

TEST REPORT

Applicant Name: Whirlpool Microwave Products Development Limited.
Address: 17th Fl, Elite Centre, 22 Hung To Rd, Kwun Tong, Hong Kong
Report Number: 2501V28322E-EM-00
FCC ID: PR4TITANPHEOB^Y

Test Standard (s)

FCC PART 18

Sample Description

Product Type: Household microwave oven
Model No.: YWMMS3230
Multiple Model(s) No.: N/A
Trade Mark: Whirlpool
Date Received: 2025/07/31
Issue Date: 2025/09/01

Test Result:	Pass [▲]
--------------	-------------------

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:Carl Lu

Carl Lu
EMC Engineer

Approved By:Moon Liu

Moon Liu
EMC Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China
Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION.....	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
MEASUREMENT UNCERTAINTY.....	4
TEST FACILITY	5
OPERATING CONDITION/TEST CONFIGURATION.....	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	6
SPECIAL ACCESSORIES.....	6
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL CABLE LIST AND DETAILS	6
CONFIGURATION OF TEST SETUP	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULT	8
TEST EQUIPMENT LIST	9
FCC §18.313, §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE.....	10
APPLICABLE STANDARD	10
MEASUREMENT.....	11
CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	12
TEST PROCEDURE	13
TEST DATA	13
RADIATION HAZARD MEASUREMENT	16
APPLICABLE STANDARD	16
ENVIRONMENTAL CONDITIONS	16
INPUT POWER.....	16
LOAD FOR MICROWAVE OVENS.....	17
RF OUTPUT POWER MEASUREMENT.....	17
OPERATING FREQUENCY MEASUREMENT	18
RADIATED EMISSIONS.....	22
APPLICABLE STANDARD	22
EUT SETUP.....	22
EMI TEST RECEIVER SETUP AND SPECTRUM ANALYZER SETUP.....	23
TEST PROCEDURE	24
LEVEL & OVER LIMIT CALCULATION	24
TEST DATA AND PLOTS	25
EUT PHOTOGRAPHS.....	31
TEST SETUP PHOTOGRAPHS	32

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501V28322E-EM-00	Original Report	2025/09/01

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Household microwave oven
Tested Model	YWMMS3230
Multiple Model(s)	N/A
Voltage Range	AC 120V/60Hz
Highest operating frequency [#]	2450MHz±50MHz
Microwave Output power [#]	900W
Microwave Input power [#]	1500W
Sample serial number	37RN-1 (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A

Objective

This report is in accordance with Part 2-Subpart J, and Part 18-Subparts A, B and C of the Federal Communication Commissions rules and regulations.

The objective of the manufacturer is to determine compliance with FCC Part 18 limits.

Measurement Uncertainty

Item	Frequency Range		Expanded Measurement uncertainty
Conducted Emissions	AC Mains	150kHz ~30MHz	3.66dB(k=2, 95% level of confidence)
Radiated Emissions	0.009MHz~30MHz	/	3.60dB(k=2, 95% level of confidence)
	30MHz~200MHz	Horizontal	5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz	Vertical	5.43dB(k=2, 95% level of confidence)
	200MHz~1000MHz	Horizontal	5.77dB(k=2, 95% level of confidence)
	200MHz~1000MHz	Vertical	5.73dB(k=2, 95% level of confidence)
	1GHz~6GHz	/	5.34dB(k=2, 95% level of confidence)
	6GHz~18GHz	/	5.40dB(k=2, 95% level of confidence)
	18GHz~40GHz	/	5.64dB(k=2, 95% level of confidence)
Nerve Simulation	H-Field		0.74dB(k=2, 95% level of confidence)
	E-Field		1.14dB(k=2, 95% level of confidence)

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

Each test item follows test standards and with no deviation.

OPERATING CONDITION/TEST CONFIGURATION

Description of Test Configuration

The EUT was operated at maximum (continuous) RF output power. The loads consisted of water in a glass beaker in the amounts specified in the test procedure.

Test Mode: Microwave heating

EUT Exercise Software

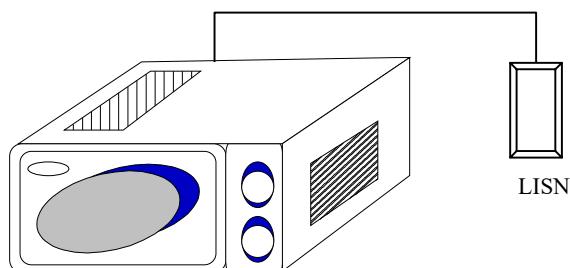
No exercise software was used.

Special Accessories

No special accessory was used.

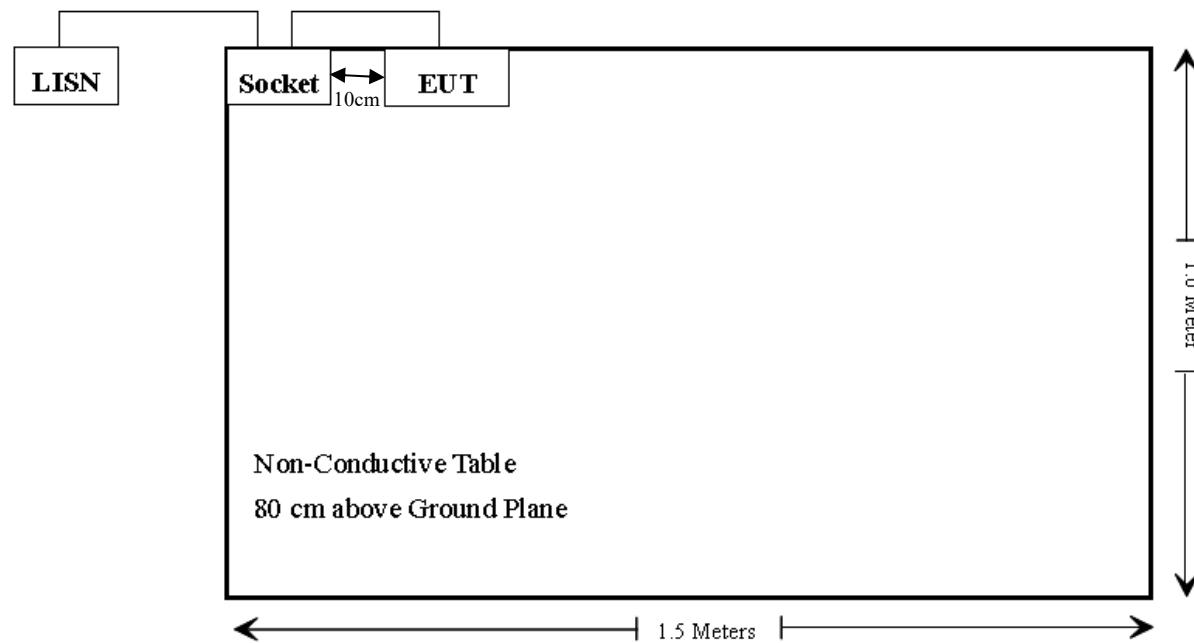
Equipment Modifications

No modifications were made to the EUT tested.

