

FCC PART 15 SUBPART C
EMI MEASUREMENT AND TEST REPORT
For
Arescom, Inc.

3541 Gateway Blvd.
Fremont, CA 94538

FCC ID: PT2AG2000S

June 21, 2002

This Report Concerns: <input checked="" type="checkbox"/> Original Report	Equipment Type: 802.11b Wireless LAN Router
Test Engineer: Benjamin Jing	
Report No.: R0205162	
Test Date: May 16, 2002	
Reviewed By: Jeff Lee	
Prepared By: Bay Area Compliance Laboratory Corporation 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is specially limited to the above client company and product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION.....	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 OBJECTIVE	4
1.3 TEST METHODOLOGY	4
1.4 TEST FACILITY	4
1.5 TEST EQUIPMENT LIST	5
1.6 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS.....	5
1.7 EXTERNAL CABLES LIST AND DETAILS.....	5
2 - SYSTEM TEST CONFIGURATION AND REQUIREMENT.....	6
2.1 DESCRIPTION OF TEST CONFIGURATION	6
2.2 EQUIPMENT MODIFICATION	6
2.3 CONFIGURATION OF TEST SYSTEM.....	6
2.4 TEST SETUP BLOCK DIAGRAM	6
3 - SUMMARY OF TEST RESULTS.....	7
4 - CONDUCTED OUTPUT POWER.....	8
4.1 STANDARD APPLICABLE	8
4.2 MEASUREMENT PROCEDURE.....	8
4.3 MEASUREMENT RESULT	8
4.4 TEST EQUIPMENT	8
5 - SPURIOUS EMISSION.....	10
5.1 STANDARD APPLICABLE	10
5.2 MEASUREMENT PROCEDURE.....	10
5.3 MEASUREMENT DATA.....	10
6 - 6 DB BANDWIDTH OF EMISSIONS	14
6.1 STANDARD APPLICABLE	14
6.2 MEASUREMENT PROCEDURE.....	14
6.3 MEASUREMENT DATA.....	14
7 - 100 KHZ BANDWIDTH OF BAND EDGES	16
7.1 STANDARD APPLICABLE	16
7.2 MEASUREMENT PROCEDURE.....	16
7.3 TEST RESULTS	16
8 - POWER DENSITY	18
8.1 STANDARD APPLICABLE	18
8.2 MEASUREMENT PROCEDURE.....	18
8.3 TEST RESULTS	18
9 - RADIATED EMISSION.....	20
9.1 MEASUREMENT UNCERTAINTY	20
9.2 EUT SETUP	20
9.3 SPECTRUM ANALYZER SETUP	20
9.4 TEST PROCEDURE	21
9.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	21
9.6 SUMMARY OF TEST RESULTS	21
10 - CONDUCTED EMISSIONS.....	23
10.1 MEASUREMENT UNCERTAINTY	23
10.2 EUT SETUP	23
10.3 SPECTRUM ANALYZER SETUP	23
10.4 TEST PROCEDURE	23
10.5 SUMMARY OF TEST RESULTS	24
10.6 CONDUCTED EMISSIONS TEST DATA	24
10.7 PLOT OF CONDUCTED EMISSIONS TEST DATA	24

11 - ANTENNA REQUIREMENT.....	25
11.1 STANDARD APPLICABLE	25
11.2 ANTENNA CONNECTED CONSTRUCTION	25
12 - RF SAFETY REQUIREMENTS TO 2.1091	26

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Arescom, Inc. 's product, model: *AG2000S* or the "EUT" as referred to in this report is a 802.11b wireless LAN router which measures approximately 5.75" L x 8.00" W x 1.50" H.

The EUT was fed by *Arescom, Inc.* 's AC/DC power adapter, M/N: JOD-48U.

** The test data was good for test sample only. It may have deviation for other product sample.*

1.2 Objective

This type approval report is prepared on behalf of *Arescom, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for peak output power, antenna requirement, 6 dB bandwidth, power density, 100 kHz bandwidth of band edges, RF exposure of emission, conducted and spurious radiated emission.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2000, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.4 Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2000.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1998, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

1.5 Test Equipment List

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Spectrum Analyzer	8564E	08303	12/6/02
HP	Spectrum Analyzer	8593B	2919A00242	12/20/02
HP	Amplifier	8349B	2644A02662	12/20/02
HP	Quasi-Peak Adapter	85650A	917059	12/6/02
HP	Amplifier	8447E	1937A01046	12/6/02
A.H. System	Horn Antenna	SAS0200/571	261	12/27/02
Com-Power	Log Periodic Antenna	AL-100	16005	11/2/02
Com-Power	Biconical Antenna	AB-100	14012	11/2/02
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/02
Com-Power	LISN	LI-200	12208	12/20/02
Com-Power	LISN	LI-200	12005	12/20/02
BACL	Data Entry Software	DES1	0001	12/20/02
Rohde & Schwarz	Signal Generator	SMIQ03B	1125.5555.03	7/10/02
Rohde & Schwarz	I/Q Modulation Generator	AMIQ	1110.2003.02	8/10/02

* **Statement of Traceability:** Bay Area Compliance Laboratory Corp. certifies that all calibration has been performed using suitable standards traceable to the NATIONAL INSTITUTE of STANDARDS and TECHNOLOGY (NIST).

