

FCC RADIO TEST REPORT

FCC ID : PU5-TP00139AS
Equipment : Notebook Computer
Brand Name : Lenovo
Model Name : TP00139A
Applicant : Wistron Corporation
21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist,
New Taipei City 221, Taiwan
Manufacturer : Lenovo PC HK Limited.
23/F, Lincoln House, Taikoo Place, 979 King's Road,
Quarry Bay, Hong Kong, China
Standard : FCC 47 CFR Part 2, 90(R)

Equipment: Foxconn T99W175 tested inside of Lenovo Notebook Computer.

The product was received on Dec. 21, 2021 and testing was performed from Jan. 20, 2022 to Feb. 14, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Sportun International Inc. Wensan Laboratory

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description	5
1.1 Product Feature of Equipment Under Test.....	5
1.2 Product Specification of Equipment Under Test.....	5
1.3 Modification of EUT	5
1.4 Testing Site.....	6
1.5 Applied Standards	6
2 Test Configuration of Equipment Under Test	7
2.1 Test Mode.....	7
2.2 Connection Diagram of Test System	7
2.3 Support Unit used in test configuration and system	8
2.4 Frequency List of Low/Middle/High Channels	8
3 Conducted Test Items.....	9
3.1 Measuring Instruments	9
3.2 Conducted Output Power Measurement and ERP.....	10
4 Radiated Test Items	11
4.1 Measuring Instruments	11
4.2 Radiated Spurious Emission	13
5 List of Measuring Equipment.....	14
6 Uncertainty of Evaluation.....	15
Appendix A. Test Results of Conducted Test	
Appendix B. Test Results of Radiated Test	
Appendix C. Test Setup Photographs	

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
	§90.542 (a)(7)	Effective Radiated Power	Pass	-
-	-	Peak-to-Average Ratio	-	See Note
-	§2.1049	Occupied Bandwidth	-	See Note
-	§2.1053 §90.543 (e)(2)	Conducted Band Edge Measurement	-	See Note
-	§2.1051 §90.210 (n)	Emission Mask	-	See Note
-	§2.1053 §90.543 (e)(3)	Conducted Spurious Emission	-	See Note
-	§2.1055 §90.539 (e)	Frequency Stability Temperature & Voltage	-	See Note
4.2	§2.1053 §90.543 (e)(3) §90.543 (f)	Radiated Spurious Emission	Pass	Under limit 23.47 dB at 1576.000 MHz

Note: The module (Model: T99W175) makes no difference after verifying output power, this report reuses test data from the module report.

Declaration of Conformity:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sheng Kuo

Report Producer: Vivian Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature	
Equipment	Notebook Computer
Brand Name	Lenovo
Model Name	TP00139A
FCC ID	PU5-TP00139AS
Sample 1	EUT with AWAN Antenna
Sample 2	EUT with LUXSHARE-ICT Antenna
EUT supports Radios application	WCDMA/HSPA/LTE/5G NR/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
EUT Stage	Production Unit

Remark:

1. The above EUT's information was declared by manufacturer.
2. Equipment: Foxconn T99W175 tested inside of Lenovo Notebook Computer.

WWAN Antenna Information				
Main Antenna	Manufacturer	AWAN	Peak gain (dBi)	LTE Band 14 :0.22
	Part number	SA30Y56103AA	Type	PIFA
	Manufacturer	LUXSHARE-ICT	Peak gain (dBi)	LTE Band 14 :0.30
	Part number	SA30Y56102AA	Type	PIFA

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard	
Tx Frequency	790.5 MHz ~ 795.5 MHz
Rx Frequency	760.5 MHz ~ 765.5 MHz
Bandwidth	5MHz / 10MHz
Maximum Output Power to Antenna	22.85 dBm
Type of Modulation	QPSK / 16QAM / 64QAM

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Site

Test Site	Sportun International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333
Test Site No.	Sportun Site No.
	TH03-HY (TAF Code: 1190)
Test Engineer	HaoEn Zhang
Temperature (°C)	21.4~23.3
Relative Humidity (%)	52.8~57.1
Remark	The Conducted test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.

