TEST REPORT

of

FCC Part 15 Subpart B & C

Product: Bluetooth VoIP Phone

Model(s): **CP22**

Applicant: Wistron Corporation

Address: 21th Fl., 88, Sec.1, Hsin Tai Wu Rd.,

Hsichih, Taipei Hsi Taiwan, R.O.C.

Test Performed by:

International Standards Laboratory

<Lung-Tan LAB>

*Site Registration No.

BSMI: SL2-IN-E-0013; TAF: 0997; NVLAP: 200234-0;

IC: IC4164-1; VCCI: R-1435, C-1440, T-299; NEMKO: ELA 113B

*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-07LR019FC

Issue Date: 2007/05/29

Contents of Report

I.	General	I
1.1	Certification of Accuracy of Test Data.	
	Test Results Summary	
	Description of Equipment Under Test (EUT)	
	TEST RESULTS (Bluetooth)	
4.1		
4.1		
4.1		
4.1 4.1		
	FHSS Maximum Peak Output Power.	
4.2	•	
4.2		
4.2	1	
4.3	Radiated Emission Measurement	
4.3		
4.3	3.2 Test Procedure	9
4.3	EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	9
4.3	· /	
4.3	` '	
4 4	D IEL M	
4.4	Band Edge Measurement	
4.4 4.4		
4.4 4.4	<u>. </u>	
4.4		
4.4		
4.4	± ` '	
4.5	Bandwidth & Hopping Channel Separation	24
4.5	•• •	
4.5	5.2 Test Procedure	24
4.5	1	
4.5		
4.6		
4.6		29
4.6	T	
4.6		
4.7		
4.7 4.7		
4.7		
	Appendix	
5.1	Appendix A: Measurement Procedure for Power line Conducted Emissions	
5.2	Appendix B: Test Procedure for Radiated Emissions	
5.3	Appendix C: Test Equipment	
5.3	1 P	
5.3		
5.4	Appendix D: Layout of EUT and Support Equipment	
5.4	4.1 General Conducted Test Configuration	41

日番科技股份有限公司	
書質科技股份有限公司 ternators Taylors Laborator	40
5.4.2 General Radiation Test Configuration	
5.5 Appendix E: Description of Support Equipment	
5.5.1 Software for Controlling Support Unit	
5.6 Appendix F: Accuracy of Measurement	
5.7 Appendix G: Photographs of EUT Configuration Test Set Up	
5.8 Appendix H: Antenna Spec.	
5.6 Appendix II. Afficilia Spec	

1. General

1.1 Certification of Accuracy of Test Data

Standards: CFR 47 Part 15 Subpart B Class B

CFR 47 Part 15 Subpart C (Section 15.247)

Test Procedure: ANSI C63.4:2003

Equipment Tested: Bluetooth VoIP Phone

Model: CP22

Applied by: Wistron Corporation

Sample received Date: 2007/05/17

Final test Date : 2007/05/22-2007/05/25

Test Result PASS

Test Site: Chamber 02, Conduction 02
Temperature Refer to each site test data
Humidity: Refer to each site test data

Leo Lin

Test Engineer: Leo JL Lin

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Roy Hsieh / Manager

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 54 pages, including 1 cover page, 2 contents page, and 51pages for the test description. This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Report Number: 07LR019FC

2. Test Results Summary

The Bluetooth functions of EUT has been tested according to the FCC regulations listed below:

	Tested Standards: 47	CFR Part 15 Subpart C	
Standard	Test Type	Result	Remarks
Section			
15.207(a)	AC Power Line Emissions	Pass	
15.247(b) (1)	Max. Peak Output Power	Pass	
15.209(a)	Radiated Emissions 30MHz – 25 GHz	Pass	
15.247 (c)	Band Edge Measurement	Pass	
15.247(a)(1)(iii)	Number of Hopping Frequency Used	Pass	
15.247(a) (1)(ii)	Spectrum Bandwidth Of FHSS device	Pass	
15.247(a)(1)	Hopping Channel Separation	Pass	
15.247(a)(1)(iii)	Dwell Time	Pass	

3. Description of Equipment Under Test (EUT)

Description: Bluetooth VoIP Phone

Model No.: CP22

Frequency Range: 2402 ~ 2480 MHz

Support channel: 79 Channels Modulation Skill: GFSK (1Mbps)

PIFA (Model:CP22 Antenna) Antennas Type:

made by Darfon Electronics Corp.