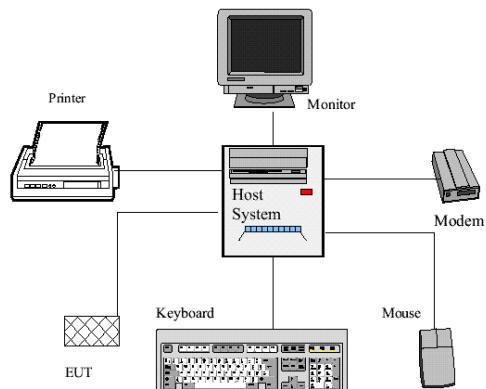
1.6 Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
KDS	Monitor	VCDTS2147	DP02301873	N/A
HP	ThinkJet	2225C+	N/A	DS16XU2225
EVEREX	Modem	EV-945	None	E3E5UVEV-945
Microsoft	KB	X03-30785	E06401COMB	DOC
Microsoft	Mouse	MUS9J	N/A	EMJMUSJ

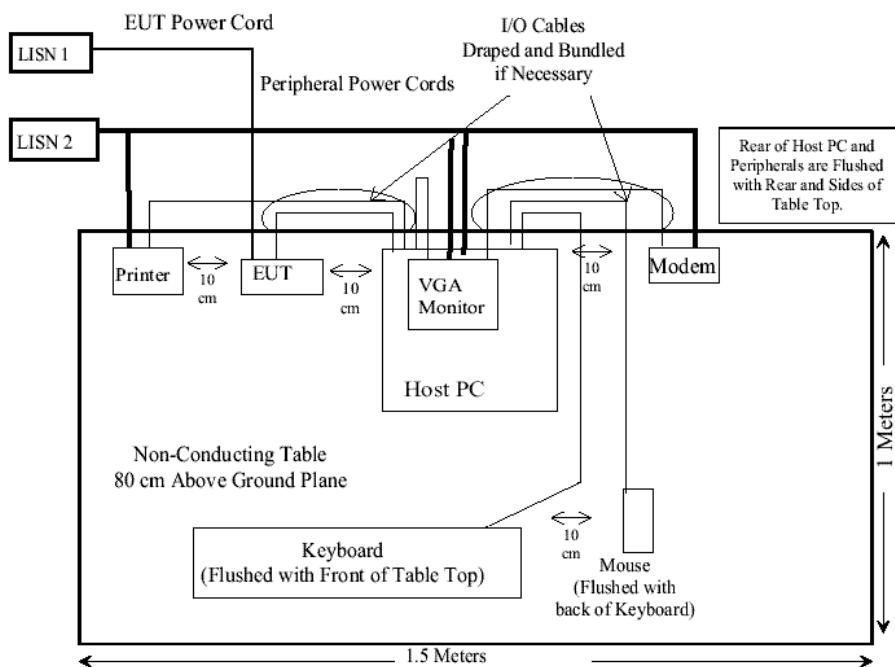
1.7 External Cables List and Details

Cable Description	Length (M)	From	To
Shielded KB Cable	1.6	PS/2 KB Port/PC	Keyboard
Shielded Mouse Cable	1.5	PS/2 Mouse Port/PC	Mouse
Shielded Serial Cable	1.5	Serial Port/PC	Modem
Shielded Parallel Cable	2.0	Parallel Port/PC	Printer
Shielded VGA Cable	1.8	VGA Port/PC	Monitor
Shielded RJ45 Cable	1.2	RJ45 Port/PC	Microphone

2 - SYSTEM TEST CONFIGURATION AND REQUIREMENT


2.1 Description of Test Configuration

The EUT was configured for testing in a typical fashion (as normally used by a typical user).


2.2 Equipment Modification

No modification(s) was made by BACL Corp. to ensure EUT comply with applicable limits and requirements.

2.3 Configuration of Test System

2.4 Test Setup Block Diagram

3 - SUMMARY OF TEST RESULTS

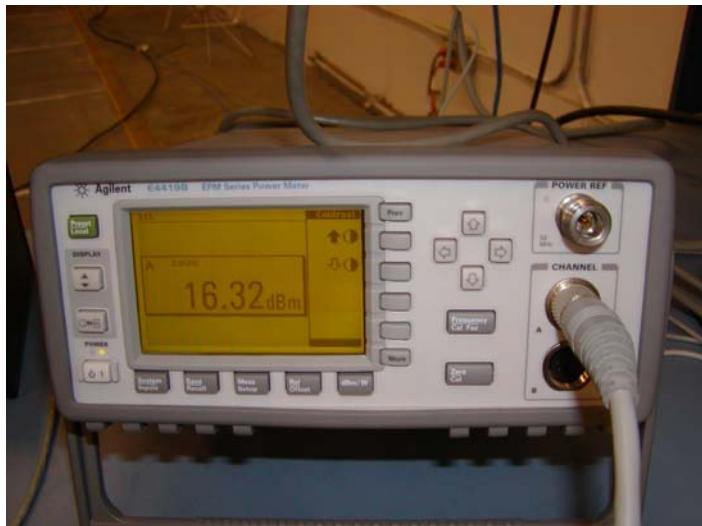
FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247 (b) (2)	Output Power	Compliant
§15.247 (a) (2)	6 dB Bandwidth	Compliant
§ 15.205 §15.209 (a) §15.209 (f)	Restricted Bands, Radiated Emission, Spurious Emission	Compliant
§ 2.1091	RF Safety Requirements	Compliant
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edges	Compliant
§15.247 (d)	Peak Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant
§15.247 (e)	Processing Gain	Compliant
§ 2.1091	RF Safety Requirements	Compliant
§15.247 (e)	Processing Gain	Exempt
§15.207 (a)	Conducted Emission	Compliant

4 - CONDUCTED OUTPUT POWER

4.1 Standard Applicable

For frequency hopping, according to §15.247(b) (2), the maximum peak output power of the transmitter shall not exceed 1 Watt.

