

**FCC Certification Test Report
for
Trafcon Industries, Inc.
PTB50069**

August 29, 2001

Prepared for:

**Trafcon Industries, Inc.
81 Texaco Road
Mechanicsburg, PA 17050-2623**

Prepared By:

**Washington Laboratories, Ltd.
7560 Lindbergh Drive
Gaithersburg, Maryland 20879**

FCC Certification Test Program

FCC Certification Test Report for the Trafcon Industries, Inc. TX3 Transmitter PTB50069

August 24, 2001

WLL JOB# 6679

Prepared by: Brian J. Dettling
Documentation Specialist

Reviewed by: Michael Violette
President

Abstract

This report has been prepared on behalf of Trafcon Industries, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Periodic Intentional Radiator under Part 15.249 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a Trafcon Industries, Inc. TX3 Transmitter.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The Trafcon Industries, Inc. TX3 Transmitter complies with the limits for a Periodic Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

Table of Contents

Abstract.....	ii
1 Introduction.....	1
1.1 Compliance Statement.....	1
1.2 Test Scope	1
1.3 Contract Information.....	1
1.4 Test Dates	1
1.5 Test and Support Personnel.....	1
1.6 Abbreviations.....	1
2 Equipment Under Test.....	2
2.1 EUT Identification & Description.....	2
2.2 Test Configuration.....	3
2.3 Testing Algorithm.....	3
2.4 Test Location.....	3
2.5 Measurements.....	3
2.5.1 References.....	3
2.6 Measurement Uncertainty.....	3
3 Test Equipment	4
4 Test Results	4
4.1 Occupied Bandwidth.....	4
4.2 Radiated Spurious Emissions	6
4.2.1 Test Procedure	6

List of Tables

Table 1. Device Summary	2
Table 2: Test Equipment List	4
Table 3. Occupied Bandwidth Results	6
Table 4. Radiated Spurious Emissions Limits.....	6
Table 5: Radiated Emission Test Data.....	7

List of Figures

Figure 1. Occupied Bandwidth.....	5
-----------------------------------	---

1 Introduction

1.1 Compliance Statement

The Trafcon Industries, Inc. TX3 Transmitter complies with the limits for an Intentional Radiator device under Part 15.249 of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated emissions were performed. All measurements were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Trafcon Industries, Inc.
81 Texaco Road
Mechanicsburg, PA 17050-2623

Quotation Number: 59367

1.4 Test Dates

Testing was performed from August 9, 2001 to August 10, 2001.

1.5 Test and Support Personnel

Washington Laboratories, LTD Santo Lavorata

1.6 Abbreviations

A	Ampere
Ac	alternating current
AM	Amplitude Modulation
Amps	Amperes
b/s	bits per second
BW	Bandwidth
CE	Conducted Emission
Cm	centimeter
CW	Continuous Wave
DB	decibel
Dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	giga - prefix for 10^9 multiplier
Hz	Hertz

IF	Intermediate Frequency
k	kilo - prefix for 10^3 multiplier
M	Mega - prefix for 10^6 multiplier
m	Meter
μ	micro - prefix for 10^{-6} multiplier
NB	Narrowband
LISN	Line Impedance Stabilization Network
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification & Description

The Trafcon Industries, Inc. TX3 Transmitter is part of the Smart Flash Controller system used to remotely control operation of a vehicle trailer-mounted vehicle traffic Advance Warning Panel. It is used in conjunction with a RX3 Receiver. The desired pattern is selected on the Smart Flash control pad, and the "Enter" key is depressed to transmit the command to the RX3 receiver.

Table 1. Device Summary

ITEM	DESCRIPTION
Manufacturer:	Trafcon Industries, Inc.
FCC ID Number	PTB50069
EUT Name:	Transmitter
Model:	TX3
FCC Rule Parts:	§15.249
Frequency Range:	914 MHz
Maximum Output Power:	1 mW
Modulation:	FM
Necessary Bandwidth:	N/A
Keying:	Manual
Type of Information:	Data
Number of Channels:	1
Power Output Level	Fixed
Antenna Type	Integral
Frequency Tolerance:	N/A
Emission Type(s):	N/A
Interface Cables:	None
Power Source & Voltage:	5VDC from internal regulator supplied with 12VDC from external source

2.2 Test Configuration

The TX3 was tested mounted on a traffic control warning sign and in stand-alone arrangements. Initial scanning indicated that the stand-alone configuration provided the worst-case configuration. The TX3 was configured with the Smart Flash control pad, and antenna. Power was provided from a 12VDC source.

