

ENGINEERING TEST REPORT

Exciter
Model No.: EX21N
(Class II Permissive Changes)
FCC ID: PQG-EX21L

Applicant:

Lyngsoe Systems Ltd.
5570 Kennedy Road, Unit B
Mississauga, Ontario
Canada, L4Z 2A9

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC)
Part 15, Subpart C, Sections 15.209
Low Power Transmitter @ 125 kHz

UltraTech's File No.: LYI-020F15C209

This Test report is Issued under the Authority of
Tri M. Luu, Professional Engineer,
Vice President of Engineering
UltraTech Group of Labs

Date: November 10, 2004

Report Prepared by: Anca Dobre

Tested by: Hung Trinh, RFI Technician

Issued Date: November 10, 2004

Test Dates: October 29, 2004

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.*

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

31040/SIT

C-1376

46390-2049

200093-0

SL2-IN-E-1119R

00-034

TABLE OF CONTENTS

EXHIBIT 1. SUBMITTAL CHECK LIST.....	1
EXHIBIT 2. INTRODUCTION	2
2.1. SCOPE.....	2
2.2. RELATED SUBMITTAL(S)/GRANT(S).....	2
2.3. NORMATIVE REFERENCES	2
EXHIBIT 3. PERFORMANCE ASSESSMENT	3
3.1. CLIENT INFORMATION	3
3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION	3
3.3. EUT'S TECHNICAL SPECIFICATIONS.....	4
3.4. LIST OF EUT'S PORTS	4
3.5. ANCILLARY EQUIPMENT	4
3.6. GENERAL TEST SETUP	5
EXHIBIT 4. EUT OPERATION CONDITIONS AND CONFIGURATIONS DURING TESTS	6
4.1. CLIMATE TEST CONDITIONS	6
4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	6
EXHIBIT 5. SUMMARY OF TEST RESULTS	7
5.1. LOCATION OF TESTS	7
5.2. APPLICABILITY & SUMMARY OF EMC EMISSIONS TEST RESULTS.....	7
5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	7
EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS.....	8
6.1. TEST PROCEDURES	8
6.2. MEASUREMENT UNCERTAINTIES	8
6.3. MEASUREMENT EQUIPMENT USED	8
6.4. METHOD OF MEASUREMENTS.....	8
6.5. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER.....	8
6.6. 125 kHz TRANSMITTER RADIATED EMISSIONS @ 3 METERS – FUNDAMENTAL & SPURIOUS EMISSIONS [§§15.209 & 15.205].....	9
EXHIBIT 7. MEASUREMENT UNCERTAINTY.....	13
7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY	13
EXHIBIT 8. MEASUREMENT METHODS.....	14
8.1. GENERAL TEST CONDITIONS	14
8.2. RADIATED EMISSIONS.....	15

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality Check (OK)
--	Test Report	<ul style="list-style-type: none">▪ Exhibit 1: Submittal check lists▪ Exhibit 2: Introduction▪ Exhibit 3: Performance Assessment▪ Exhibit 4: EUT Operation and Configuration during Tests▪ Exhibit 5: Summary of test Results▪ Exhibit 6: Measurement Data▪ Exhibit 7: Measurement Uncertainty▪ Exhibit 8: Measurement Methods	OK
1	Test Setup Photos	Radiated Emissions Test Setup Photos	OK
2	External Photos of EUT	External EUT Photos	OK
3	Internal Photos of EUT	Internal EUT Photos	OK
4	Cover Letters	<ul style="list-style-type: none">▪ Letter from Ultratech for Certification Request▪ Letter from the Applicant to appoint Ultratech to act as an agent▪ Letter from the Applicant to request for Confidentiality Filing	OK
5	Block Diagrams	Block Diagram	OK
6	Schematic Diagrams	Schematics	OK
7	Parts List/Tune Up Info	<ul style="list-style-type: none">▪ Exciter EX21 General Assembly▪ LF Amplifier LFA21 Component Assembly▪ BOM - PCB/Encl. Exciter EX21▪ BOM - LF Amplifier LFA21	OK
8	Operational Description	Theory of Operation	OK
9	RF Exposure Info	--	N/A