4.2 Measurement Procedure



1. Place the EUT on the bench and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a power meter.

4.3 Measurement Result

Channel No.	Test Data (dBm)	Test Data (mW)	Limit	Test Result
Low	16.32	42.85	≤1W	Compliant
Middle	16.12	41.40	≤1W	Compliant
High	16.32	42.85	≤1W	Compliant

4.4 Test Equipment

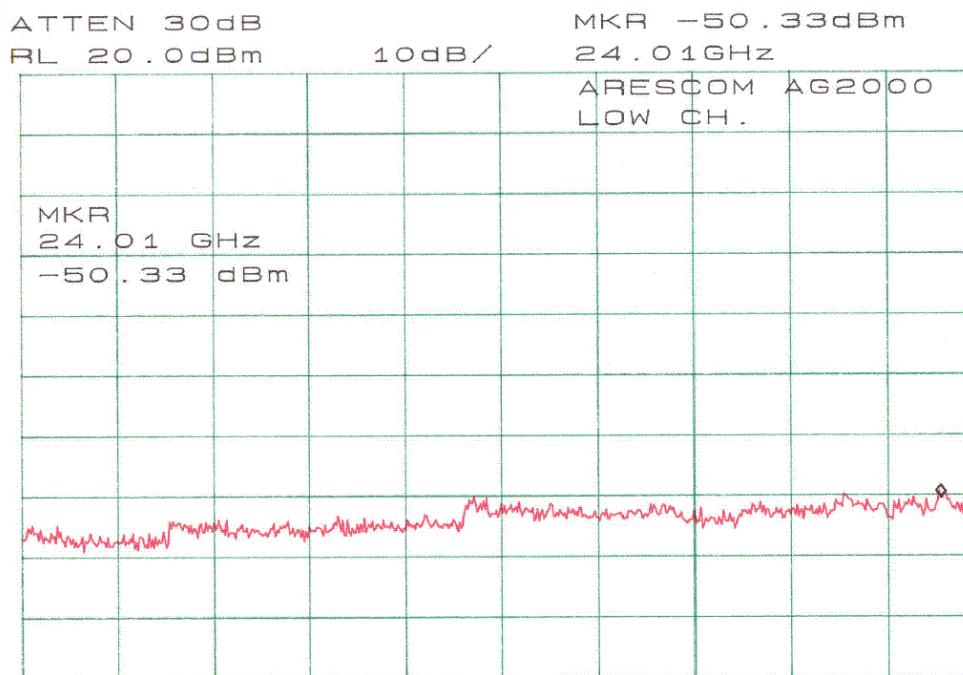
Manufacturer	Model No.	Serial No.	Calibration Due Date
Agilent	E4419B	GB40202891	4/8/03
Agilent	E4412A	US38486529	4/8/03

