographs	3
1. General	3
2. Test Site	3
2.1 Location	4
2.2 List of Test and Measurement Instruments	4
2.3 Test Data	4
2.4 Test Environment	5
3. Description of the tested samples	5
3.1 Rating and Physical characteristics	5
3.2 Submitted documents	6
4. Measurement conditions	6
4.1 Modes of operation	6
4.2 Additional equipments	6
4.3 Uncertainty	6
4.4 Test Setup	7
5. Emission Test	8
5.1 Conducted Emissions	8
5.2 Radiated Emissions	9
6. Photographs of the Test Set-up	11
Label	13
Annex1	
Annex2	14~16

List of Tables

Table 1	List of test and measurement equipment	4
Table 2	Test Data. Radiated Emissions	10

List of Photographs

Photograph 1	Setup for Conducted Emissions	11
Photograph 2	Setup for Radiated Emissions	12

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by Korea Technology Institute Co., LTD. And were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

Korea Technology Institute Co., LTD

2.1 Location

51-19, Sanglim3-Ri, Docheok-Myeon, Gwangju-Shi, Gyeungki-Do, Korea

The Test Site is in compliance with ANSI C63.4/1992 for measurement of radio Interference.

Korea Technology Institute Co., Ltd.

Page 4 of 12

2.2 List of Test and Measurement Instruments

Table 1 : List of Test and Measurement Equipment

• **Conducted Emissions**

Kind of Equipment

Type

S/N

Calibrated until

Spectrum Analyzer
R3261C
61720427
11.2001

Field Strength Meter
ESPC
832827/011
4.2002

LISN
ESH3-Z5
8254601019
5.2002

LISN
KNW407
8-1097-7
11.2001

Pulse limiter
ESH3Z2
357.8810.52
11.2001

Conducted Cable
N/A
N/A
11.2001

• **Radiated Emissions**

Kind of Equipment

Type

S/N

Calibrated until

Field Strength Meter
ESPC
832827/011
11.2001

Spectrum Analyzer
R3261C
61720427
11.2001

Pre Amplifier
8447D
2944A06874
11.2001

Korea Technology Institute Co., Ltd.

Page 5 of 12

3. Description of the tested samples

The EUT is Universal smart Drive.

3.1 Rating and Physical Characteristics

Supported OS

Windows 98/SE, Windows ME, Windows 2000, Windows XP and Mac 8.6 or higher

Power Supply

USB Bus-powered (4.5V to 5.5V)

Capacities

16MB/32MB/64MB/128MB/256MB/512MB/1 Gig

Data Retention

10 years

Illumination

Green : device connected

Red : Data receiving or transmitting

Data Reading/Writing Speed

Max 12Mbits/sec (depending on PC system)

Operating Temperature

0°C ~ +50°C

Storage Temperature

-20°C ~ +80°C

Dimension (LxWxH)

88mm x 25mm x 11mm

Weight

16g

Certification

Warranty

1 year limited liability warranty

3.2 Submitted Documents

Korea Technology Institute Co., Ltd.

Page 6 of 12

4. Measurement Conditions

Testing Input Voltage: AC 220V.

4.1 Modes of Operation

The EUT was in the following operation mode during all testing;