2.3 Testing Algorithm

The TX3 was operated by configuring the Smart Flash control pad to continuously send the transmit command to the TX3.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz Land Mobile FM or PM Communications Equipment Measurement and Performance Standards (ANSI/TIA/EIA-603-93)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The measurement uncertainty of the data contained herein is ± 2.3 dB.

For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is \pm dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

$$\text{Total Uncertainty} = (A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, total uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3$ dB.

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Equipment	Serial Number	Date Calibrated	Calibration Due
Antenna Research Associates, Inc. Biconical Log Periodic Antenna LPB-2520 (Site 1)	1044	6/13/01	6/13/02
Hewlett-Packard Spectrum Analyzer: HP 8568B (Site 1)	2928A04750	6/29/01	6/29/02
Hewlett-Packard Quasi-Peak Adapter: HP 85650A (Site 1)	3303A01786	6/29/01	6/29/02
Hewlett-Packard RF Preselector: HP 85685A (Site 1)	2817A00744	6/29/01	6/29/02

4 Test Results

4.1 Occupied Bandwidth

Occupied bandwidth was performed by coupling the signal of the EUT to the input of a spectrum analyzer.

At full modulation, the occupied bandwidth was measured as shown:

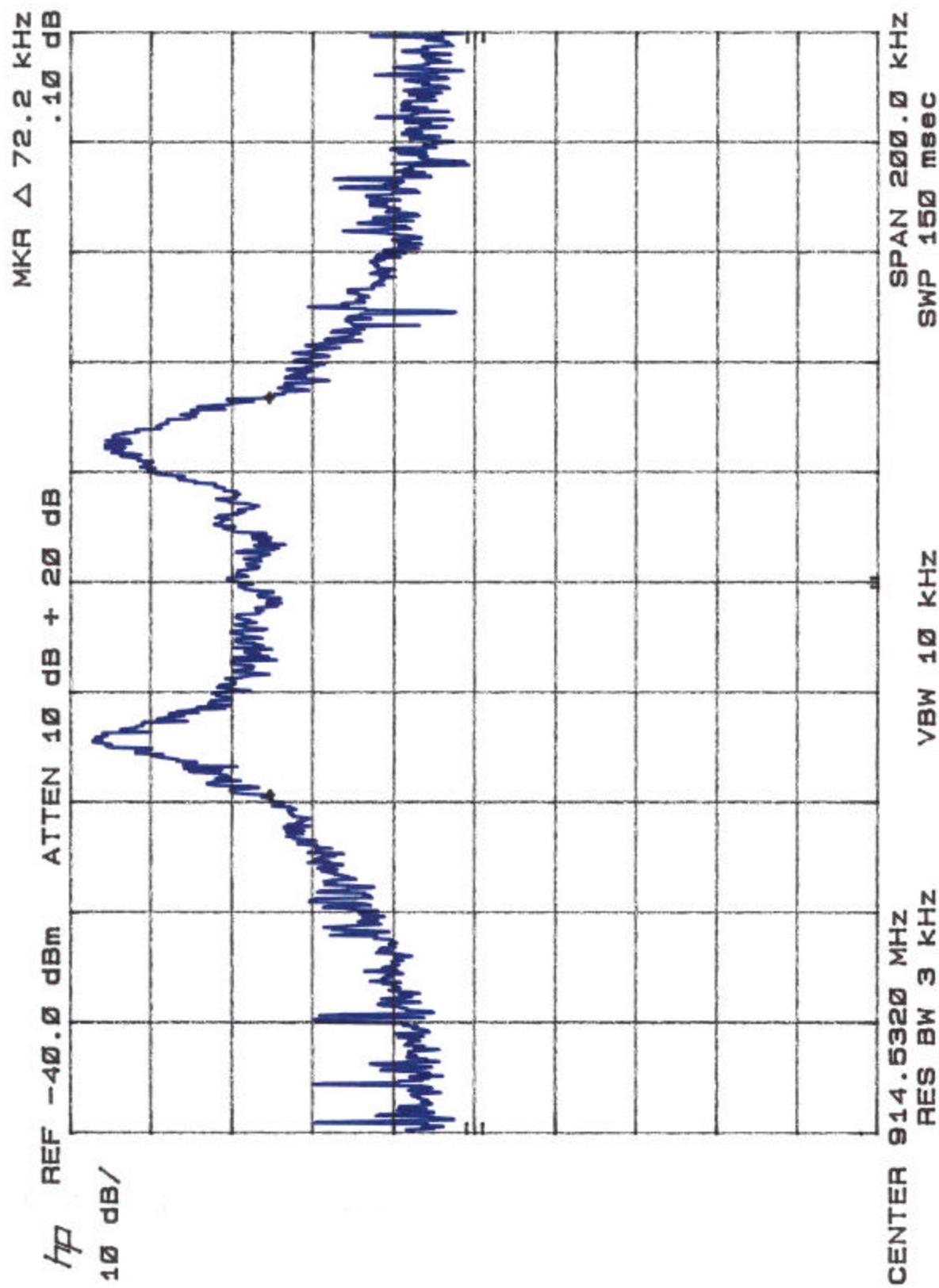


Figure 1. Occupied Bandwidth

Table 3 provides a summary of the Occupied Bandwidth Results.