5 - SPURIOUS EMISSION

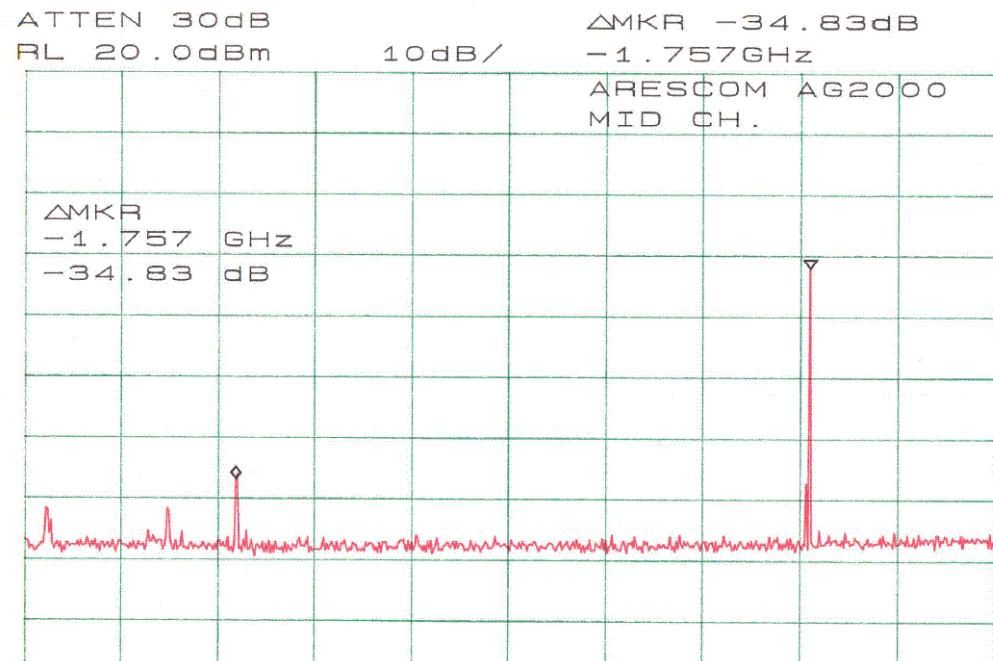
5.1 Standard Applicable

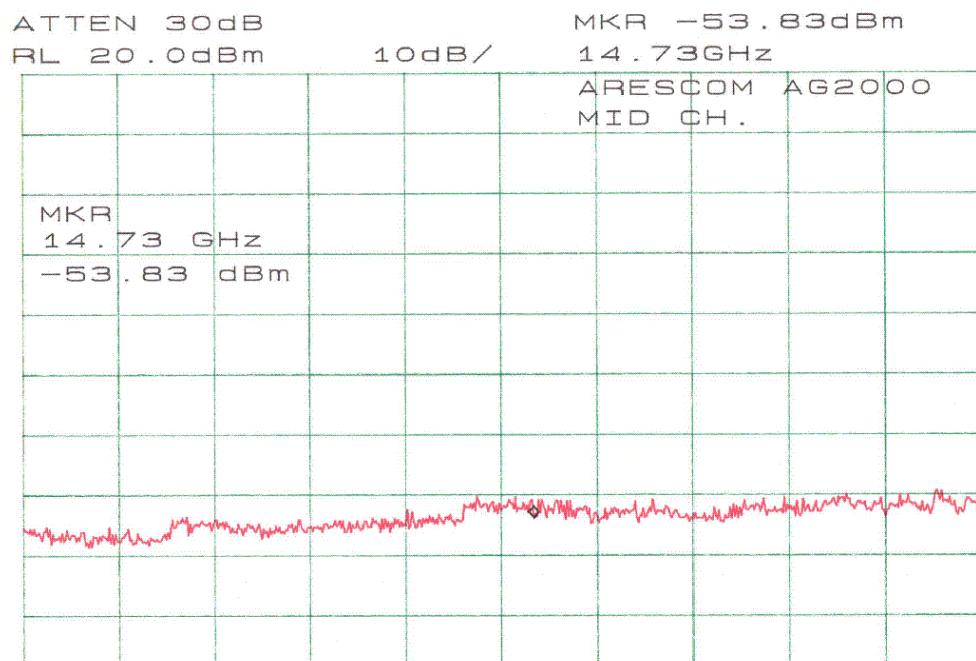
According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.

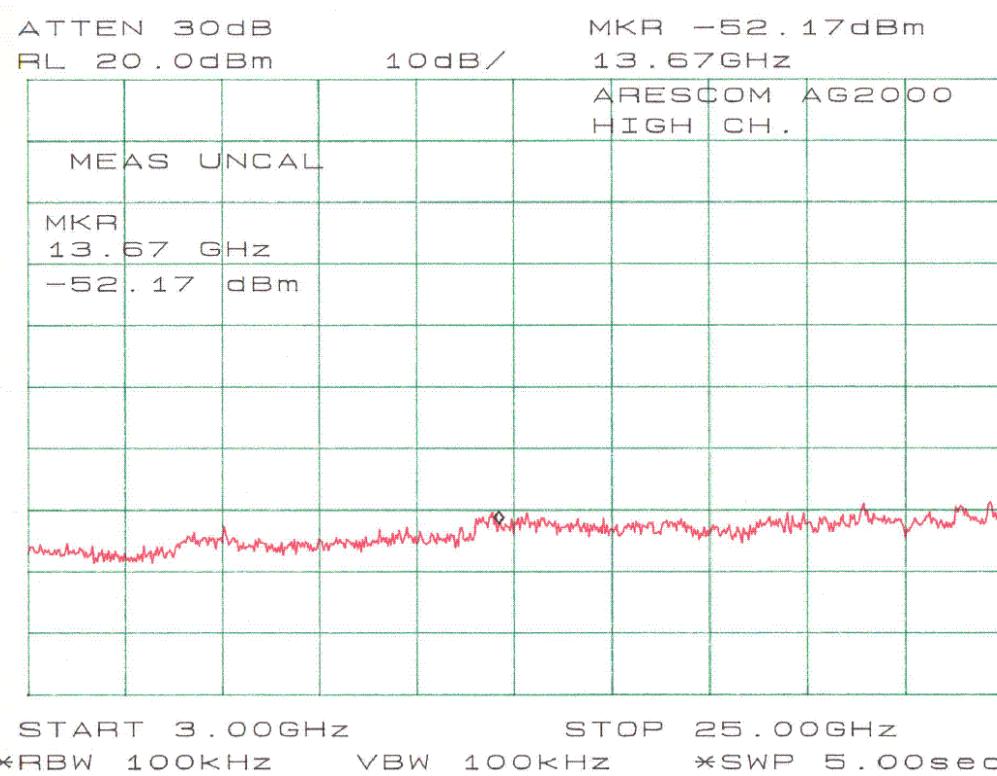
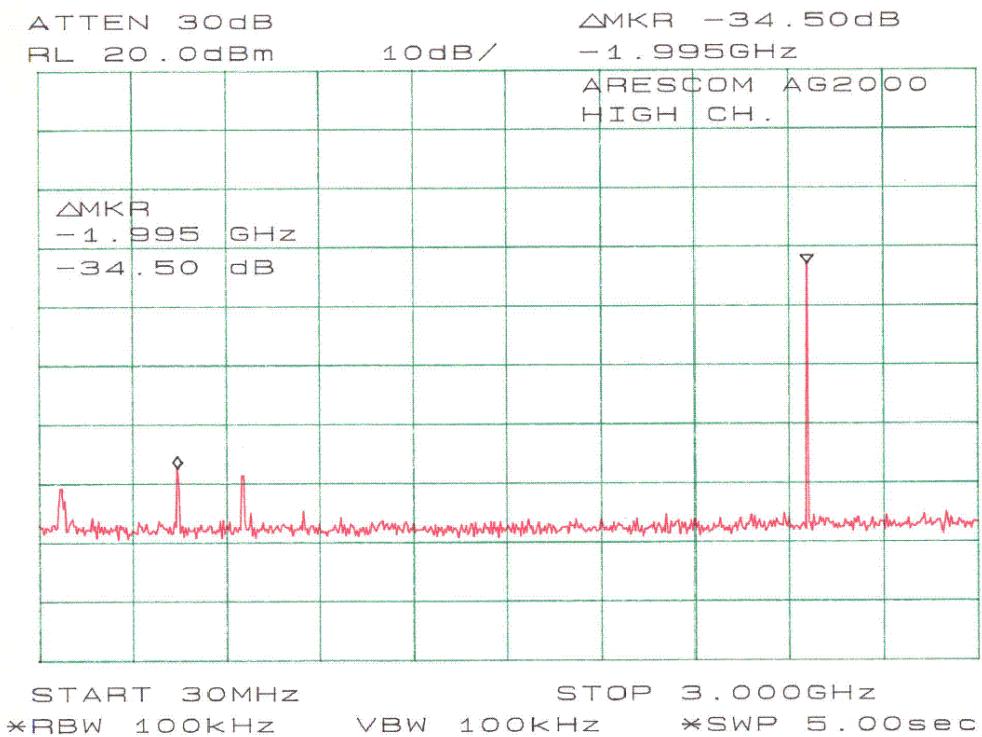
5.2 Measurement Procedure