1. Data back up in memory
2. 'H' pattern display

4.2 Additional Equipment

DEVICE TYPE
Manufacturer
M/N
S/N
FCC ID

PC
 COMPAQ COMPUTER CORPORATION
 Deskpro EXM
 6F13JC8JN619

Monitor
 Samsung Electronics
 750S
 P223HVAR502035

Keyboard
 COMPAQ COMPUTER CORPORATION
 KB-9963
 B26960GBUKK0W

Mouse
 logitech
 M-S48a
 None
 JNZ201213

Mouse
 SEJIN ELECTRON INC.
 SMB-400
 0CIM004047
 GJJ965M3

Printer
 Hewlett Packard
 C4569A
 SG78M1H0CF

4.3 Uncertainty

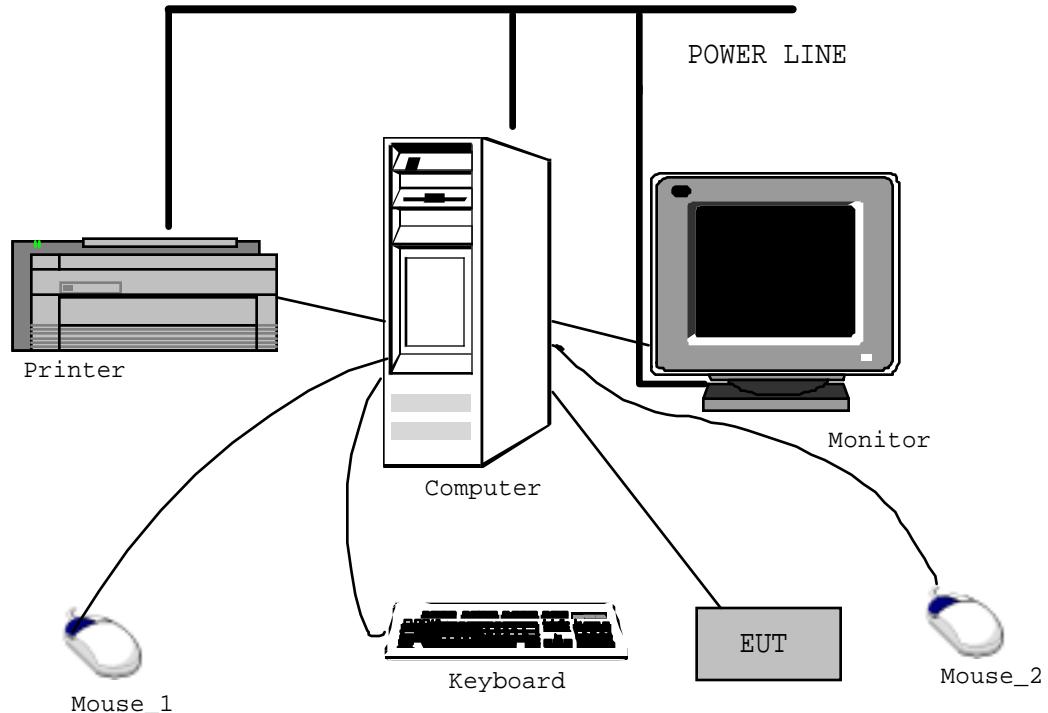
1) Radiated disturbance

UC (Combined standard Uncertainty) = $\pm 1.8\text{dB}$

Expanded uncertainty $U=Kuc$

$K = 2$

$4 U = \pm 3.6\text{dB}$


2) Conducted disturbance

$UC = \pm 0.88\text{dB}$

$U = Kuc=2xUc = \pm 1.8\text{dB}$

4.4 Test setup

5. EMISSION Test

5.1 Conducted Emissions

Result : Pass

The line-conducted facility is located inside a 2.3M x 3.5M x 5.5M shielded closure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 605-05.

A 1m x 1.5m wooden table 80cm. High is placed 80cm away from the vertical wall and 1.5m away from the side wall of the shielded room. R&S Model ESH3-Z5(10kHz-30MHz)

50ohm/50 uH line-Impedance Stabilization Networks(LISN) are bonded to the shielded room.

The EUT is powered from the R&S LISN and the support equipment is powered from the Kyoritsu LISN. Power to the LISN are filtered by a high-current high-insertion loss shield enclosures power line filters(100dB 14kHz-1Ghz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2".

If the EUT is a DC-Powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the Kyoritsu LISN.

All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, Support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 450kHz to 30MHz with 100sec. sweep time.

The frequency producing the maximum level was reexamined using EMI field Intensity meter (ESPC). The detector function was set to CISPR Q.P. mode.

The bandwidth of the receiver was set to 10kHz. The EUT, support equipment, and interconnecting each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of conducted test.

Each EME reported was calibrated using self-calibrating mode.

Figure 1 : Spectral Diagram, LINE – PE