The Antenna is clip on the back, use to cover with EUT. Antenna Connected:

The user is not possible to change the antenna without

Report Number: 07LR019FC

disassembling the card phone.

-6.86 dBi Antenna peak Gain:

Power Type of Bluetooth module: 3.3 V DC from Rechargeable Battery

Battery Charging: Charge via PCMCIA Express Directly (5V) from PC

The channels and the operation frequency have listed below:

Channel	Frequency	(MHz)	Channel	Frequency(MHz)
00	2402	01	2403	
02	2404	03	2405	
04	2406	05	2407	
	• • • • • • • • • • • • • • • • • • • •			
75	2477	76	2478	
77	2479	78	2480	

PCMCIA Express Connector: one 26 pins Front:

Speak

Power Button Pair/Link Button

Speakerphone Button Flank: Volume up/down button

EMI Noise Source: Crystal:13MHz(XT1),

EMI Solution: Add springs between PCB ground and the shell.

4. TEST RESULTS (Bluetooth)

4.1 Powerline Conducted Emissions

4.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

4.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Detector Function Bandwidth (RBW) 150 KHz--30MHz Quasi-Peak/Average 9KHz

4.1.4 Test Data:

Power Line Conducted Emissions (Hot) Channel 00, 39, 78

ISL

File:Link

Address: No.120,Lane 180,San Ho Tsuen,Hein Ho Road,Lung-Tan Heiang, Tao Yuan Conty,Taiwan R.O.C.

1.1

AC 110V60Hz

3m

Tel: 03-4071718

Conducted Emission Measurement
Data:#6 Date:2007/05/18

operator:Leo JL Lin Temperature: 26 °C Humidity: 54 %

50.0

Report Number: 07LR019FC

25.20

-24.8

Site: Conduction 02 Limit: CISPR22 Class B Conduction(QP)

Company: EUT Model: CP22 Execute Program: Note:

15.8854

0.9

0.31

Frequency LISH Loss Cable Loss QP Correct. **QP Limit** QP Margin AWG Correct. AVG Limit AVG Margin MHZ dB æ dBuV dBuV. dB dBuV dBuV æ 0.1685 0.1 0.03 37.80 65.0 -27.2 35.30 55.0 -19.7 0.2468 0.12 0.07 35.20 61.8 -26.6 33.40 51.8 -18.4 -17.8 0.3286 0.16 0.1 34.00 59.4 -25.4 31.60 49.4 0.08 34.70 -14.1 0.4127 0.2 57.5 -22.8 33.40 47.5 0.5762 0.2 0.07 33.70 56.0 -22.3 32.80 46.0 -13.2 0.07 32.80 56.0 32.10 -13.9 0.7391 0.2 -23.2 46.0 0.8217 0.2 0.07 32.10 56.0 -23.9 31.40 46.0 -14.6 1.2291 0.2 0.07 32.10 56.0 -23.9 31.00 46.0 -15.0 0.26 2.6221 0.11 34.60 56.0 -21.4 32.80 46.0 -13.2 5.5641 0.43 33.60 60.0 -26.4 28.50 0.16 50.0 -21.5 8.1916 0.47 0.19 34.80 60.0 -25.2 30.90 50.0 -19.1

60.0

-28.5

31.50

Witness

* NOTE: During the test, the EMI receiver was set to M ax. Hold.EUT is being charged, that can't transmit or receive in normal.