1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

5.3 Measurement Data


Please refer to the appendings for more information.


START 30MHz STOP 3.000GHz
*RBW 100kHz VBW 100kHz *SWP 5.00sec



START 3.00GHz STOP 25.00GHz
*RBW 100kHz VBW 100kHz *SWP 5.50sec

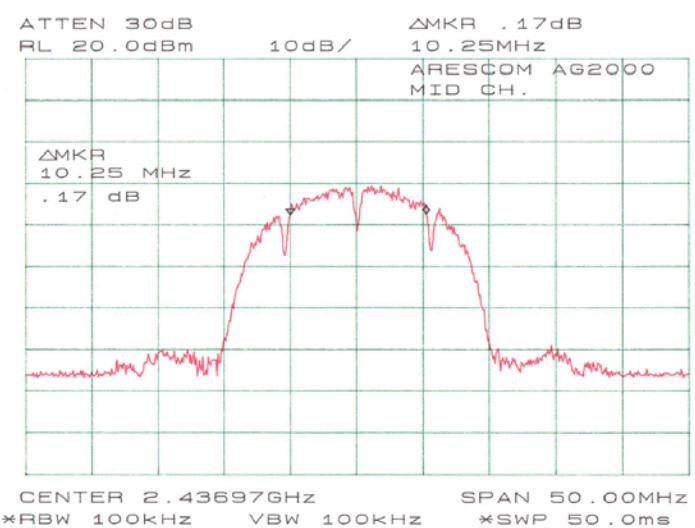
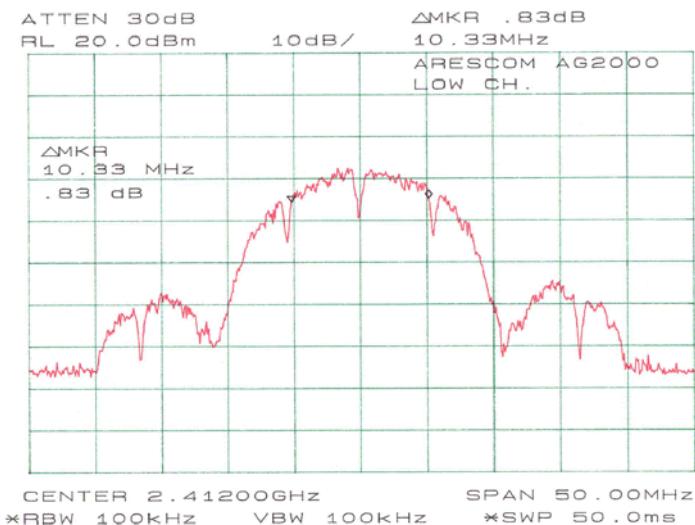
START 30MHz STOP 3.000GHz
*RBW 100kHz VBW 100kHz *SWP 5.50sec

START 3.00GHz STOP 25.00GHz
*RBW 100kHz VBW 100kHz *SWP 5.50sec

6 - 6 DB BANDWIDTH OF EMISSIONS

6.1 Standard Applicable

According to §15.247(a)(2), for direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.