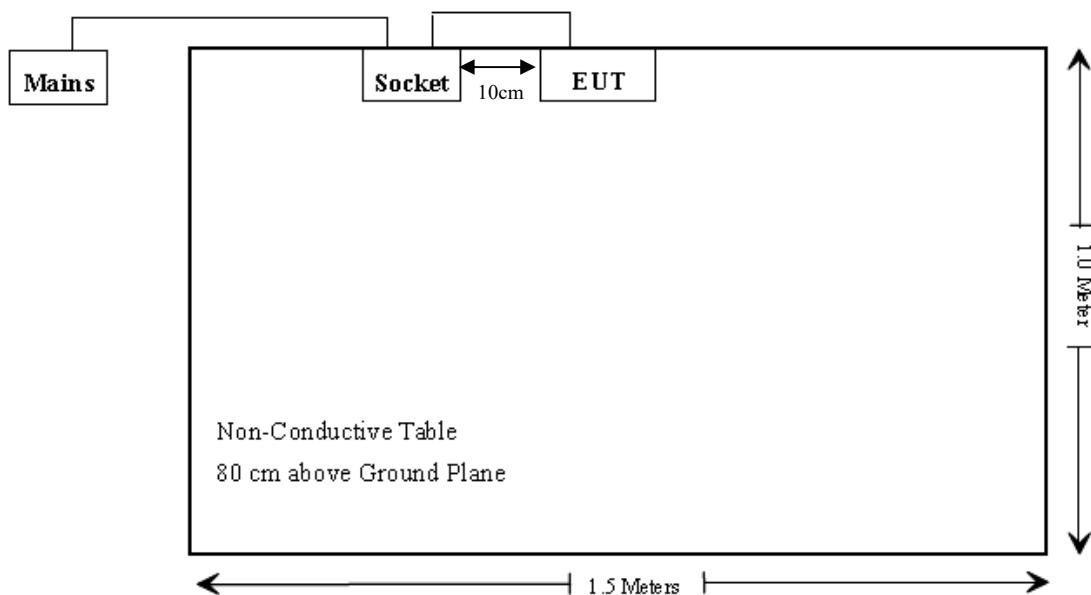

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
WEIY	Glass Beaker	GG-17 1000ml	Unknown

External Cable List and Details


Cable Description	Length (m)	From/Port	To
Un-Shielding Un-Detachable AC Cable	1.0	Socket	LISN/Mains
Un-Shielding Un-Detachable AC Cable	1.0	Socket	EUT

Configuration of Test Setup



Block Diagram of Test Setup

Conducted Emissions:

Radiation Emissions:

SUMMARY OF TEST RESULT

FCC Rules	Description of Test	Results
§18.307	AC Line Conducted Emissions	Compliant
FCC/OST MP-5 FCC §18.301	Radiation Hazard Measurement	Compliant
§18.305	Field Strength	Compliant
FCC/§18.313 §1.1310 §1.1091	Maximum Permissible Exposure	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emissions					
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2025/04/29	2026/04/28
Unknown	CE Cable	Unknown	UF A210B-1-0720-504504	2025/04/29	2026/04/28
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
Radiation Hazard Measurement					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310 N	186238	2025/04/29	2026/04/28
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2025/04/29	2026/04/28
Unknown	Cable	XH500C	J-10M-A	2025/04/29	2026/04/28
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2025/03/26	2026/03/25
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14
Schwarzbeck	Horn Antenna	BBHA9120D (1201)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	735	2024/12/06	2025/12/05
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05
Unknown	RF Cable	XH750A-N	J-10M	2024/12/06	2025/12/05
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
A.H.System	Pre-amplifier	PAM-1840VH	190	2025/04/29	2026/04/28
UTIFLEX	RF Cable	NO. 13	232308-001	2024/12/18	2025/12/17
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
ETS	Microwave Survey Meter	HI-1501	3640274	2022/10/11	2025/10/10

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §18.313, §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE

Applicable Standard

According to §1.1310, radio frequency devices shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Table 1 to § 1.1310(e)(1)—Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(i) Limits for Occupational/Controlled Exposure				
0.3–3.0	614	1.63	*(100)	≤6
3.0–30	1842/f	4.89/f	*(900/f ²)	<6
30–300	61.4	0.163	1.0	<6
300–1,500			f/300	<6
1,500–100,000			5	<6
(ii) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	<30
1.34–30	824/f	2.19/f	*(180/f ²)	<30
30–300	27.5	0.073	0.2	<30
300–1,500			f/1500	<30
1,500–100,000			1.0	<30

f = frequency in MHz. * = Plane-wave equivalent power density.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

S = PG/4πR² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

Measurement

Environmental Conditions

Temperature:	25.8 °C
Relative Humidity:	69 %
ATM Pressure:	100.2 kPa

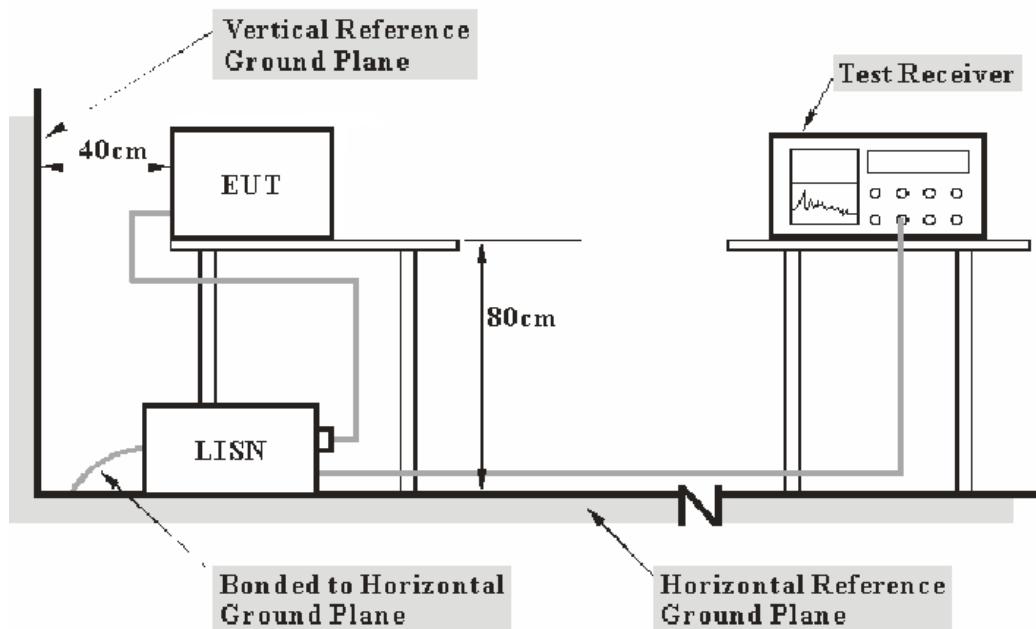
The testing was performed by Carl Lu on 2025-08-06.