Margin = Amplitude + Insertion Loss-Limit

A margin of -8dB means that the emission is 8dB below the limit

Conducted Emission Measurement

operator:Leo JL Lin

Humiditys

Temperature: 26 °C

54%

Power Line Conducted Emissions (Neutral) Channel 00, 39, 78

ISL

Address: No.120Lane 180,San Ho Tsuen,Hein Ho Read,Lung-Tan Heiang, Tao Yuan Conty, Taiwan R.O.C.

Power: AC 1100/60Hz

Company: EUT Model: CP22 Execute Program:

Limit: CISPR22 Class B Conduction(QP)

Note

Frequency	LISH Loss dB	Cable Loss dB	QP Correct.	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin
0.1685	0.1	0.03	33.70	65.0	-31.3	31.60	55.0	-23.4
0.2575	0.13	0.08	25.50	61.5	-36.0	9.00	51.5	-42.5
0.3286	0.16	0.1	31.80	59.4	-27.6	31.10	49.4	-18.3
0.4127	0.2	0.08	30.70	57.5	-26.8	25.90	47.5	-21.6
0.4941	0.2	0.07	29.90	56.1	-26.2	27.50	46.1	-18.6
0.5762	0.2	0.07	20.90	56.0	-35.1	15.90	46.0	-30.1
0.6578	0.2	0.07	26.20	56.0	-29.8	23.00	46.0	-23.0
2.4606	0.2	0.1	34.30	56.0	-21.7	33.20	46.0	-12.8
5.5641	0.25	0.16	32.70	60.0	-27.3	28.20	50.0	-21.8
8.2789	0.34	0.19	34.30	60.0	-25.7	30.70	50.0	-19.3
10.9050	0.4	0.23	33.10	60.0	-26.9	26.80	50.0	-23.2
16.4856	0.43	0.31	28.00	60.0	-32.0	21.80	50.0	-28.2

* NOTE: During the test, the EMI receiver was set to Max. Hold.EUT is being charged, that can't transmit or receive in normal.

Report Number: 07LR019FC

Margin = Amplitude + Insertion Loss-Limit

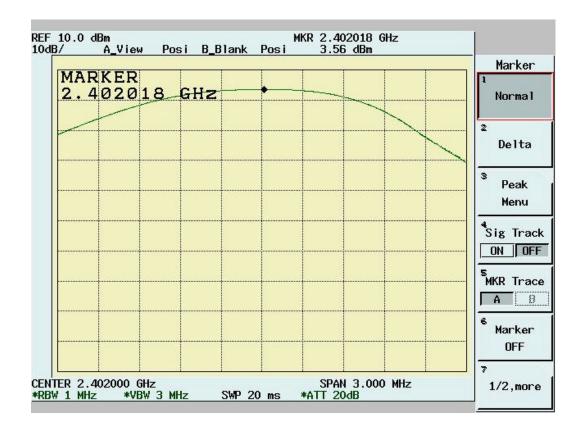
A margin of -8dB means that the emission is 8dB below the limit

4.2 FHSS Maximum Peak Output Power

4.2.1 Test Procedure

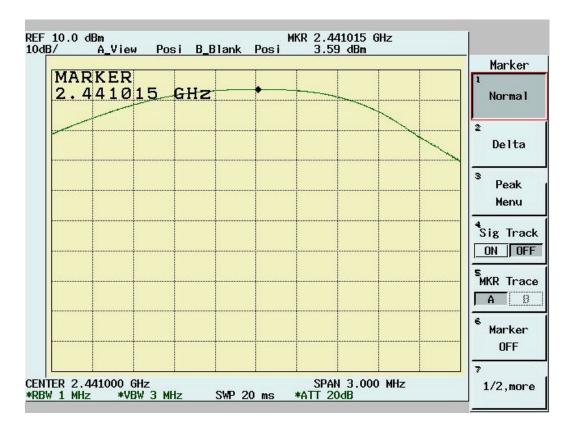
The Transmitter output of EUT was connected to the peak power analyzer.