EXHIBIT 2. INTRODUCTION

2.1. SCOPE

Reference:	FCC Part 15, Subpart C, Sections 15.209
Title:	Telecommunication - Code of Federal Regulations, CFR 47, Part 15
Purpose of Test:	To gain FCC acceptance of Class II Permissive Change of Certified Radio for Low Power Transmitter operating at 125 kHz. <ul style="list-style-type: none">• This test report covers test results for acceptance of Class II Permissive changes of certified radio under FCC regulations for Low Power Transmitters operating at 125 kHz
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, industrial or business

2.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

2.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 0-19	2003	Code of Federal Regulations, Title 47 – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 & EN 55022	2003 2003	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
CISPR 16-1	2003	Specification for Radio Disturbance and Immunity measuring apparatus and methods

EXHIBIT 3. PERFORMANCE ASSESSMENT

3.1. CLIENT INFORMATION

APPLICANT	
Name:	Lyngsoe Systems Ltd.
Address:	5570 Kennedy Road, Unit B Mississauga, Ontario Canada, L4Z 2A9
Contact Person:	Marioara Huzum Phone #: (905) 501-1533/ext. 231 Fax #: (905) 501-1538 Email Address: mhu@lyngsoesystems.com

MANUFACTURER	
Name:	Lyngsoe Systems Ltd.
Address:	5570 Kennedy Road, Unit B Mississauga, Ontario Canada, L4Z 2A9
Contact Person:	Donald Ferguson Phone #: (905) 501-1533/ext.221 Fax #: (905) 501-1538 Email Address: dfe@lyngsoesystems.com

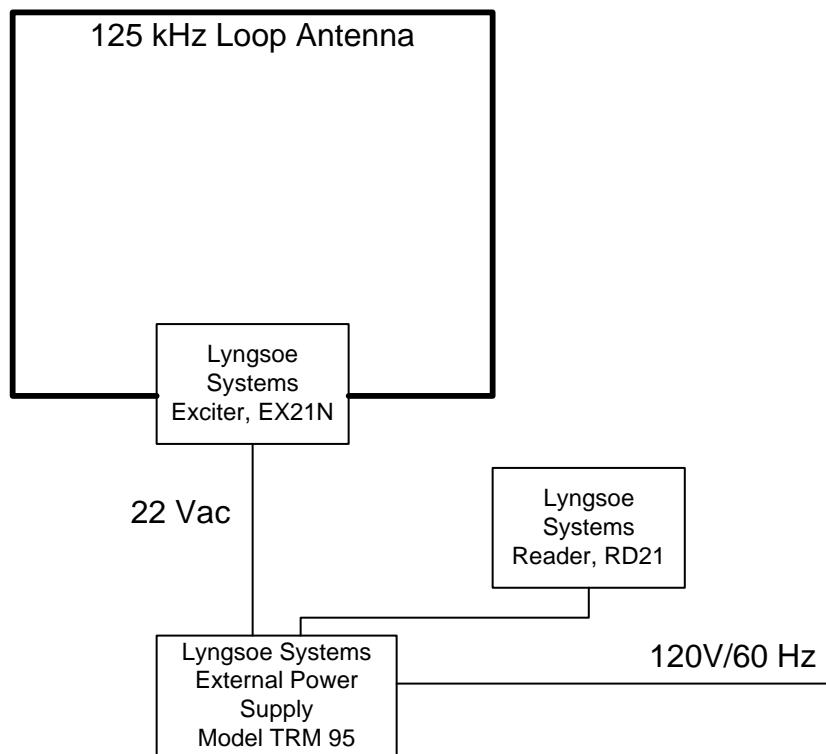
3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Lyngsoe Systems Ltd.
Product Name:	Exciter
Model Name or Number:	EX21N
Serial Number:	A015972
Type of Equipment:	Low Power Transmitter
Power Input Source:	External power supply TRM 95/120V
Primary User Functions of EUT:	This equipment is part of the RFID System S21 and together with Reader RD21 creates a Reading Point for RFID Systems. The main function of the Exciter EX21N is to generate the LF field, which will "excite" transponders PT21. 433.92 MHz signal is used to check the integrity of RFID Systems.