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.1mW/cm² observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.


Result: Complied.

CONDUCTED EMISSIONS

Applicable Standard

FCC §18.307

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with MP-5: 1986 measurement procedure. Specification used was with the FCC Part 18.

The socket was connected to a 120 V_{AC}/ 60Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

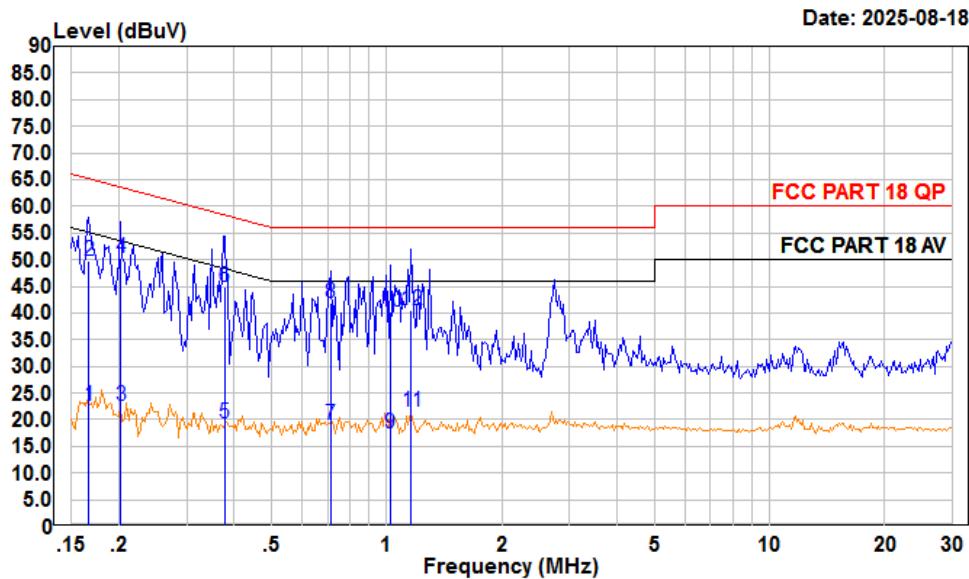
Frequency Range	RBW
150 kHz – 30 MHz	9 kHz

Test Procedure

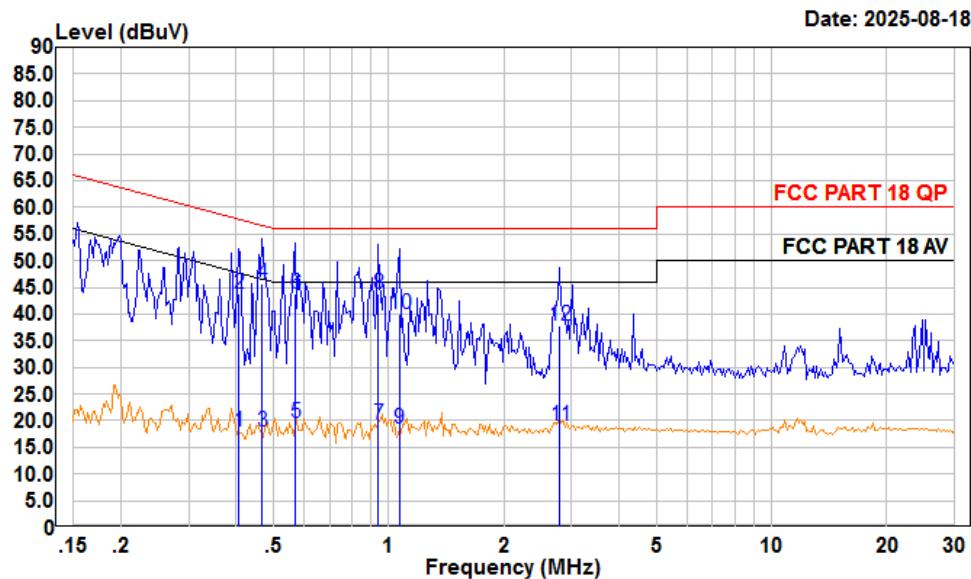
Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Data


Environmental Conditions

Temperature:	25.8°C
Relative Humidity:	69 %
ATM Pressure:	100.2 kPa


The testing was performed by Macy Shi on 2025-08-18.

Test Mode: Mircrowave Heating

AC 120V/60 Hz, Line

	Freq	Read Level	LISN Level	Cable Factor	Limit Loss	Line Limit	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.167	1.89	22.59	10.51	10.19	55.12	-32.53	Average
2	0.167	29.00	49.70	10.51	10.19	65.12	-15.42	QP
3	0.202	1.70	22.59	10.70	10.19	53.54	-30.95	Average
4	0.202	29.30	50.19	10.70	10.19	63.54	-13.35	QP
5	0.377	-1.40	19.36	10.56	10.20	48.34	-28.98	Average
6	0.377	24.20	44.96	10.56	10.20	58.34	-13.38	QP
7	0.712	-2.00	19.12	10.89	10.23	46.00	-26.88	Average
8	0.712	20.80	41.92	10.89	10.23	56.00	-14.08	QP
9	1.021	-3.40	17.46	10.62	10.24	46.00	-28.54	Average
10	1.021	19.50	40.36	10.62	10.24	56.00	-15.64	QP
11	1.160	0.48	21.37	10.71	10.18	46.00	-24.63	Average
12	1.160	19.69	40.58	10.71	10.18	56.00	-15.42	QP