Table 3. Occupied Bandwidth Results

Frequency	Bandwidth
914.53 MHz	72.2 KHz

4.2 Radiated Spurious Emissions

The EUT must comply with requirements for radiated spurious emissions. The limits are as shown in the following table.

Table 4. Radiated Spurious Emissions Limits

Frequency	Fundamental uV/m	Level (-dBc or E-Field)
Fundamental	50,000	
Harmonics		500 uV/m
Spurious		-50dBc or 15.109

4.2.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-1992. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

Table 5: Radiated Emission Test Data

CLIENT: Trafcon Industries
MODEL: TX3 Transmitter S/N:FFF FF6
DATE: 8/9/01
CLK SPEED(S): 914.52 Fundamental transmit frequency
BY: S. Lavorata
JOB #: 6679
Configuration: Transmitter Enabled for continuous modulated transmission

See Notes Below regarding corrections factors.

Frequency	Polarity	Azimuth	Antenna	SA Level	AFc	E-Field	E-Field	Limit	Margin
MHz	H/V	Degree	m	dBuV	dB/m	dBuV/m	uV/m	uV/m	dB
110.00	H	0.0	1	1.5	13.8	15.3	5.8	150.0	-28.3 amb
530.00	H	0.0	1	1.0	22.4	23.4	14.8	200.0	-22.6 amb
914.98	H	135.0	1	60.1	27.8	87.8	24668.7	50000.0	-6.1 qp

Antenna Factor adjusted for difference between cable losses for non-ambient signals only

1829.95	H	135.0	1	57.8	-1.0	56.8	691.8	5000.0	-17.2 pk
1829.95	H	135.0	1	37.3	-1.0	36.3	65.3	500.0	-17.7 av
2744.93	H	135.0	1	48.0	1.6	49.6	302.0	500.0	-4.4 pk
3659.90	H	0.0	1	46.0	1.8	47.8	245.5	500.0	-6.2 amb
4574.88	H	0.0	1	43.0	2.7	45.7	192.8	500.0	-8.3 amb
5489.86	H	0.0	1	44.0	4.7	48.7	272.3	500.0	-5.3 amb
6404.83	H	0.0	1	44.2	4.1	48.3	260.5	500.0	-5.7 amb
7319.81	H	0.0	1	33.0	6.7	39.7	96.6	500.0	-14.3 avamb
8234.78	H	0.0	1	33.2	7.0	40.2	101.8	500.0	-13.8 avamb
9149.76	H	0.0	1	34.0	7.3	41.3	116.2	500.0	-12.7 avamb
110.00	V	0.0	1	2.2	13.8	16.0	6.3	150.0	-27.6 amb
530.00	V	0.0	1	1.0	22.4	23.4	14.8	200.0	-22.6 amb
914.98	V	68.0	1	54.0	27.8	81.8	12250.3	50000.0	-12.2 qp

Antenna Factor adjusted for difference between cable losses for non-ambient signals only

1829.95	V	90.0	1	33.3	-1.0	32.3	41.4	500.0	-21.6 av
1829.95	V	90.0	1	57.3	-1.0	56.3	653.1	5000.0	-17.7 pk
2744.93	V	90.0	1	32.8	1.6	34.4	52.7	5000.0	-39.5 av
2744.93	V	90.0	1	55.5	1.6	57.1	716.1	5000.0	-16.9 pk
3659.90	V	90.0	1	47.3	1.8	49.1	285.1	500.0	-4.9 pk
4574.88	V	0.0	1	44.5	2.7	47.2	229.1	500.0	-6.8 amb
5489.86	V	0.0	1	44.3	4.7	49.0	281.8	500.0	-5.0 amb
6404.83	V	0.0	1	44.0	4.1	48.1	254.5	500.0	-5.9 amb
7319.81	V	0.0	1	43.5	6.7	50.2	323.5	500.0	-3.8 amb
8234.78	V	0.0	1	33.3	7.0	40.3	103.0	500.0	-13.7 avamb
9149.76	V	0.0	1	33.8	7.3	41.1	113.5	500.0	-12.9 avamb