Test Site	Sportun International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010
Test Site No.	Sportun Site No.
	03CH15-HY
Test Engineer	Leo Li, Mancy Chou and Bigshow Wang
Temperature (°C)	22.5~24.5
Relative Humidity (%)	45~55

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

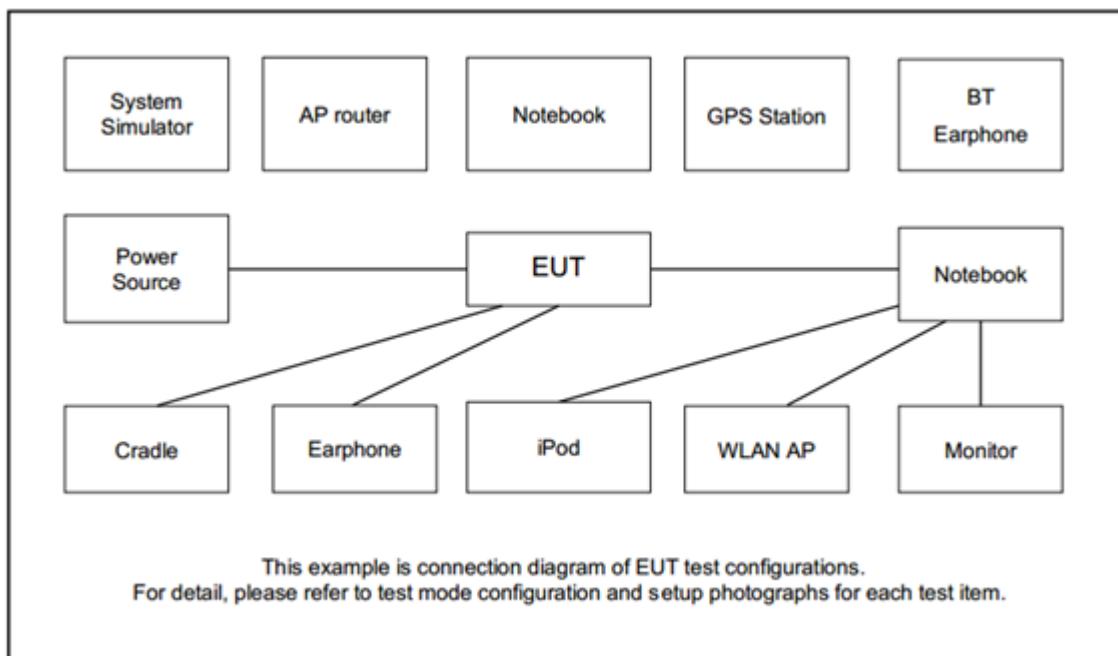
1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ ANSI C63.26-2015
- ♦ FCC 47 CFR Part 2, Part 90(R)
- ♦ ANSI / TIA-603-E
- ♦ FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- ♦ FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- ♦ FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. The TAF code is not including all the FCC KDB listed without accreditation.


2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Conducted Test Cases	Band	Bandwidth (MHz)						Modulation			RB #			Test Channel		
		1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	M	H
Max. Output Power	14	-	-	V	V	-	-	V	V	V	V	V	V	V	V	V
E.R.P	14	-	-	V	V	-	-	V	V	V	Max. Power					
Radiated Spurious Emission	14	-	-	V	V	-	-	V			V			V	V	V
Remark	<ol style="list-style-type: none">The mark "v" means that this configuration is chosen for testingThe mark "-" means that this bandwidth is not supported.The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.All the radiated test cases were performed with Adapter (ADLX45YLC3D), Battery1 and Sample 2.															

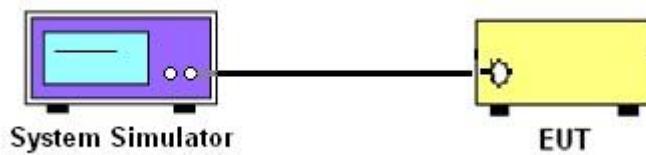
2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A

2.4 Frequency List of Low/Middle/High Channels

LTE Band 14 Channel and Frequency List				
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
10	Channel	-	23330	-
	Frequency	-	793	-
5	Channel	23305	23330	23355
	Frequency	790.5	793	795.5


3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.1.1 Test Setup

3.1.2 Conducted Output Power

3.1.3 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement and ERP

3.2.1 Description of the Conducted Output Power Measurement and ERP Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 3 Watts for LTE Band 14.