AC 120V/60 Hz, Neutral

Condition: Neutral

Project : 2501V28322E-EM

test Mode: Microwave heating

tester : Macy.shi Setting:RBW:9kHz

Freq	Read	LISN	Cable	Limit	Over	Remark
	Level	Level	Factor	Loss	Line	
1	0.406	-2.87	17.92	10.57	10.22	47.73 -29.81 Average
2	0.406	23.10	43.89	10.57	10.22	57.73 -13.84 QP
3	0.466	-2.81	17.90	10.52	10.19	46.58 -28.68 Average
4	0.466	24.91	45.62	10.52	10.19	56.58 -10.96 QP
5	0.570	-1.23	19.53	10.54	10.22	46.00 -26.47 Average
6	0.570	22.99	43.75	10.54	10.22	56.00 -12.25 QP
7	0.938	-1.67	19.32	10.76	10.23	46.00 -26.68 Average
8	0.938	22.71	43.70	10.76	10.23	56.00 -12.30 QP
9	1.065	-2.54	18.47	10.79	10.22	46.00 -27.53 Average
10	1.065	19.10	40.11	10.79	10.22	56.00 -15.89 QP
11	2.794	-2.15	18.95	10.84	10.26	46.00 -27.05 Average
12	2.794	16.71	37.81	10.84	10.26	56.00 -18.19 QP

RADIATION HAZARD MEASUREMENT

Applicable Standard

FCC §18.301 & FCC/OST MP-5

Environmental Conditions

Temperature:	23.5~26 °C
Relative Humidity:	30~45 %
ATM Pressure:	101.0kPa

The testing was performed by Wing K Ji on 2025-08-22 and Carl Lu on 2025-08-06.

Input Power

Input power and current was measured using a power analyzer. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1000mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Input Voltage (V _{AC})	Input Current (Amps)	Measured Input Power (Watts)	Rated Input Power (Watts)
119.8	12.23	1465.2	1500

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Load for Microwave ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

- Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.

RF Output Power Measurement

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the start of the test, the oven and the empty container are at ambient temperature. Water having an initial temperature is used for the test. The water temperature is measured immediately before it is poured into the container.

A quantity of $1000 \text{ g} \pm 5 \text{ g}$ of water is added to the container and its actual mass obtained. The container is then immediately placed in the centre of the oven shelf, which is in its lowest normal position. The oven is operated and the time for the water temperature to attain is measured. The oven is then switched off and the final water temperature is measured within 60 s.

m_w (g)	m_c (g)	T_0 (°C)	T_1 (°C)	T_2 (°C)	t (s)
1000	377.0	25.3	10.2	22.5	60

$$\text{RF Output Power} = (4.187 \times 1000 \times (22.5 - 10.2) + 0.55 \times 377.0 \times (22.5 - 25.3)) / 60 = 848.66 \text{ Watts}$$

P is the microwave power output, in watts;

m_w is the mass of the water, in grams;

m_c is the mass of the container, in grams;

T_0 is the ambient temperature, in degrees Celsius;

T_1 is the initial temperature of the water, in degrees Celsius;

T_2 is the final temperature of the water, in degrees Celsius;

t is the heating time, in seconds, excluding the magnetron filament heating-up time.

The measurement output power was found to be less than 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of $25\mu\text{V}/\text{meter}$ at a 300-meter measurement distance.

The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

$$LFS = 25 * \text{SQRT}(\text{Power Output}/500)$$

$$LFS = 25 * \text{SQRT}(848.66/500)$$

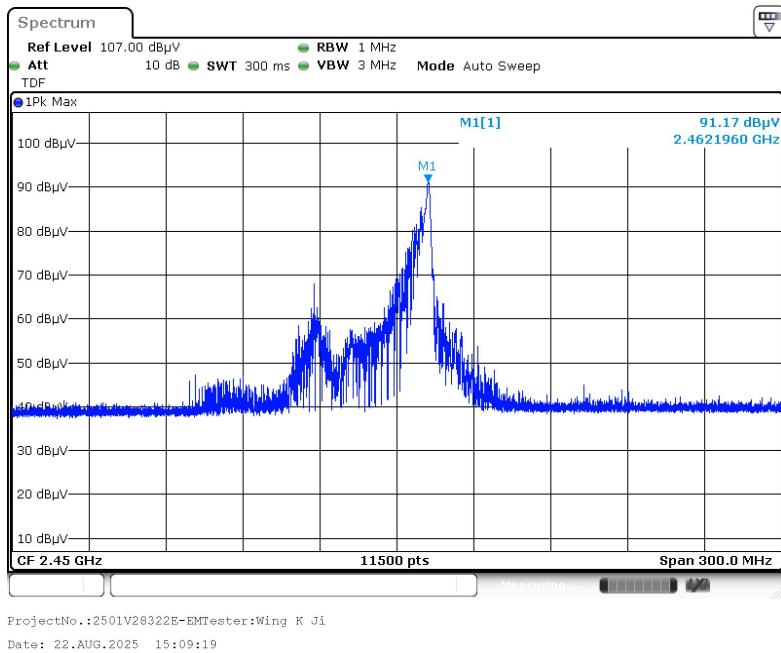
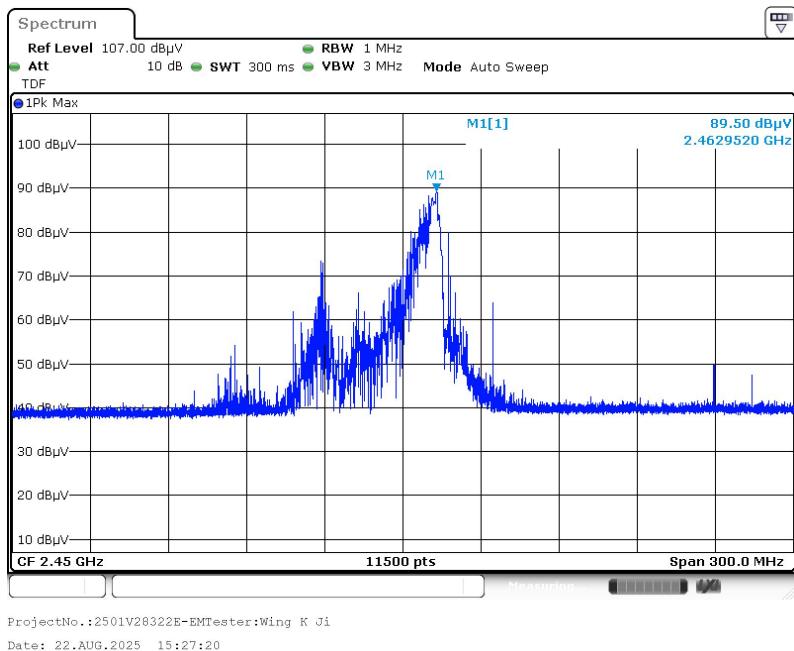
$$LFS = 32.57$$

Where: LFS is the maximum allowable field strength for out-of-band emissions in $\mu\text{V}/\text{meter}$ at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS $\mu\text{V}/\text{m}@300\text{m}$	$\text{dB}\mu\text{V}/\text{m}@300\text{m}$	$\text{dB}\mu\text{V}/\text{m}@3\text{m}$
32.57	30.26	70.26