3.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter @ 125 kHz	
Equipment Type:	Base station (fixed use)
Intended Operating Environment:	Commercial, industrial or business
RF Output Power Rating:	0.0 Watt
Operating Frequency Range:	125 kHz
Duty Cycle:	50.0%
20 dB Bandwidth:	8.65 kHz
Modulation Type:	Pulse modulation with recognition coding
Oscillator Frequencies	20MHz, 13.56 MHz
Antenna Connector Type:	Integral, permanently attached loop antenna
Antenna Description:	Manufacturer: Lyngsoe Systems Ltd. Type: 125 kHz Loop Antenna Model: 1x0.5 meters Frequency Range: 125 kHz In/Out Impedance: 50 Ohms


3.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	22 Vac port	1	3 pole type RIA 31137103	Non-shielded

3.5. ANCILLARY EQUIPMENT

None.

3.6. GENERAL TEST SETUP

EXHIBIT 4. EUT OPERATION CONDITIONS AND CONFIGURATIONS DURING TESTS

4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power Input Source:	22 Vac

4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was set to transmit continuously by means of special setting of jumpers on the printed circuit board for testing purpose only.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as an integral antenna equipment.

Transmitter Test Signals
Frequency: 125 kHz

EXHIBIT 5. SUMMARY OF TEST RESULTS

5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: February 17, 2004.

5.2. APPLICABILITY & SUMMARY OF EMC EMISSIONS TEST RESULTS

FCC Sections	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirement (The transmitter shall use a transmitting antenna that is an integral part of the device).	Yes. Permanently attached loop antenna.
15.215 (c)	20 dB Bandwidth	Yes (see Note 1)
15.209 & 15.205	Transmitter Radiated Emissions – Fundamental, Harmonic and Spurious	Yes
15.107(a)	AC Power Line Conducted Emissions Measurements (Transmit & Receive)	Yes (See Note 1)

Note 1: Since, there is no change in RF characteristic, circuitry and function capabilities in the Exciter EX21N, tests are not required to be repeated. Please refer to Lyngsoe Systems Test Report for Exciter, Model: EX21L for further details.

5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report.

6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

6.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4, FCC 15.209 and CISPR 16-1.

6.4. METHOD OF MEASUREMENTS

The measurements were performed in accordance with Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4.

6.5. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

EX21N is parts of the RFID System 21 and together with Reader RD21 creates a Reading Point for RFID Systems.

6.6. 125 kHz TRANSMITTER RADIATED EMISSIONS @ 3 METERS – FUNDAMENTAL & SPURIOUS EMISSIONS [§§15.209 & 15.205]

6.6.1. Limits

- The fundamental frequency shall not fall within any restricted frequency band specified in 15.205.
- All rf other emissions shall not exceed the general radiated emission limits specified in §15.209(a).

FCC 47 CFR, Part 15, Subpart C, Section 15.205(a) - Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

FCC 47 CFR, Part 15, Subpart C, Section 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --

Frequency (MHz)	Field Strength Limits (microvolts/m)	Distance (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

6.6.2. Method of Measurements

Refer to ULTRATECH Test Procedures, File # ULTR P001-2004 and ANSI C63.4.

6.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Advantest	R3271	15050203	100 Hz to 32 GHz with external mixer for frequency above 32 GHz
Microwave Amplifier	Hewlett Packard	HP 83017A		1 GHz to 26.5 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09	..	18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10	..	26.5 GHz – 40 GHz
Mixer	Tektronix	118-0098-00	..	18 GHz – 26.5 GHz
Mixer	Tektronix	119-0098-00	..	26.5 GHz – 40 GHz

6.6.4. Test Data

Frequency (MHz)	RF Peak Level (dB μ V/m)	RF Avg Level (dB μ V/m)	Antenna Plane (H/V)	Limit 15.209 (dB μ V/m)	Limit Margin (dB)	Pass/Fail	Distance (m)
0.125	82.7	76.7	V	- 85.7	-9.0	Pass	30
0.125	75.7	69.7	H	- 85.7	-16.0	Pass	30
270.80	33.0	27.0	V	- 46.0	-19.0	Pass	3
285.50	32.4	26.4	V	- 46.0	-19.6	Pass	3
290.30	34.1	28.1	V	- 46.0	-17.9	Pass	3
290.30	33.6	27.6	H	- 46.0	-18.4	Pass	3
305.0	33.2	27.2	V	- 46.0	-18.8	Pass	3
786.60	41.6	35.6	V	- 46.0	-10.4	Pass	3
786.60	40.0	34.0	H	- 46.0	-12.0	Pass	3
801.30	42.4	36.4	V	-46.0	-9.6	Pass	3
801.30	40.8	34.8	H	-46.0	-11.2	Pass	3

- The emissions were scanned from 10 kHz to 1 GHz and all spurious emissions within 20 dB below the permissible limits were recorded.
- Highest measurements were recorded when the transmitter was tested with 3 different orthogonal positions.