According to KDB 412172 D01 Power Approach,

$EIRP = P_T + G_T - L_C$, $ERP = EIRP - 2.15$, where

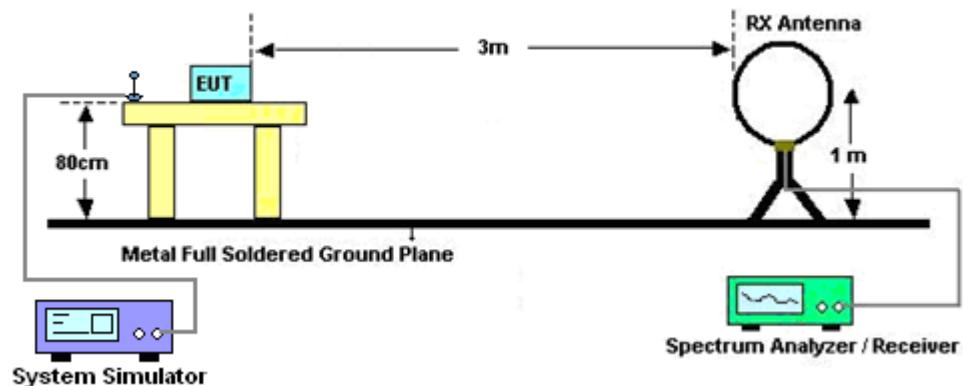
P_T = transmitter output power in dBm

G_T = gain of the transmitting antenna in dBi

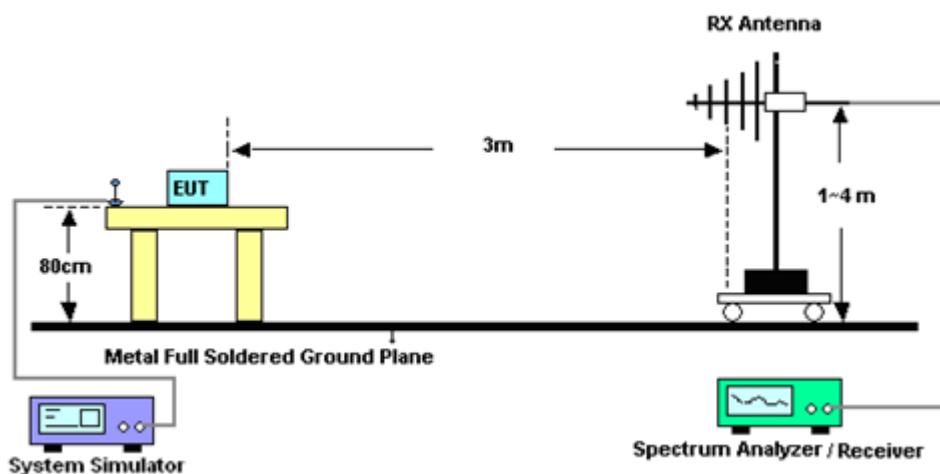
L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

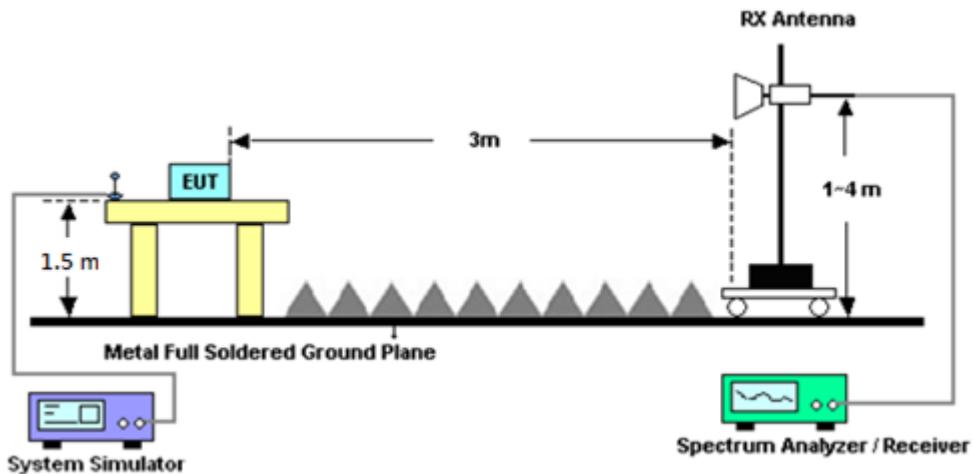
3.2.2 Test Procedures

1. The transmitter output port was connected to base station.
2. Set EUT at maximum power through base station.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure and record the power level from the system simulator.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.