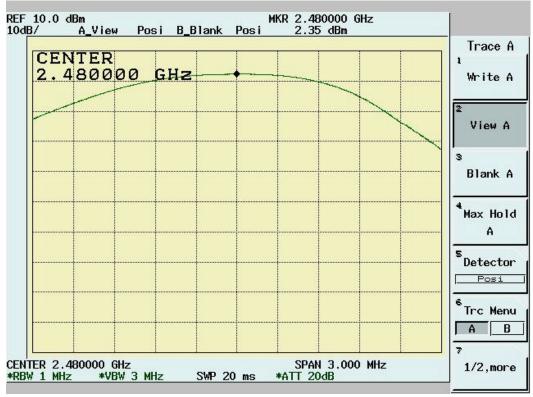
4.2.2 Test Setup


4.2.3 Test Data

Maximum Peak Output Power

Temperature ():24 Humidity (%):56


Test Engineer:Leo JL Lin


Channel	Frequency	Analyzer Reading	Cable Loss	Peak Power Output	Peak Power Output	Limit	Pass/Fail
	(Mhz)	(dBm)	(dB)	(mW)	(dBm)	(dBm)	
00	2402	3.56	0.25	2.40	3.81	30	Pass
39	2441	3.59	0.25	2.42	3.84	30	Pass
78	2480	2.35	0.25	1.82	2.60	30	Pass

-8-

4.3 Radiated Emission Measurement

4.3.1 EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

4.3.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

1GHz – 25GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. During test the EMI receiver and spectrum was setup according to EMI Receiver/Spectrum Analyzer Configuration.

For the test of 2^{nd} to 10^{th} harmonics frequencies, the equipment setup was also refer to EMI Receiver/Spectrum Analyzer Configuration. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.

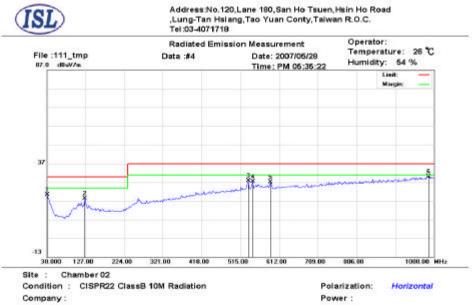
4.3.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Report Number: 07LR019FC

Frequency Range Tested: 30MHz~1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth (RBW): 120KHz Video Bandwidth (VBW) 1MHz

Frequency Range Tested: 1GHz – 25 GHz
Detector Function: Peak Mode
Resolution Bandwidth (RBW): 1MHz
Video Bandwidth (VBW) 3MHz


Frequency Range Tested: 1GHz – 25 GHz Detector Function: Average Mode

Resolution Bandwidth (RBW): 1MHz Video Bandwidth (VBW) 10 Hz

4.3.4 Test Data (30MHz – 1GHz):

30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 00, 39, 78

EUT Model:

Execute Program :

Note:

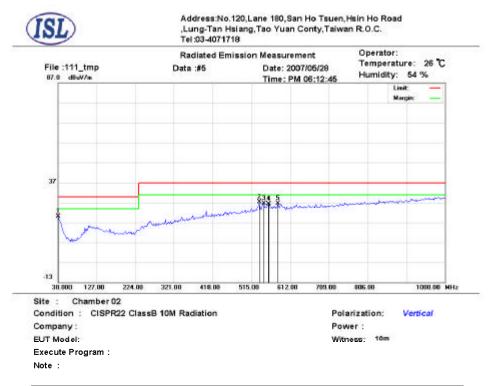
Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)		Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	30.0000	0.70	18.8	0.84	0	20.34	30.00	-9.66			peak
	125.0600	4.36	12.2	1.71	0	18.27	30.00	-11.73			peak
	534.3999	5.20	18.5	4.26	0	27.96	37.00	-9.04			peak
	546.0398	4.29	18.87	4.33	0	27.49	37.00	-9.51			peak
	590.6598	3.78	18.76	4.56	0	27.10	37.00	-9.90			peak
*	986.4200	2.62	21.19	6.4	0	30.21	37.00	-6.79			peak

Witness:

NOTE:

> During the Pre-test, the EUT has been tested for Channel 00, 39, 78 transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.