6.2 Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

6.3 Measurement Data

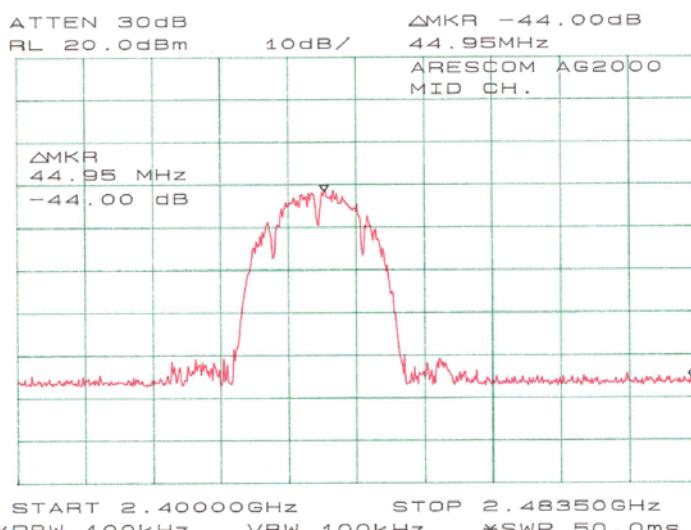
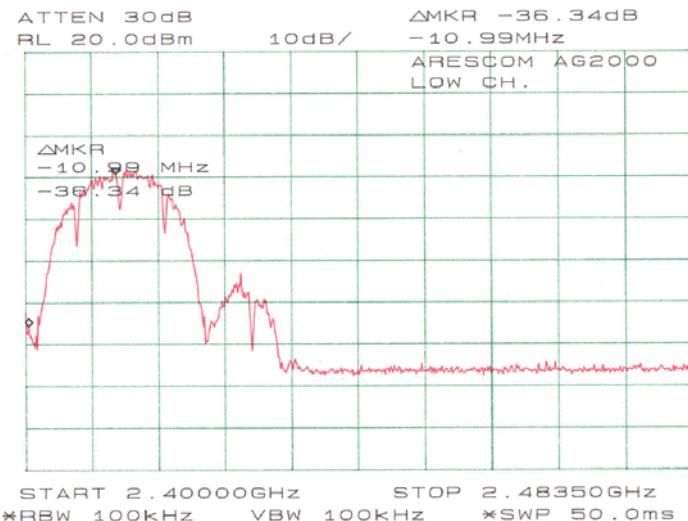
Test Result: Pass. According to §15.247(a)(2), for direct sequence systems, the minimum 6dB bandwidth was greater than 500 kHz.

Please refer to the hereinafter plots for more details.

7 - 100 KHZ BANDWIDTH OF BAND EDGES

7.1 Standard Applicable

According to §15.247(c), if *any* 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.



7.2 Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

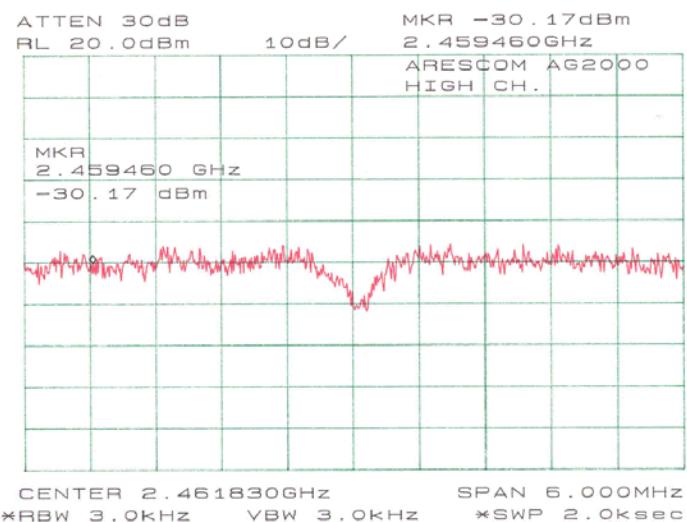
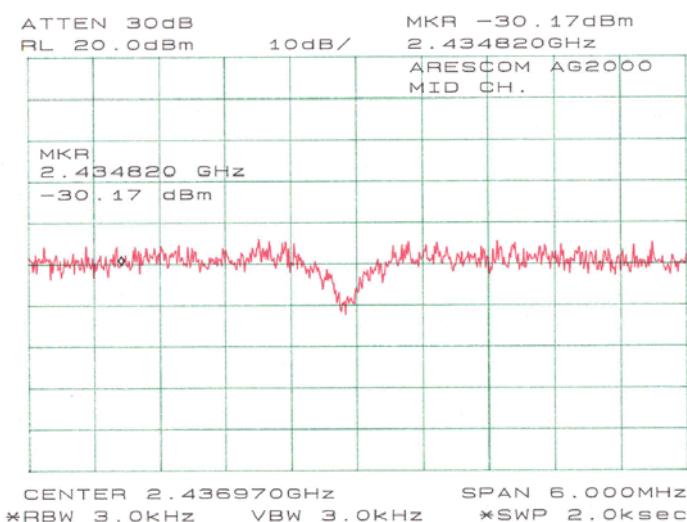
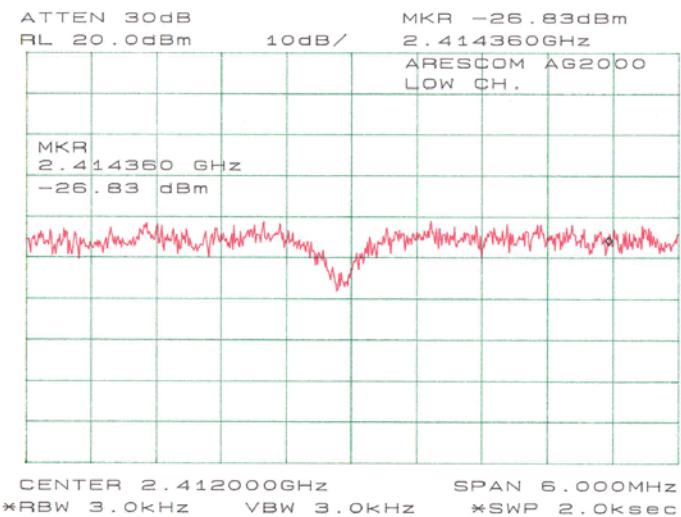
7.3 Test Results