Remarks:

(1) Duty Cycle = 0.50 (Tx on = Tx off)

Peak-to-Average factor = $20 \times \log(0.50) = -6.02$ dB

Please refer to the following plots for detailed duty cycle measurements.

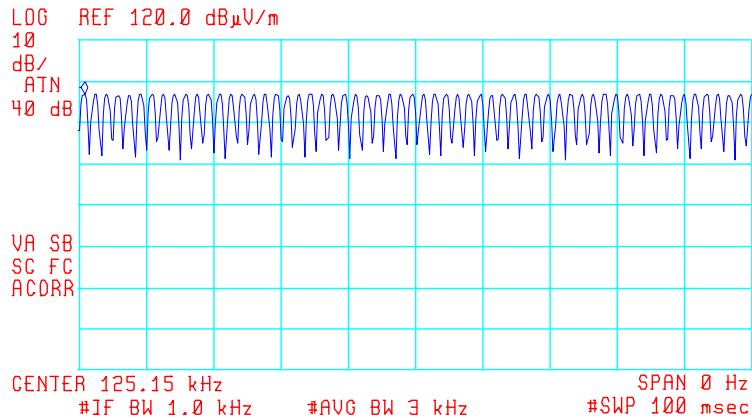
(2) The 300m limit was converted to 30 m using cube factor (x) as it was found by the previous measurements for the original equipment (Exciter, Model EX21L). Please refer to Lyngsoe Systems Test Report for Exciter, EX21L for further details.

Therefore the limit for 125 kHz at 30 meters was calculated as:

$$\text{Limit}_{30m} = \text{Limit}_{300m} + 20 \times \log(300/30)^3 = 20 \times \log[2400/125] + 60 = 85.7 \text{ dB}\mu\text{V/m}$$

(3) Based on the measurements performed for the original equipment (Exciter, Model EX21L), maximum E-field measurements at 10 meters were converted to 30 meters using cube factor and the following formula:

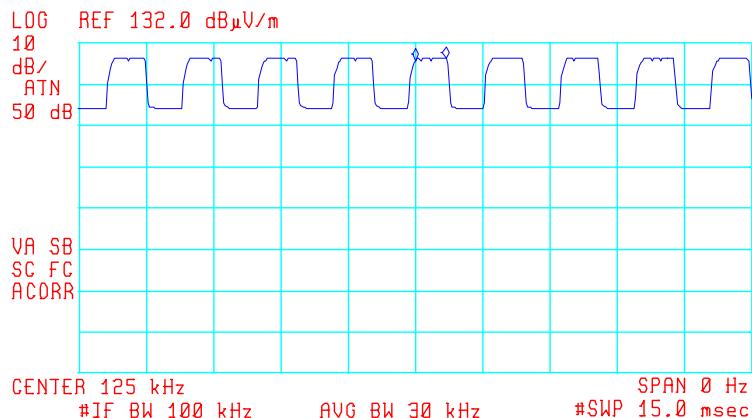
$$\text{E-field at 30m} = \text{E-field at 10m} - 20 \times \log(30/10)^3 = 111.35 - 20 \times \log(30/10)^3 = 82.7 \text{ dB}\mu\text{V/m}$$


Duty Cycle Measurements

6:15 AM 8/15/04 Ultratech 10m Open Area Test Site

LOOP6502 15:08:18 OCT 30, 2002

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR 750.00 μ sec
106.81 dB μ V/m