Report Number: 07LR019FC


Margin = Corrected Amplitude - Limit
 Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain
 A margin of -8dB means that the emission is 8dB below the limit

All frequencies from 30MHz to 1GHz have been tested

^{*:}Maximum data x:Over limit !:over margin

30M – 1GHz Open Field Radiated Emissions (Vertical) Channel 00, 39, 78

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	30.0000	0.48	18.8	0.84	0	20.12	30.00	-9.88			peak
*	534.4000	4.51	18.5	4.26	0	27.27	37.00	-9.73			peak
	546.0400	3.33	18.87	4.33	0	26.53	37.00	-10.47			peak
	557.6800	2.93	18.95	4.41	0	26.29	37.00	-10.71			peak
	580.9600	3.24	18.81	4.54	0	26.59	37.00	-10.41			peak

NOTE:

➤ During the Pre-test, the EUT has been tested for Channel 00, 39, 78 transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.

Report Number: 07LR019FC

Margin = Corrected Amplitude – Limit
 Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain
 A margin of -8dB means that the emission is 8dB below the limit

All frequencies from 30MHz to 1GHz have been tested

^{*:}Maximum data x:Over limit !:over margin

4.3.5 Test Data (1GHz – 25 GHz)

.

1GHz~25 GHz (Horizontal), Channel 00: 2402 MHz

Operator: Leo JL Lin

Humidity (%): 52 Temperature (C): 23

RBW: 1MHz

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1601.9	38.55pk	27.66	2.31	23.75	44.77pk	54.00av	-9.23	101	70
4789.21	37.74pk	34.00	5.14	27.53	49.35pk	54.00av	-4.65	100	21

Report Number: 07LR019FC

1GHz~ 25 GHz (Vertical), Channel 00: 2402 MHz

Operator: Leo JL Lin

RBW: 1MHz

Humidity (%): 52

Temperature (C): 23

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1601.9	42.99pk	27.66	2.31	23.75	49.20 pk	54.00av	-4.80	101	70
4803.7	38.29 pk	34.05	5.14	27.51	49.97 pk	54.00av	-4.03	100	20

Note:

- According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ➤ "*": Fundamental Frequency
- "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- > "pk": peak mode
- > "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ➤ The Spectrum noise level+Correction Factor < Limit 6 dB
- ➤ Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~25 GHz (Horizontal), Channel 39:2441 MHz

Operator: Leo JL Lin

RBW: 1MHz

Humidity (%): 52

Temperature (C): 23

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1626.87	39.13 pk	27.87	2.32	23.75	45.56 pk	54.00av	-8.44	101	69
4876.12	38.68 pk	34.33	5.13	27.41	50.73 pk	54.00av	-3.27	100	12
7309.69	33.47 pk	38.44	3.89	26.56	49.24 pk	54.00av	-4.76	101	154

Report Number: 07LR019FC

1GHz~ 25 GHz (Vertical), Channel 39: 2441 MHz

Operator: Leo JL Lin RBW: 1MHz

Humidity (%): 52 Temperature (C): 23

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1626.87	43.05 pk	27.87	2.32	23.75	49.49 pk	54.00 av	-4.51	101	69
4876.12	37.16 pk	34.33	5.13	27.41	49.21 pk	54.00 av	-4.79	100	12

Note:

- According to the standards used: Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ➤ "*": Fundamental Frequency
- > "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- > "pk": peak mode
- > "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ➤ The Spectrum noise level+Correction Factor < Limit 6 dB
- ➤ Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~25 GHz (Horizontal), Channel 78: 2480 MHz

Operator: Leo JL Lin RBW: 1MHz

Humidity (%): 52 Temperature (C): 23

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1651.85	39.22 pk	28.08	2.34	23.75	45.89 pk	54.00av	-8.11	101	67
4948.55	34.17 pk	34.60	5.13	27.31	46.59 pk	54.00av	-7.41	100	5
7425.57	30.92 pk	38.90	3.95	26.52	47.26 pk	54.00av	-6.74	101	171

