FCC PART 15 Subpart C

EMI MEASUREMENT AND TEST REPORT

FOR

Sunrise Company Ltd.

Huasheng Industrial Area, Dalang Shuiwei Village Longhua Town, Baoan District, Shenzhen, Guangdong, P.R. China

FCC ID: PTE1161181

August 7, 2001

This Report Concerns:		Equipment Type:			
Original Report		Duplex Headset Walkie Talkie- ITE			
Test Engineer:	Hien Pham				
Test Date:	July 27, 2001				
Reviewed By:					
	John Y. Chan – Engineering Manager				
Prepared By:	Bay Area Compliance Laboratory Corporation 230 Commercial Street, Suite 2 Sunnyvale, CA 94085 Tel (408) 732-9162 Fax (408) 732-9164				

Note: This report may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 Product Description for Equipment Under Test (EUT)	3
1.2 Purpose	
1.3 RELATED SUBMITTAL(S)/GRANT(S)	3
1.4 Test Methodology	3
1.5 Test Facility	
1.6 Test Equipment List	
1.7 Equipment Under Test (EUT)	4
2 - SYSTEM TEST CONFIGURATION	5
2.1 DESCRIPTION OF TEST CONFIGURATION	
2.2 Equipment Modifications	
2.3 CONFIGURATION OF TEST SYSTEM	
2.4 Configuration of Test System	7
3-CONDUCTED EMISSIONS TEST DATA	8
4 - RADIATED EMISSION DATA	9
4.1 EUT Setup	9
4.2 SPECTRUM ANALYZER SETUP	9
4.3 Test Procedure	
4.4 Corrected Amplitude & Margin Calculation	10
4.5 Summary of Test Results	10
4.6 RADIATED EMISSIONS TEST RESULT DATA	11
APPENDIX A	12

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *Sunrise Company Ltd.*'s product, model no.: *1161181* or "EUT" as referred to in this report is a Duplex Headset Walkie Talkie which measures 14.00"L x 6.25" W x 0.5" H.

1.2 Purpose

This report is prepared on behalf of *Sunrise Company Ltd.* in accordance with Part 2, Subpart J, and Part 15, Subparts A and B of the Federal Communication Commissions Rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules, Part 15, section 235 for radiated margin.

1.3 Related Submittal(s)/Grant(s)

No related submittals

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 –1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Suite 2, Sunnyvale, California, USA.

Test sites at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test sites has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1998, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

1.6 Test Equipment List

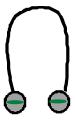
Manufacturer Description		Model	Serial Number	Cal. Due Data	
HP	Spectrum Analyzer	8566B	2610A02165	12/6/2001	
HP	Spectrum Analyzer	8593B	2919A00242	12/20/2001	
HP	Amplifier	8349B	2644A02662	12/20/2001	
HP	Quasi-Peak Adapter	85650A	917059	12/6/2001	
HP	Amplifier	8447E	1937A01046	12/6/2001	
A.H. System	Horn Antenna	SAS0200/571	261	12/27/2001	
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/2001	
Com-Power	Biconical Antenna	AB-100	14012	11/2/2001	
Solar Electronics	Solar Electronics LISN		968447	12/28/2001	
Com-Power	LISN	LI-200	12208	12/20/2001	
Com-Power LISN		LI-200	12005	12/20/2001	
BACL	Data Entry Software	DES1	0001	12/20/2001	

1.7 Equipment Under Test (EUT)

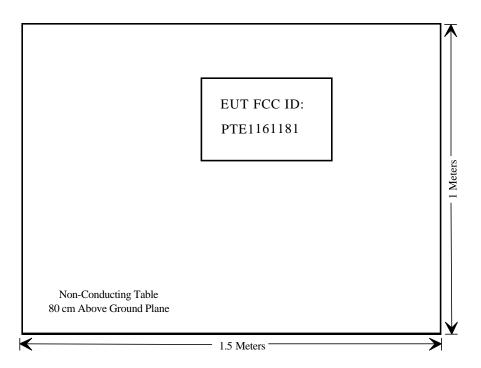
Manufacturer	Description	Model	Serial Number	FCCID
Sunrise Company Ltd.	Duplex Headset Walkie Talkie	1161181	None	PTE1161181

2 - SYSTEM TEST CONFIGURATION

2.1 Description of Test Configuration


The EUT was configured for testing in a typical fashion (as normally used by a typical user).

2.2 Equipment Modifications


No modification(s) to the EUT were made to comply with the applicable limits and requirements.

2.3 Configuration of Test System

EUT: 1161181

2.4 Configuration of Test System

3-CONDUCTED EMISSIONS TEST DATA No applicable because of battery operation.	Sunrise Company Ltd.	FCC ID: PTE116
	4 CONDITIONED ENVIOUS DECEMBER 5 4 M	
No applicable because of battery operation.	3-CONDUCTED EMISSIONS TEST DATA	A
	No applicable because of battery operation.	

4 - RADIATED EMISSION DATA

4.1 EUT Setup

The radiated emission tests were performed in the open area 3 meter test site, using the setup in accordance with the ANSI C63.4 - 1992. The specification used was the FCC 15, section 235 limits.

The EUT with the holder was placed on the center of the back edge on the test table.

The EUT used new battery.