4.1.1 Test Setup

For radiated test below 30MHz

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz**4.1.2 Test Result of Radiated Test**

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.2 Radiated Spurious Emission

4.2.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
8. Taking the record of output power at antenna port.
9. Repeat step 7 to step 8 for another polarization.
10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
11. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Jan. 20, 2022~Feb. 08, 2022	Sep. 06, 2022	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N-06	37059 & 01	30MHz~1GHz	Oct. 09, 2021	Jan. 20, 2022~Feb. 08, 2022	Oct. 08, 2022	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&00800N1D01N-06	40103 & 07	30MHz to 1GHz	Apr. 28, 2021	Jan. 20, 2022~Feb. 08, 2022	Apr. 27, 2022	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 27, 2021	Jan. 20, 2022~Feb. 08, 2022	Dec. 26, 2022	Radiation (03CH15-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-02038	1-18GHz	Aug. 04, 2021	Jan. 20, 2022~Feb. 08, 2022	Aug. 03, 2022	Radiation (03CH15-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Oct. 25, 2021	Jan. 20, 2022~Feb. 08, 2022	Oct. 24, 2022	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-303	1710001800055 006	1GHz~18GHz	May 06, 2021	Jan. 20, 2022~Feb. 08, 2022	May 05, 2022	Radiation (03CH15-HY)
Preamplifier	EM Electronics	EM01G18G	060803	1GHz-18GHz	Dec. 16, 2021	Jan. 20, 2022~Feb. 08, 2022	Dec. 15, 2022	Radiation (03CH15-HY)
Spectrum Analyzer	Keysight	N9038A	MY54130085	20MHz~8.4GHz	Oct. 21, 2021	Jan. 20, 2022~Feb. 08, 2022	Oct. 20, 2022	Radiation (03CH15-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz~44GHz	Mar. 05, 2021	Jan. 20, 2022~Feb. 08, 2022	Mar. 04, 2022	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 20, 2022~Feb. 08, 2022	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 20, 2022~Feb. 08, 2022	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k5)	RK-000451	N/A	N/A	Jan. 20, 2022~Feb. 08, 2022	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/4, MY9 838/4PE, 508405 /2E	30MHz~18G	Nov. 15, 2021	Jan. 20, 2022~Feb. 08, 2022	Nov. 14, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/4, MY9 838/4PE, 508405 /2E	30MHz~18G	Nov. 15, 2021	Jan. 20, 2022~Feb. 08, 2022	Nov. 14, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/4, MY9 838/4PE, 508405 /2E	30MHz~18G	Nov. 15, 2021	Jan. 20, 2022~Feb. 08, 2022	Nov. 14, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 22, 2021	Jan. 20, 2022~Feb. 08, 2022	Feb. 21, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 22, 2021	Jan. 20, 2022~Feb. 08, 2022	Feb. 21, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 11, 2021	Jan. 20, 2022~Feb. 08, 2022	Mar. 10, 2022	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 14, 2021	Jan. 20, 2022~Feb. 08, 2022	Sep. 13, 2022	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-935-1 000-15000-40S T	SN1	1GHz High Pass Filter	Apr. 29, 2021	Jan. 20, 2022~Feb. 08, 2022	Apr. 28, 2022	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-2700-3000-18000-60 ST	SN4	3GHz High Pass Filter	Sep. 15, 2021	Jan. 20, 2022~Feb. 08, 2022	Sep. 14, 2022	Radiation (03CH15-HY)
Signal Generator	Rohde & Schwarz	SMF100A	101107	0.1Hz~40GHz	Dec. 08, 2021	Jan. 20, 2022~Feb. 08, 2022	Dec. 07, 2022	Radiation (03CH15-HY)
Radio Communication Analyzer	Anritsu	MT8821C	6201664755	2/3/4G/LTE FDD/TDD with44)/LTE-3C C DLCA/2CC ULCA, CatM1/NB1/NB 2	Jul. 21, 2021	Feb. 11, 2022~Feb. 14, 2022	Jul. 20, 2022	Conducted (TH03-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.92 dB
---	---------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.72 dB
---	---------

Appendix A. Test Results of Conducted Test

Conducted Output Power (Average power & ERP)

LTE Band 14 Maximum Average Power [dBm] (GT - LC = 0.3 dB)								
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)
10	1	0	QPSK	22.85	21.00	0.1259	21.00	0.1259
10	1	25		22.65				
10	1	49		22.40				
10	25	0		21.89				
10	25	12		21.83				
10	25	25		21.76				
10	50	0		21.68				
10	1	0	16-QAM	22.08	20.23	0.1054	20.23	0.1054
10	1	25		21.94				
10	1	49		22.00				
10	25	0		20.75				
10	25	12		20.73				
10	25	25		20.81				
10	50	0		20.87				
10	1	0	64-QAM	20.55	18.92	0.0780	18.92	0.0780
10	1	25		20.65				
10	1	49		20.77				
10	25	0		19.87				
10	25	12		19.79				
10	25	25		19.98				
10	50	0		19.89				
10	1	0	256-QAM	17.61	16.15	0.0412	16.15	0.0412
10	1	25		17.84				
10	1	49		17.80				
10	25	0		17.74				
10	25	12		17.95				
10	25	25		18.00				
10	50	0		17.66				
Limit	ERP < 3W			Result			Pass	