Report Number: 07LR019FC

1GHz~ 25 GHz (Vertical), Channel 78: 2480 MHz

Operator: Leo JL Lin RBW: 1MHz

Humidity (%): 52 Temperature (C): 23

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1651.85	43.32 pk	28.08	2.34	23.75	49.99 pk	54.00av	-4.01	101	67
4948.55	32.63 pk	34.60	5.13	27.31	45.04 pk	54.00av	-8.96	100	5

Note:

- According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- ➤ "*": Fundamental Frequency
- > "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- > "pk": peak mode
- > "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ➤ The Spectrum noise level+Correction Factor < Limit 6 dB
- ➤ Margin=Corrected Amplitude Limit
- > Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

4.4 Band Edge Measurement

4.4.1 Test Procedure (Conducted)

1. The transmitter output of EUT was connected to the spectrum analyzer.

Equipment mode: Spectrum analyzer Detector function: Peak mode

SPAN: 100MHz RBW: 100KHz VBW: 100KHz

Center frequency: 2.4GHz, 2.4835GHz.

2. Using Peak Search to read the peak power of Carrier frequencies after Maximum Hold

function is completed

3. Find the next peak frequency outside the operation frequency band

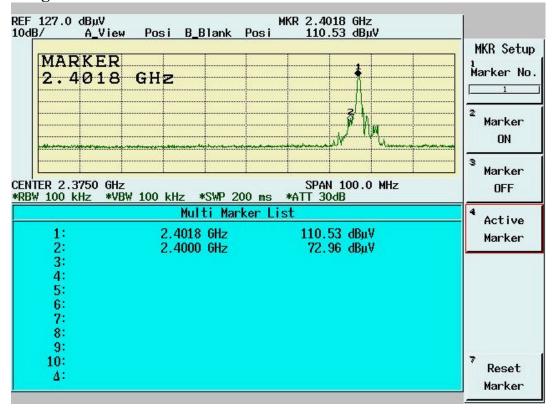
4.4.2 Test Setup (Conducted)

	Spectrum
EUT	Analyzer

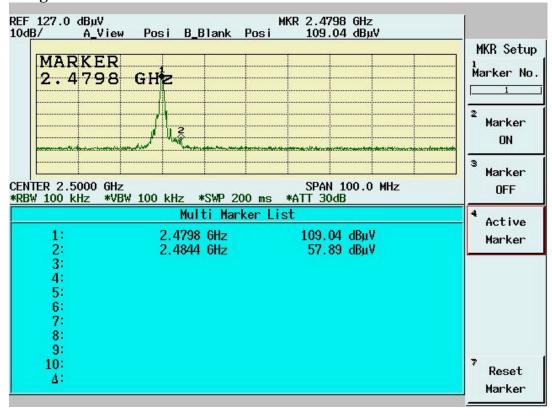
4.4.3 Test Data:

Table: Band Edge measurement (Conducted)

Temperature ():24


Test Engineer:Leo JL Lin

Humidity (%):56


Channel	Frequency (MHz)	Spectrum Reading (dBuV)	Carrier - Outsideband Limit: >20dB (dB)	Pass/Fail	
00	2401.8	108.5			
Outside band	2400.0	73.0	35.6	Pass	
78	2479.8	109.0			
Outside band	2484.4	57.9	51.2	Pass	

Band Edge Conducted Measurement

Band Edge Conducted Measurement

Report Number: 07LR019FC

4.4.4 Test Procedure (Radiated)

Antenna and Turntable test procedure same as Radiated Emission Measurement. 1.

Equipment mode: Spectrum analyzer

Detector function: Peak mode

SPAN: 100MHz RBW: 1MHz VBW: 3MHz

Center frequency: 2.375GHz, 2.500GHz. Using Peak Search to read the peak power of Carrier frequencies after Maximum 2. Hold function is completed.