4.2 Spectrum Analyzer Setup

According to FCC Rules, the system was tested to 1000 MHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency	30 MHz
Stop Frequency	
Sweep Speed	Auto
IF Bandwidth	
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

4.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "**Qp**" in the data table.

The EUT was operating at normal to represent the worst case result during the final qualification test. Therefore, this configuration was used for final test data recorded in the table listed under section 4.7 of this report.

4.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for FCC Part 15, Subpart C, section 235. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15, Subpart C, section 235 Limit

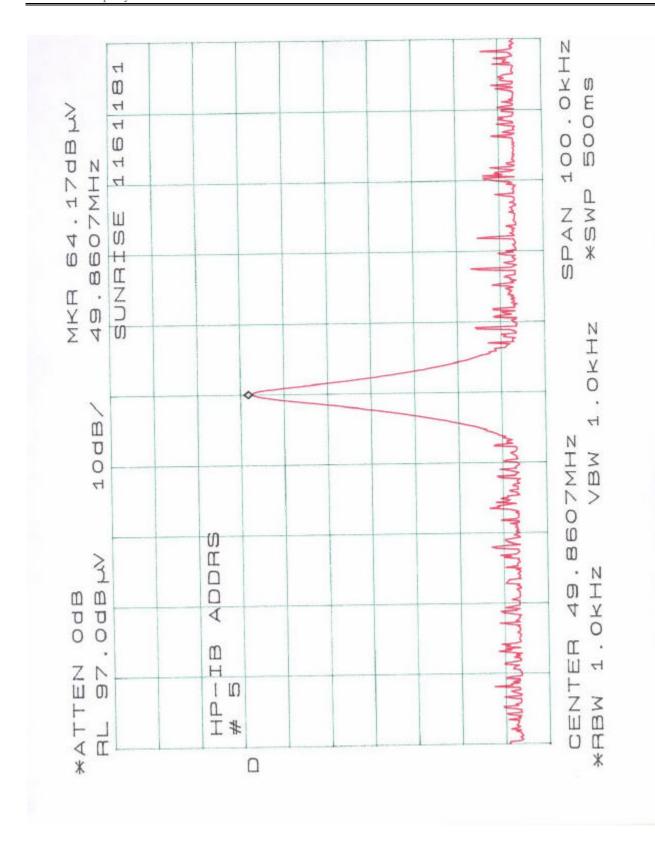
4.5 Summary of Test Results

According to the data in section 4.7, the EUT: 1161181 complied with the FCC Title 47, Part 15, Subpart C, section 15.235 and had the worst margin of:

-4.5 dBmV at 149.58 MHz in the Vertical polarization, 30 to 1000MHz, 3 meters

4.6 Radiated Emissions Test Result Data

4.6.1 Final Test Data, 30 to 1000MHz, 3 meters


Indicated		TABLE	ANT	ANTENNA CORRECTION FACTOR		CORRECTED AMPLITUDE					
Frequency	Ampl.		Angle	Height	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dB m V/m	Comments	Degree	Meter	H/V	dB m V/m	dB	dB	dB m V/m	dB m V/m	dB
149.58	36.9	Peak	90	1.2	V	19.5	8.2	23.1	41.5	46.0	-4.5
149.58	31.2	Peak	340	1.2	V	23.1	10.4	23.2	41.5	46.0	-4.5
249.30	32.4	Peak	90	1.2	V	21.8	8.8	22.8	40.2	46.0	-5.8
299.16	44.0	Peak	180	1.2	V	12.6	5.3	22.6	39.3	46.0	-6.7
349.02	31.0	Peak	180	1.2	V	22.2	9.5	23.8	38.9	46.0	-7.1
398.88	35.3	Peak	145	1.2	V	18.6	7.8	22.9	38.8	46.0	-7.2
448.74	25.0	Peak	270	1.2	V	22.5	11.0	21.4	37.1	46.0	-8.9
498.60	31.0	Peak	90	1.2	V	20.1	8.3	23.2	36.2	46.0	-9.8
548.46	36.0	Peak	140	1.2	V	15.2	6.4	22.8	34.8	46.0	-11.2
598.32	33.5	Peak	90	1.2	V	16.2	6.8	22.9	33.6	46.0	-12.4
648.18	34.8	Peak	340	1.2	V	13.4	3.2	21.4	30.0	43.5	-13.5
698.04	34.8	Peak	90	1.8	Н	13.4	3.2	21.4	30.0	43.5	-13.5
747.90	29.8	Peak	90	1.2	V	17.9	7.4	22.9	32.2	46.0	-13.8
797.76	32.4	Peak	180	1.2	V	15.4	5.7	22.4	31.1	46.0	-14.9
847.62	37.2	Peak	90	1.2	V	11.3	4.4	22.4	30.5	46.0	-15.5
49.86	49.3	Ave	180	1.2	V	11.3	1.5	21.6	40.5	80.0	-39.5
49.86	41.2	Ave	180	1.2	Н	11.3	1.5	21.6	32.4	80.0	-47.6
49.86	50.9	Peak	180	1.2	V	11.3	1.5	21.6	42.1	100.0	-57.9
49.86	43.0	Peak	180	1.8	Н	11.3	1.5	21.6	34.2	100.0	-65.8

APPENDIX A

Measurement of Emissions within Band Edges

Requirements: the Measurement of Emissions within Band Edges shall be operating within the band 49.82-49.90 MHz.

Results: Complies with the requirements.