Test Result: Pass.

Please refer to the hereinafter plots for more details.

8 - POWER DENSITY

8.1 Standard Applicable




According to §15.247 (d), for direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

8.2 Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Repeat above procedures until all frequencies measured were complete.

8.3 Test Results

Please refer to the following plot(s) for more details.

9 - RADIATED EMISSION

9.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

9.2 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with the ANSI C63.4-2000. The specification used was the FCC 15 Subpart C limits.

The PC was put on the center back edge of the turntable with monitor on its top. The modem and the printer were put on each side of the PC. The EUT was put in front of the printer. The rear of the EUT and peripherals were flushed with the rear of the turntable.

The keyboard was put directly in front of the PC. The mouse was put along with it. The rear of the mouse was flushed with the rear of the keyboard.

The spacing between peripherals was 10cm.

External I/O were draped along the turntable and bundled if necessary.

The EUT utilized 120Vac/60Hz power source.

9.3 Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 26GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Start Frequency	30 MHz
Stop Frequency	26GHz
Sweep Speed	Auto
IF Bandwidth	1 MHz
Video Bandwidth	1 MHz
Quasi-Peak Adapter Bandwidth	120 kHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

9.4 Test Procedure

For the radiated emissions test, the EUT power cord was connected to the AC floor outlet since the power supply used in the EUT did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB μ V means the emission is 7dB μ V below the maximum limit for Subpart C. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Subpart C Limit}$$

9.6 Summary of Test Results

According to the data in section 11.7, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207 and 15.247, and had the worst margin of:

Intentional Emission, 1000MHz to 26GHz, 3 meters

-4.9 (Avg.) dB μ V at 4824.00 MHz in the Vertical polarization, Low Channel

-4.5 (Avg.) dB μ V at 4884.00 MHz in the Vertical polarization, Middle Channel

-5.1 (Avg.) dB μ V at 4974.90 MHz in the Vertical polarization, High Channel

Unintentional Emission, 30 to 1000MHz, 3 meters

-2.0 dB μ V at 290.00 MHz in the Vertical polarization

Unintentional Emission, 30MHz to 26GHz, 3 meters

INDICATED			TABLE	ANTENNA		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 SUBPART C	
Frequency MHz	Ampl. dB μ V/m	Comments	Angle Degree	Height Meter	Polar H/V	Antenna dB μ V/m	Cable dB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB
Low Channel											
4824.00	41.7	Avg.	160	1.0	V	32.5	4.9	30.0	49.1	54	-4.9
4824.00	39.4	Avg.	0	1.2	H	32.5	4.9	30.0	46.8	54	-7.2
Middle Channel											
4884.00	42.1	Avg.	30	1.2	V	32.5	4.9	30.0	49.5	54	-4.5
4884.00	40.3	Avg.	45	1.2	H	32.5	4.9	30.0	47.7	54	-6.3
High Channel											
4944.00	41.5	Avg.	0	1.2	V	32.5	4.9	30.0	48.9	54	-5.1
4944.00	38.5	Avg.	330	1.5	H	32.5	4.9	30.0	45.9	54	-8.1

* There was no apparent emission after the 2nd harmonics.

Unintentional Emission, 30MHz to 1000MHz, 3 meters

INDICATED			TABLE	ANTENNA		CORRECTION FACTOR			CORRECTED AMPLITUDE	FCC 15 CLASS B	
Frequency MHz	Ampl. dB μ V/m	Angle Degree	Height Meter	Polar H/V	Antenna dB μ V/m	Cable dB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB	
290.00	49.0	230	1.5	V	14.9	5.1	25.0	44.0	46	-2.0	
270.00	48.2	270	1.2	V	13.9	5.2	25.0	42.3	46	-3.7	
220.00	49.5	180	1.5	H	12.1	3.9	25.0	40.5	46	-5.5	
266.00	44.10	160	1.2	V	13.3	4.9	25.0	37.3	46	-8.7	
230.12	48.8	90	1.2	H	12.0	1.2	25.0	37.0	46	-9.0	
220.00	45.3	150	1.2	V	12.1	3.9	25.0	36.3	46	-9.7	
230.12	46.7	120	1.5	V	12.0	1.2	25.0	34.9	46	-11.1	
264.00	38.3	180	1.5	V	13.3	4.9	25.0	31.5	46	-14.5	
260.00	36.6	30	1.0	V	13.3	4.9	25.0	29.8	46	-16.2	

10 - CONDUCTED EMISSIONS

10.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

10.2 EUT Setup

The measurement was performed at the **Open Area Test Site**, using the same setup per ANSI C63.4-2000 measurement procedure. The specification used was FCC Class B limits.