LTE Band 14 Maximum Average Power [dBm] (GT - LC = 0.3 dB)								
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	ERP (dBm)	ERP (W)
5	1	0	QPSK	22.73	22.80	22.72	20.95	0.1245
	1	12		22.64	22.70	22.61		
	1	24		22.62	22.77	22.69		
	12	0		21.69	21.71	21.65		
	12	7		21.79	21.84	21.75		
	12	13		21.82	21.92	21.87		
	25	0		21.84	21.90	21.87		
5	1	0	16-QAM	21.86	21.90	21.88	20.38	0.1091
	1	12		22.13	22.22	22.16		
	1	24		22.14	22.23	22.14		
	12	0		20.80	20.84	20.80		
	12	7		20.75	20.84	20.80		
	12	13		20.95	20.99	20.99		
	25	0		20.71	20.77	20.70		
5	1	0	64-QAM	20.58	20.59	20.51	18.95	0.0785
	1	12		20.71	20.80	20.72		
	1	24		20.59	20.66	20.59		
	12	0		19.90	19.92	19.84		
	12	7		19.83	19.84	19.78		
	12	13		19.80	19.83	19.77		
	25	0		19.93	19.99	19.91		
5	1	0	256-QAM	17.58	17.51	17.56	16.20	0.0417
	1	12		17.85	17.79	17.59		
	1	24		17.88	18.05	17.58		
	12	0		17.52	17.55	17.68		
	12	7		17.75	17.77	17.53		
	12	13		18.03	17.91	17.68		
	25	0		17.56	17.57	17.62		
Limit	ERP < 3W			Result			Pass	

Appendix B. Test Results of Radiated Test

LTE Band 14

LTE Band 14 / 5MHz / QPSK									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	1576	-69.62	-42.15	-27.47	-72.71	-74.43	1.79	8.76	H
	2365	-68.64	-13	-55.64	-74.41	-74.24	2.20	9.95	H
	3153	-67.21	-13	-54.21	-75.47	-73.92	2.55	11.41	H
	3941	-62.69	-13	-49.69	-73.21	-70.20	2.83	12.48	H
									H
									H
	1576	-69.67	-42.15	-27.52	-73.03	-74.48	1.79	8.76	V
	2365	-67.22	-13	-54.22	-73.70	-72.82	2.20	9.95	V
	3153	-66.78	-13	-53.78	-75.53	-73.49	2.55	11.41	V
	3941	-61.34	-13	-48.34	-72.28	-68.85	2.83	12.48	V
Middle									V
	1584	-69.41	-42.15	-27.26	-72.42	-74.27	1.80	8.80	H
	2372	-69.27	-13	-56.27	-75.04	-74.94	2.20	10.02	H
	3163	-66.69	-13	-53.69	-75.02	-73.43	2.56	11.45	H
									H
									H
									H
	1584	-69.02	-42.15	-26.87	-72.35	-73.88	1.80	8.80	V
	2372	-68.30	-13	-55.30	-74.79	-73.97	2.20	10.02	V
	3163	-66.06	-13	-53.06	-74.87	-72.80	2.56	11.45	V
									V
									V

Highest	1584	-68.31	-42.15	-26.16	-71.32	-73.17	1.80	8.80	H
	2380	-68.38	-13	-55.38	-74.16	-74.13	2.20	10.10	H
	3176	-66.58	-13	-53.58	-74.97	-73.37	2.56	11.50	H
									H
									H
									H
	1584	-69.35	-42.15	-27.20	-72.68	-74.21	1.80	8.80	V
	2380	-67.65	-13	-54.65	-74.15	-73.40	2.20	10.10	V
	3176	-66.51	-13	-53.51	-75.39	-73.30	2.56	11.50	V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 14 / 10MHz / QPSK									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	1576	-65.62	-42.15	-23.47	-72.17	-70.43	1.79	8.76	H
	2365	-64.89	-13	-51.89	-74.95	-70.49	2.20	9.95	H
	3154	-63.40	-13	-50.40	-75.99	-70.11	2.55	11.42	H
									H
									H
									H
	1576	-65.96	-42.15	-23.81	-72.78	-70.77	1.79	8.76	V
	2365	-63.18	-13	-50.18	-73.95	-68.78	2.20	9.95	V
	3154	-63.08	-13	-50.08	-76.16	-69.79	2.55	11.42	V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.