Note: Limit ($\text{dB}\mu\text{V}/\text{m}@3\text{m}$) = Limit ($\text{dB}\mu\text{V}/\text{m}@300\text{m}$) + 40(dB)

Operating Frequency Measurement



Variation in Operating Frequency with Time

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

The results of this test are as follows:

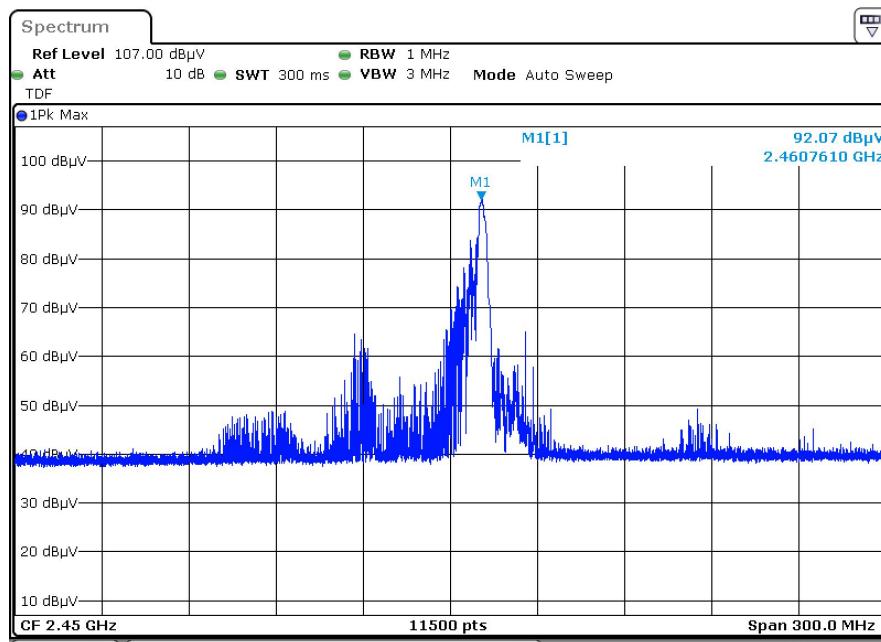
Frequency at Start time (MHz)	Frequency at End time (MHz)
2462.20	2462.95

Refer to data pages for details of the variation in operating frequency with time measurement.

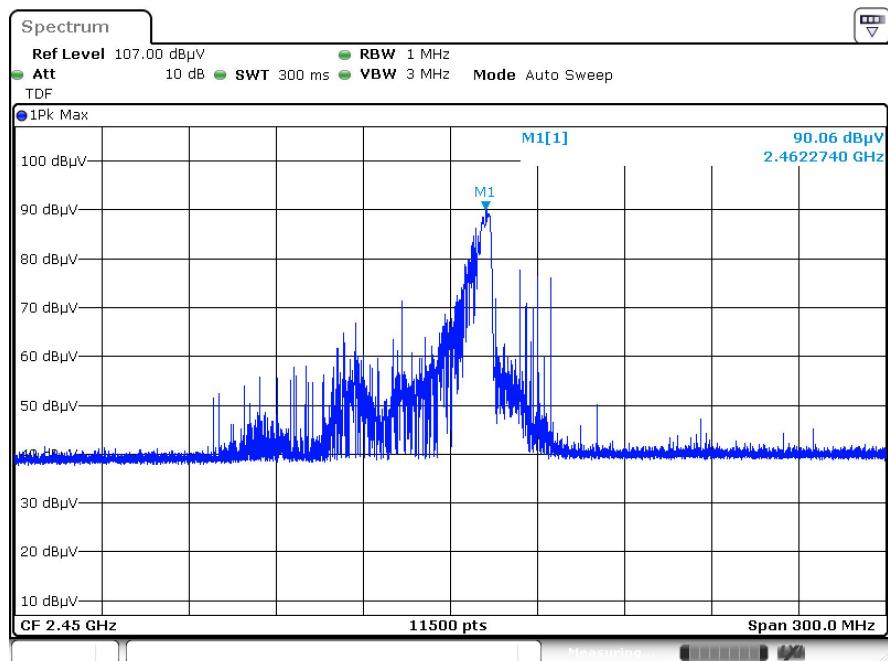
Start time:**End time:**

Variation in Operating Frequency with Line Voltage

The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.


The results of this test are as follows:

Line voltage varied from 96 V_{AC} to 150 V_{AC}.


(Low voltage) Frequency (MHz)	(High voltage) Frequency (MHz)
2460.76	2462.27

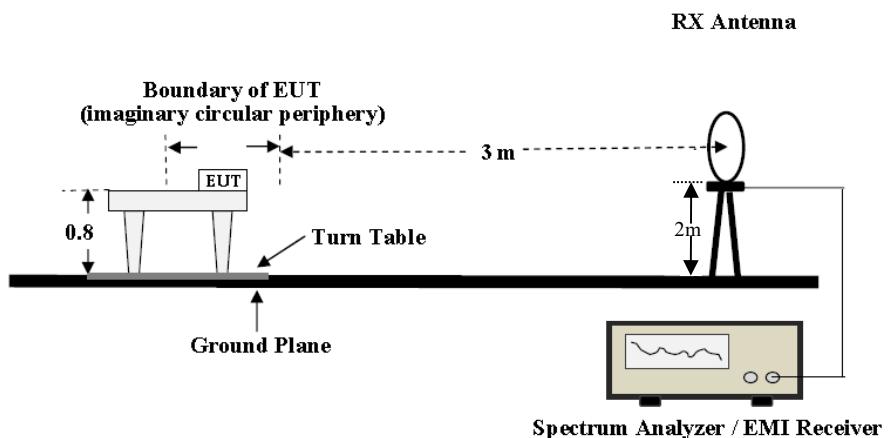
Please refer to following pages for details of the variation in operating frequency with line voltage measurement.