Find the next peak frequency outside the operation frequency band 3.

For peak frequency emission level measurement in Restricted Band, 4.

Change RBW: 1MHz

VBW: 10Hz Span: 100MHz.

5. Get the spectrum reading after Maximum Hold function is completed.

4.4.5 Test Setup (Radiated)

Same as Radiated Emission Measurement

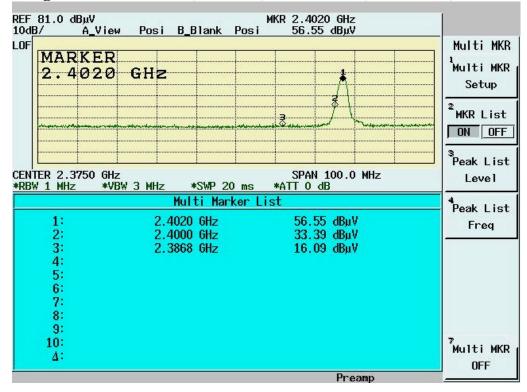
4.4.6 Test Data

Table Band Edge measurement (Radiated)

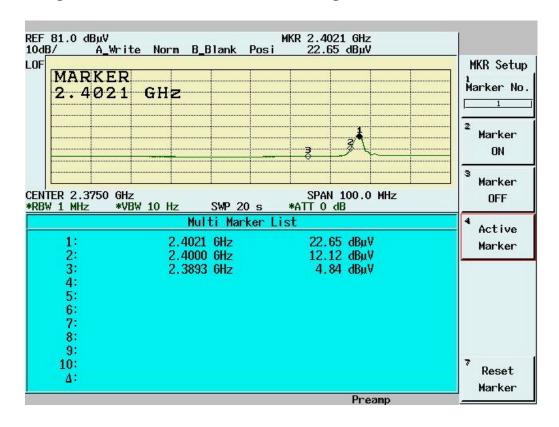
Test Engineer:Leo JL Lin

Temperature ():24

Data Rate Humidity (%):56

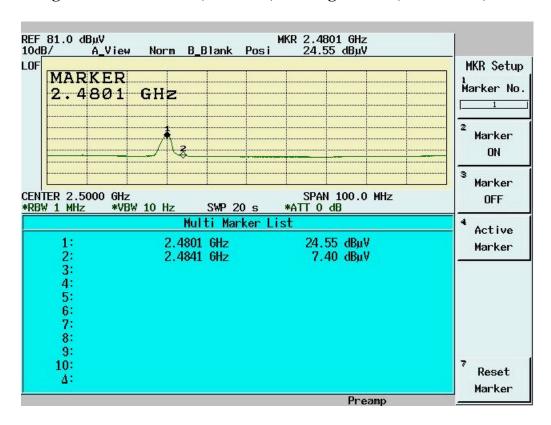

Description	Frequency	Spectrum Reading	Correction Factor	Emission Level	dBc (Limit:	Limit	Equip. Setup	Pass or
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	> 20dBc)	(dBuV/m)	VBW	Fail
Channel_00 (average mode)	2402.10	22.65	35.48	58.13		-1-	10Hz	
Channel_00 (peak mode)	2402.00	56.55	35.48	92.03			3MHz	
Outside band (peak mode)	2400.00	33.39	35.48	68.87	23.16		3MHz	Pass
Channel_78 (average mode)	2480.10	24.55	35.51	60.06			10Hz	
Channel_78 (peak mode)	2480.10	59.92	35.51	95.43			3MHz	
Outside band (peak mode)	2483.70	19.76	35.51	55.27	40.16		ЗМНz	Pass
Channel_00 Restricted band (peak mode)	2386.80	16.09	35.47	51.56		74	3MHz	Pass
Restricted band (average mode)	2389.30	4.84	35.47	40.31		54	10Hz	Pass
Channel_78 Restricted band (peak mode)	2483.70	19.76	35.51	55.27		74	3MHz	Pass
Restricted band (average mode)	2484.10	7.40	35.51	42.91		54	10Hz	Pass

Note:


- > The Spectrum plot of emission level measurement in Restricted band is attached.
- ➤ Emission Level=Spectrum Reading+Correction Factor
- ➤ Correction Factor=Antenna Factor+cable loss-amplifier gain
- > Both Horizontal and Vertical polarizaion have been tested and the worst data is listed above.