11:59 AM 8/17/04 Ultratech 10m Open Area Test Site

LOOP6502 15:08:18 OCT 30, 2002

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKR Δ 675.00 μ sec
.17 dB

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION (Radiated Emissions)	PROBABILITY DISTRIBUTION	UNCERTAINTY (+ dB)	
		3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+1.0</u>	<u>+1.0</u>
Cable Loss Calibration	Normal (k=2)	<u>+0.3</u>	<u>+0.5</u>
EMI Receiver specification	Rectangular	<u>+1.5</u>	<u>+1.5</u>
Antenna Directivity	Rectangular	<u>+0.5</u>	<u>+0.5</u>
Antenna factor variation with height	Rectangular	<u>+2.0</u>	<u>+0.5</u>
Antenna phase center variation	Rectangular	0.0	<u>+0.2</u>
Antenna factor frequency interpolation	Rectangular	<u>+0.25</u>	<u>+0.25</u>
Measurement distance variation	Rectangular	<u>+0.6</u>	<u>+0.4</u>
Site imperfections	Rectangular	<u>+2.0</u>	<u>+2.0</u>
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67(B_i) 0.3 (L_p)$ Uncertainty limits $20\log(1+\Gamma_1\Gamma_R)$	U-Shaped	+1.1 -1.25	<u>+0.5</u>
System repeatability	Std. Deviation	<u>+0.5</u>	<u>+0.5</u>
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$

EXHIBIT 8. MEASUREMENT METHODS

8.1. GENERAL TEST CONDITIONS

The following test conditions shall be applied throughout the tests covered in this report.

8.1.1. Normal temperature and humidity

- Normal temperature: +15°C to +35°C
- Relative Humidity: +20% to 75%

The actual values during tests shall be recorded in the test report.

8.1.2. Normal power source

8.1.2.1. *Mains Voltage*

The nominal test voltage of the equipment to be connected to mains shall be the nominal mains voltage which is the declared voltage or any of the declared voltages for which the equipment was designed.

The frequency of test power source corresponding to the AC mains shall be between 59 Hz and 61 Hz.

8.1.2.2. *Battery Power Source*

For operation from battery power sources, the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

8.1.3. Operating Condition of Equipment under Test

- All tests were carried out while the equipment operated at the following frequencies:
 - The lowest operating frequency,
 - The middle operating frequency and
 - The highest operating frequency
- Modulation were applied using the Test Data sequence
- The transmitter was operated at the highest output power, or in the case the equipment able to operate at more than one power level, at the lowest and highest output powers

8.2. RADIATED EMISSIONS

For both conducted and radiated measurements, the spurious emissions were scanned from the lowest frequency generated by the EUT or 10 MHz whichever is lower to 10th harmonic of the highest frequency generated by the EUT.

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz - 40 GHz).
 3. The test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:
 - RBW = 100 kHz for $f < 1\text{GHz}$ and RBW = 1 MHz for $f \geq 1\text{ GHz}$
 - VBW = RBW
 - Sweep = auto
 - Detector function = peak
 - Trace = max hold
 - Follows the guidelines in ANSI C63.4-2003 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc.. A pre-amp and highpass filter are required for this test, in order to provide the measuring system with sufficient sensitivity.
 - Allow the trace to stabilize.
 - The peak reading of the emission, after being corrected by the antenna correction factor, cable loss, pre-amp gain, etc.... is the peak field strength which comply with the limit specified in Section 15.35(b)

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\boxed{FS = RA + AF + CF - AG}$$

Where FS = Field Strength
RA = Receiver/Analyzer Reading
AF = Antenna Factor
CF = Cable Attenuation Factor
AG = Amplifier Gain

Example: If a receiver reading of 60.0 dB μ V is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be:

$$\text{Field Level} = 60 + 7.0 + 1.0 - 30 = 38.0 \text{ dB}\mu\text{V/m.}$$

$$\text{Field Level} = 10^{(38/20)} = 79.43 \mu\text{V/m.}$$

- Submit this test data
- Now set the VBW to 10Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100ms, then the reading obtained may be further adjusted by a "duty cycle correction factor", derived from $10\log(\text{dwell time}/100\text{mS})$ in an effort to demonstrate compliance with the 15.209.
- Submit test data

Maximizing The Radiated Emissions:

- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

Step 1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.

Step 2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.

Step 3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.

Step 4: Move the antenna over its full allowable range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.

Step 5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.

Step 6: The effect of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.

After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.