Low Voltage:

ProjectNo.:2501V28322E-EMTester:Wing K Ji
Date: 22.AUG.2025 16:13:06

High Voltage:

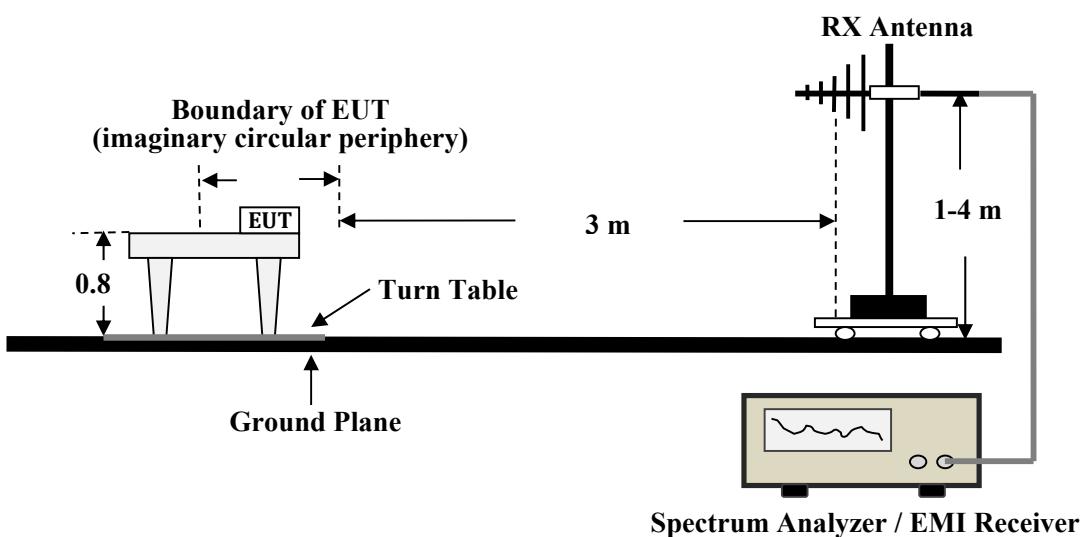
ProjectNo.:2501V28322E-EMTester:Wing K Ji
Date: 22.AUG.2025 15:46:05

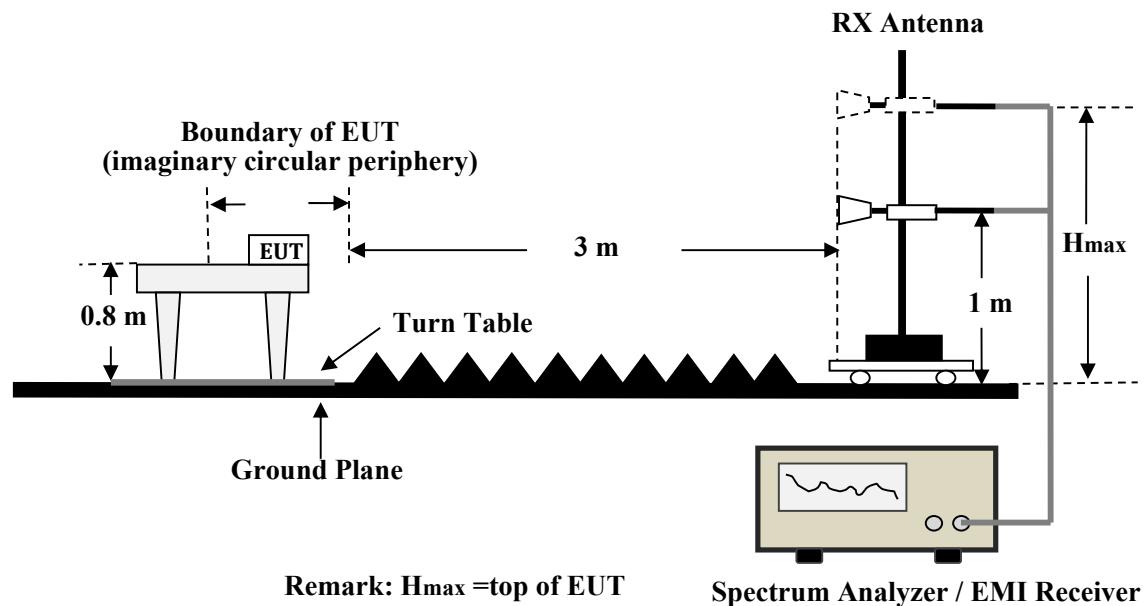

RADIATED EMISSIONS

Applicable Standard

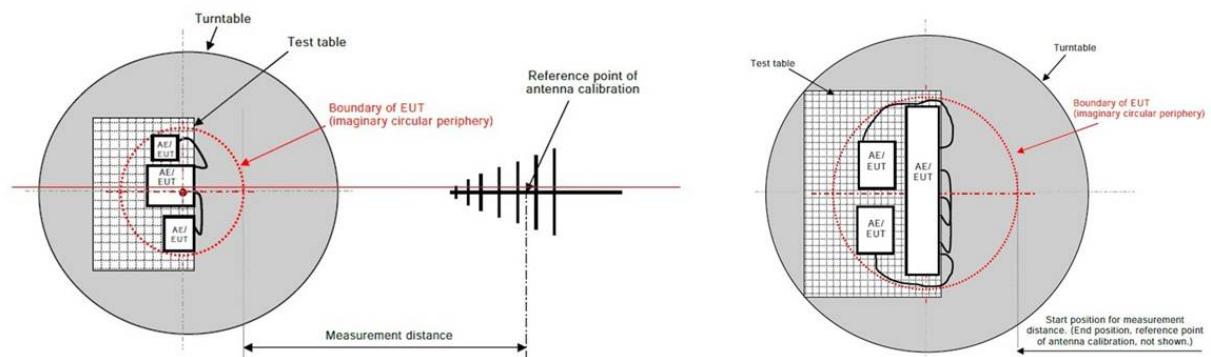
FCC §18.305

EUT Setup


Below 30MHz for Radiated Emissions


The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the FCC OST MP-5(1986). The related limit was specified in Part 18.305.

The distance from the loop antenna bracket to the ground is 2 meters.


Below 1GHz for Radiated Emissions

Above 1GHz for Radiated Emissions

Radiated Emissions Setup Configuration

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the FCC MP - 5. The specification used was the FCC part 18 limits.

The socket was connected to 120 VAC/60 Hz power source.

EMI Test Receiver Setup and Spectrum Analyzer Setup

The system was investigated from 9kHz to 25 GHz.

During the radiated emission test, the EMI test receiver and Spectrum Analyzer were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
	300 Hz	1 kHz	/	PK	Peak
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
	10 kHz	30 kHz	/	PK	Peak
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	Peak

1-25GHz:

Pre-scan

Measurement	Detector	RBW	Video B/W
PK	Peak	1MHz	3MHz

Final measurement for emission identified during pre-scan

Measurement	Detector	RBW	Video B/W
Ave.	Peak	1MHz	10Hz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was in the normal (naïve) operating mode during the final qualification test to represent the worst results.