The PC was put on the center back edge of the turntable with monitor on its top. The modem and the printer were put on each side of the PC. The EUT was put in front of the printer. The rear of the EUT and peripherals were flushed with the rear of the turntable.

The keyboard was put directly in front of the PC. The mouse was put along with it. The rear of the mouse was flushed with the rear of the keyboard.

The spacing between peripherals was 10cm.

External I/O were draped along the turntable and bundled if necessary.

The EUT utilized 120Vac/60Hz power source.

10.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency.....	450 kHz
Stop Frequency.....	30 MHz
Sweep Speed.....	Auto
IF Bandwidth.....	10 kHz
Video Bandwidth.....	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode.....	Normal

10.4 Test Procedure

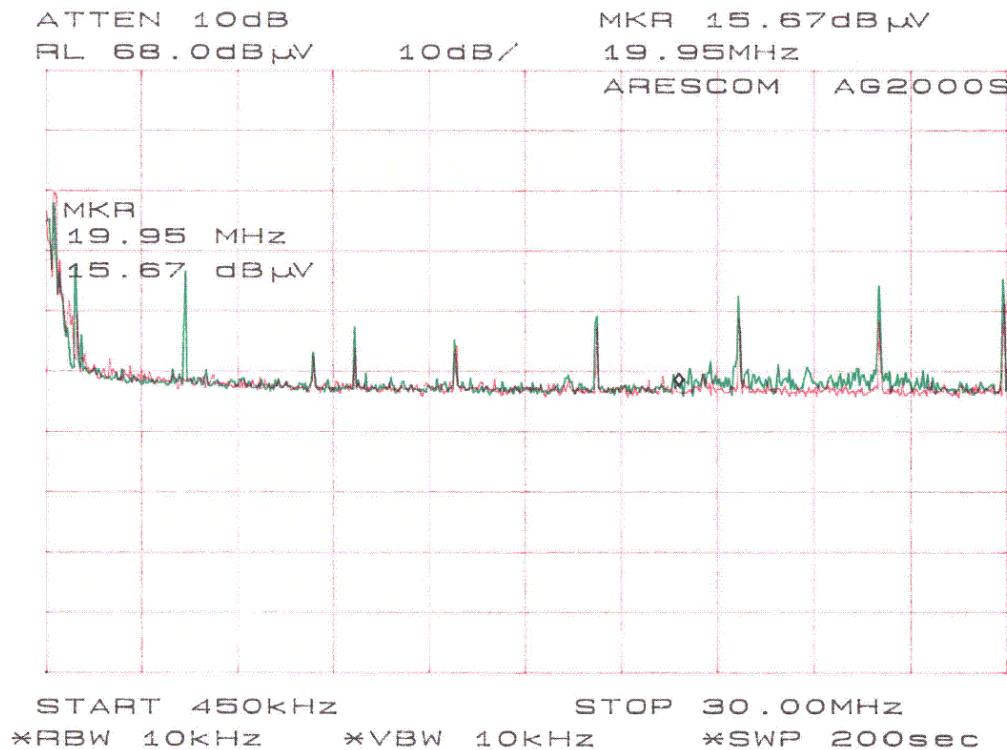
During the conducted emission test, the power cord of the EUT was connected to the auxiliary outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (within -4 dB μ V of specification limits). Quasi-peak readings are distinguished with a "Qp".

10.5 Summary of Test Results

According to the data in section 12.6, the EUT complied with the FCC Conducted margin for a Class B device and these test results is deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations, with the *worst* margin reading of:


-2.2 dB μ V at 0.764 MHz in the Line mode

10.6 Conducted Emissions Test Data

LINE CONDUCTED EMISSIONS				FCC CLASS B	
Frequency MHz	Amplitude dB μ V	Detector Qp/Ave/Peak	Phase Line/Neutral	Limit dB μ V	Margin dB
0.764	45.8	QP	Line	48	-2.2
0.712	45.2	QP	Neutral	48	-2.8
0.465	42.6	QP	Line	48	-5.4
1.340	35.7	QP	Neutral	48	-12.3
29.900	33.4	QP	Neutral	48	-14.6
28.970	30.2	QP	Line	48	-17.8

10.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following page as reference.

11 - ANTENNA REQUIREMENT

11.1 Standard Applicable

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected Construction

The directional gain of antenna used for transmitting is 2 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

12 - RF SAFETY REQUIREMENTS TO 2.1091

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-15000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: 16.35 (dBm)

Maximum peak output power at antenna input terminal: 42.85 (mW)

Antenna Gain (typical): 2 (dBi)

Maximum antenna gain: 1.58 (numeric)

Predication distance: 3 (cm)

Predication frequency: 2400 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm²)

Power density at predication frequency: 0.60 (mW/cm²)

Maximum allowable antenna gain: 2.64 (numeric)

Maximum allowable antenna gain: 4.21 (dBi)

Test Result

The predicted power density level at 3 cm is 0.60mW/cm². This is below the uncontrolled exposure limit of 1mW/cm² at 2400 MHz.

This EUT is classed as mobile equipment.