Band Edge Restricted Band (Radiated)-Peak Mode (Channel 00)

Band Edge Restricted Band (Radiated)-Average Mode (Channel 00)



Band Edge Restricted Band (Radiated)-Peak Mode (Channel 78)

Band Edge Restricted Band (Radiated)-Average Mode (Channel 78)

4.5 Bandwidth & Hopping Channel Separation

4.5.1 Standard Applicable

According to §15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies.

4.5.2 Test Procedure

■ Bandwidth Test Procedure

The Transmitter output of EUT was connected to the spectrum analyzer. The 20 dB bandwidth of the fundamental frequency was measured. The setting of spectrum analyzer is as follows

Equipment mode Spectrum analyzer
Detector function Peak mode
RBW 30KHz
VBW 100KHz

- Hopping Channel Separation Test Procedure
 - 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable.

Equipment mode: Spectrum analyzer

RBW: 100KHz VBW: 300KHz SPAN:3MHz

- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer Marker function.

Report Number: 07LR019FC

4. Repeat above procedures until all frequencies measured were complete.

4.5.3 Test Setup

4.5.4 Test Data

20dB Bandwidth

Temperature ():24

Test Engineer:Leo JL Lin

Humidity (%):56

Channel	Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Pass/Fail
00	2402	894	1000	Pass
39	2441	894	1000	Pass
78	2480	894	1000	Pass

Hopping Channel Separation

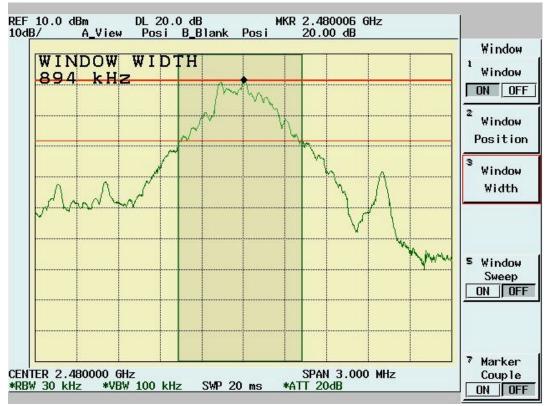
Temperature ():24

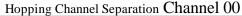
Test Engineer:Leo JL Lin

Humidity (%):56

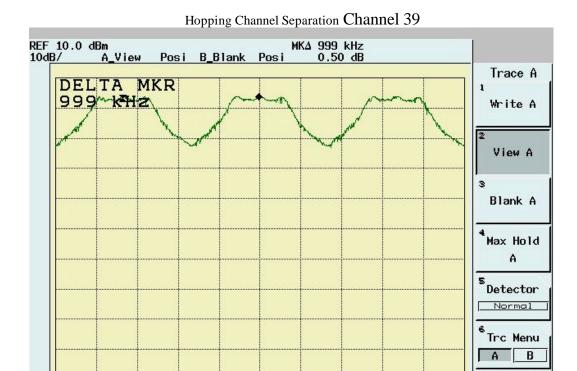
Channel	Frequency (MHz)	Separation (KHz)	Limit (KHz)	Pass/Fail
00	2402	996	894	Pass
39	2441	999	894	Pass
78	2480	999	894	Pass

20dB Bandwidth Channel 00:




20dB Bandwidth Channel 39:

20dB Bandwidth Channel 78:




1/2, more

*SWP 20 ms

SPAN 3.000 MHz

CENTER 2.441000 GHz *RBW 100 kHz *VBW 300 kHz