Level & Over Limit Calculation

The Level is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Read Level. The basic equation is as follows:

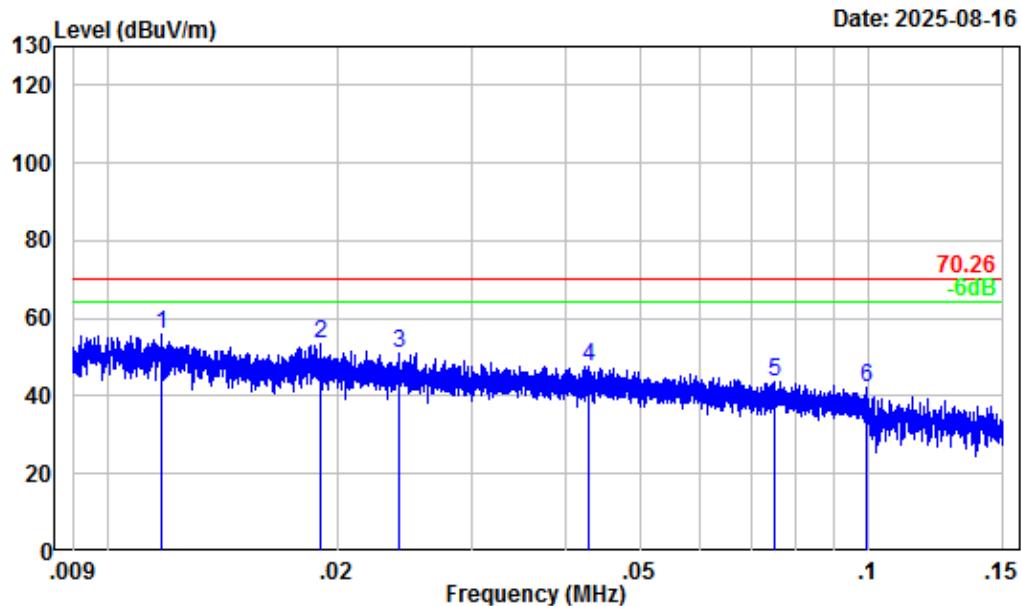
$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

$$\text{Level} = \text{Read Level} + \text{Factor}$$

The “**Over Limit**” Column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of -6 dB means the emission is 6 dB below the limit. The equation for margin calculation is as follows:

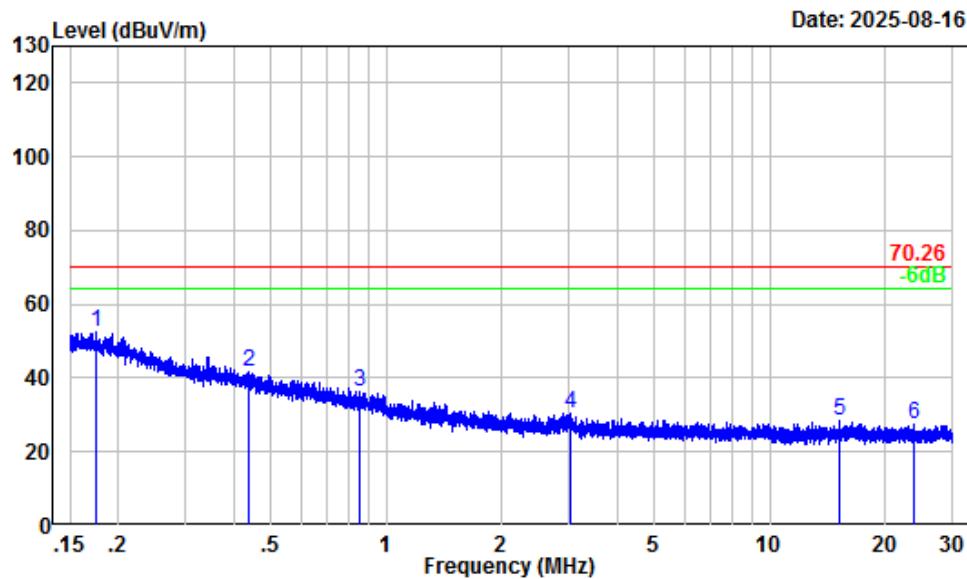
$$\text{Over limit} = \text{Level} - \text{Limit}$$

Test Data and Plots


Environmental Conditions

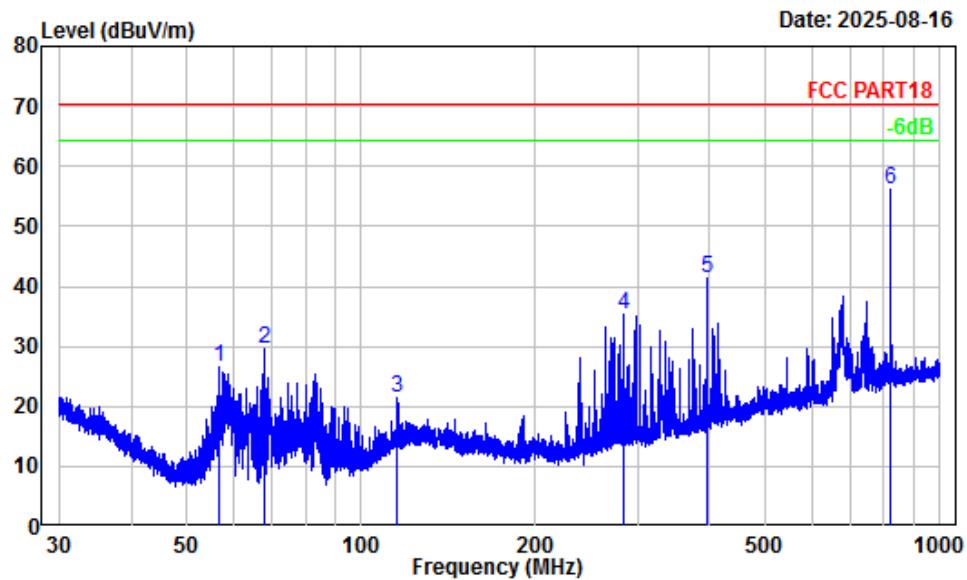
Temperature:	21.5~24.5°C
Relative Humidity:	52~57 %
ATM Pressure:	100.3~101.2 kPa

The testing was performed by Nico Wu on 2025-08-16 for below 30MHz and Nico Wu on 2025-08-16 for below 1GHz and by Wing K Ji on 2025-08-22 for above 1GHz.


Test Mode: Mircrowave Heating

Note: For the radiation emissions below 30 MHz, test the X/Y/Z three planes of the loop antenna respectively, and only record the worst-case situation of the Y plane.

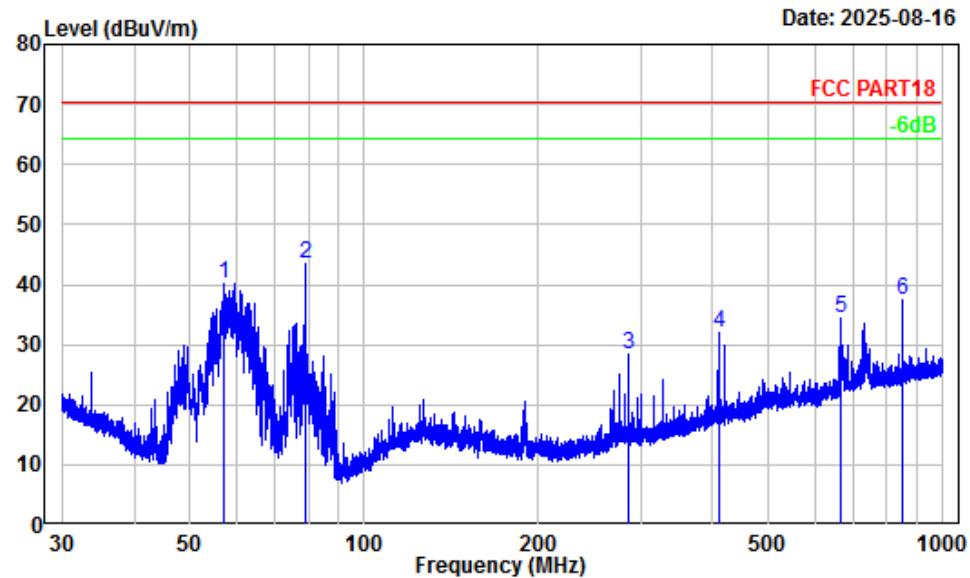
9 kHz-150kHz


Site : Chamber A
Condition : 3m
Project Number : 2501V28322E-EM
Test Mode : Microwave heating
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Nico Wu

Freq	Factor	Read	Limit	Over	Remark
		Level	Level	Line	
1	0.012	31.96	24.01	55.97	70.26 -14.29 Peak
2	0.019	30.58	22.88	53.46	70.26 -16.80 Peak
3	0.024	29.62	21.31	50.93	70.26 -19.33 Peak
4	0.043	27.15	20.56	47.71	70.26 -22.55 Peak
5	0.075	23.90	19.60	43.50	70.26 -26.76 Peak
6	0.099	22.06	20.15	42.21	70.26 -28.05 Peak

15kHz -30MHz

Site : Chamber A
Condition : 3m
Project Number : 2501V28322E-EM
Test Mode : Microwave heating
Detector: Peak RBW/VBW: 10/30kHz
Tester : Nico Wu


	Freq	Read Factor	Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dB _{uV}	dB _{uV/m}	dB _{uV/m}	dB	
1	0.175	17.59	34.93	52.52	70.26	-17.74	Peak
2	0.436	7.61	34.02	41.63	70.26	-28.63	Peak
3	0.851	2.32	33.86	36.18	70.26	-34.08	Peak
4	3.021	-2.16	32.81	30.65	70.26	-39.61	Peak
5	15.246	-2.45	30.79	28.34	70.26	-41.92	Peak
6	23.888	-3.10	30.39	27.29	70.26	-42.97	Peak

30 MHz – 1 GHz**Horizontal**

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501V28322E-EM
Test Mode : Microwave heating
Detector: Peak RBW/VBW: 100/300kHz
Tester : Nico Wu

Freq	Factor	Read	Limit	Over	Remark
		Level	Level	Line	
1	56.767	-18.31	44.76	26.45	70.26 -43.81 Peak
2	68.151	-17.88	47.42	29.54	70.26 -40.72 Peak
3	114.816	-12.16	33.48	21.32	70.26 -48.94 Peak
4	284.852	-11.23	46.43	35.20	70.26 -35.06 Peak
5	396.068	-8.60	49.84	41.24	70.26 -29.02 Peak
6	822.071	-1.99	58.04	56.05	70.26 -14.21 Peak

Vertical

Site : Chamber A
Condition : 3m Vertical
Project Number : 2501V28322E-EM
Test Mode : Microwave heating
Detector: Peak RBW/VBW: 100/300kHz
Tester : Nico Wu

Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
1	57.292	-18.29	58.58	40.29	70.26	-29.97 Peak
2	79.173	-17.90	61.25	43.35	70.26	-26.91 Peak
3	286.354	-11.23	39.55	28.32	70.26	-41.94 Peak
4	411.283	-8.13	40.12	31.99	70.26	-38.27 Peak
5	665.220	-3.87	38.16	34.29	70.26	-35.97 Peak
6	849.545	-1.73	39.17	37.44	70.26	-32.82 Peak

1 -25 GHz:

For Band edge and spurious emissions:

Frequency (MHz)	Receiver		Turn-Table	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 18	
	Reading (dB μ V)	Detector (PK/QP/AV)		Angle Degree	Height (m)			Limit (dB μ V/m)	Margin (dB)
2232.50	60.66	AV	197	1.3	H	-10.99	49.67	70.26	20.59
2706.38	54.14	AV	115	1.2	H	-10.53	43.61	70.26	26.65
4927.00	60.65	AV	237	2.2	H	-7.58	53.07	70.26	17.19
1969.12	61.36	AV	237	1.1	V	-12.9	48.46	70.26	21.80
2232.65	64.89	AV	339	2.2	V	-11.00	53.89	70.26	16.37
3696.96	54.61	AV	359	2.0	V	-9.50	45.11	70.26	25.15
700ml water (Second and Third Harmonics)									
4908.13	48.95	AV	99	1.1	H	-7.54	41.41	70.26	28.85
7424.38	41.88	AV	115	1.3	H	-1.92	39.96	70.26	30.30
4920.63	58.31	AV	99	1.1	V	-7.56	50.75	70.26	19.51
7438.75	44.52	AV	115	1.3	V	-1.80	42.72	70.26	27.54
300ml water (Second and Third Harmonics)									
4924.38	50.84	AV	54	1.1	H	-7.57	43.27	70.26	26.99
7403.13	43.78	AV	266	1.3	H	-2.10	41.68	70.26	28.58
4919.62	57.00	AV	56	1.1	V	-7.56	49.44	70.26	20.82
7406.18	47.71	AV	266	2.2	V	-2.07	45.64	70.26	24.62

Note:

- 1) Corrected Amplitude = Meter Reading + Corrected Factor.
- 2) Correction Factor = Antenna Factor + Cable Loss - Amplifier Gain.
- 3) Margin = Limit – Corrected Amplitude.
- 4) The data below 20dB to the limit was not recorded.

EUT PHOTOGRAPHS

Please refer to the attachment 2501V28322E-EM External photo and 2501V28322E-EM Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501V28322E-EM Test Setup photo.

******* END OF REPORT *******