

FCC PART 15B, CLASS B

TEST REPORT

For

HONG KONG IPRO TECHNOLOGY CO., LIMITED

ROOM C1D, 6/F, WING HING INDUSTRIAL BUILDING,
14 HING YIP STREET, KWUN TONG, KOWLOON, HONG KONG

FCC ID: PQ4IPROVENUSL

Report Type: Original Report	Product Type: GSM Mobile Phone
Test Engineer: <u>Mick Yin</u>	
Report Number: <u>RSZ121115001-00A</u>	
Report Date: <u>2012-12-10</u>	
Reviewed By: <u>RF Engineer</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk ★

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION.....	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.107 – AC LINE CONDUCTED EMISSIONS.....	8
APPLICABLE STANDARD	8
MEASUREMENT UNCERTAINTY.....	8
EUT SETUP	8
EMI TEST RECEIVER SETUP.....	9
TEST PROCEDURE	9
TEST EQUIPMENT LIST AND DETAILS.....	9
CORRECTED FACTOR & MARGIN CALCULATION	9
TEST RESULTS SUMMARY	9
TEST DATA	10
FCC §15.109 - RADIATED SPURIOUS EMISSIONS.....	12
APPLICABLE STANDARD	12
MEASUREMENT UNCERTAINTY.....	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	13
TEST PROCEDURE	13
TEST EQUIPMENT LIST AND DETAILS.....	13
CORRECTED AMPLITUDE & MARGIN CALCULATION	13
TEST RESULTS SUMMARY	13
TEST DATA	14

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *HONG KONG IPRO TECHNOLOGY CO., LIMITED*'s product, model number: *VENUS L (FCC ID: PQ4IPROVENUSL)* or the "EUT" in this report was a *GSM Mobile Phone*, which was measured approximately: 10.5 cm (L) x 5.8 cm (W) x 1.1 cm (H), rated input voltage: DC 3.7 V Li-ion battery. The highest operating frequency is 104 MHz.

**All measurement and test data in this report was gathered from production sample serial number: IPROVENUSL000001 (Assigned by Applicant). The EUT was received on 2012-11-15.*

Objective

This test report is prepared on behalf of *HONG KONG IPRO TECHNOLOGY CO., LIMITED* in accordance with Part 2-Subpart J, Part 15-Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

Related Submittal(s)/Grant(s)

Part 22H/24E PCE and Part 15.247 DSS submissions with FCC ID: PQ4IPROVENUSL.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at <http://ts.nist.gov/Standards/scopes/2007070.htm>.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

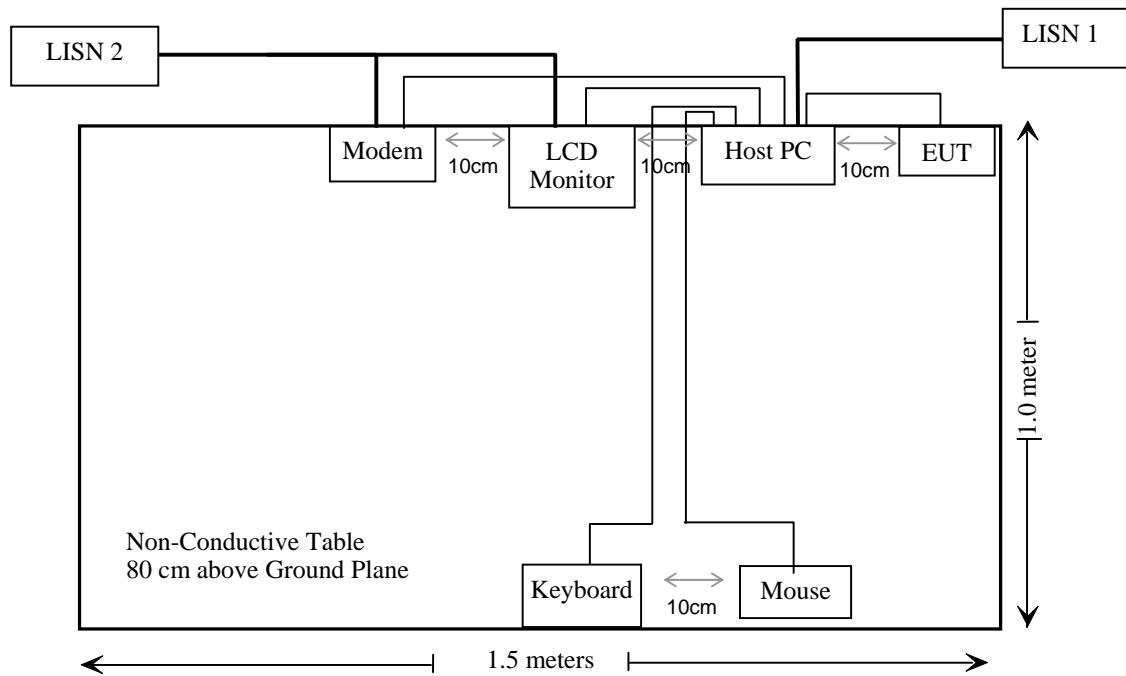
The system was configured for testing in a manufacturer testing fashion.

EUT operation mode: Downloading (data transform with computer)

EUT Exercise Software

“winthrax” exercise software was used.

Equipment Modifications


No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
DELL	Keyboard	L100	CNORH656658907BL05DC
DELL	Mouse	MOC5UO	G1900NKD
DELL	LCD Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH
SAST	Modem	AEM-2100	0293

External I/O Cable

Cable Description	Length (m)	From/Port	To
Shielded Detachable USB Cable	1.5	Host PC	Mouse
Shielded Detachable Serial Cable	1.2	Host PC	Modem
Shielded Detachable K/B Cable	1.5	Host PC	Keyboard
Shielded Detachable VGA Cable	1.5	Host PC	LCD Monitor
Shielded Detachable USB Cable	1.0	EUT	Host PC

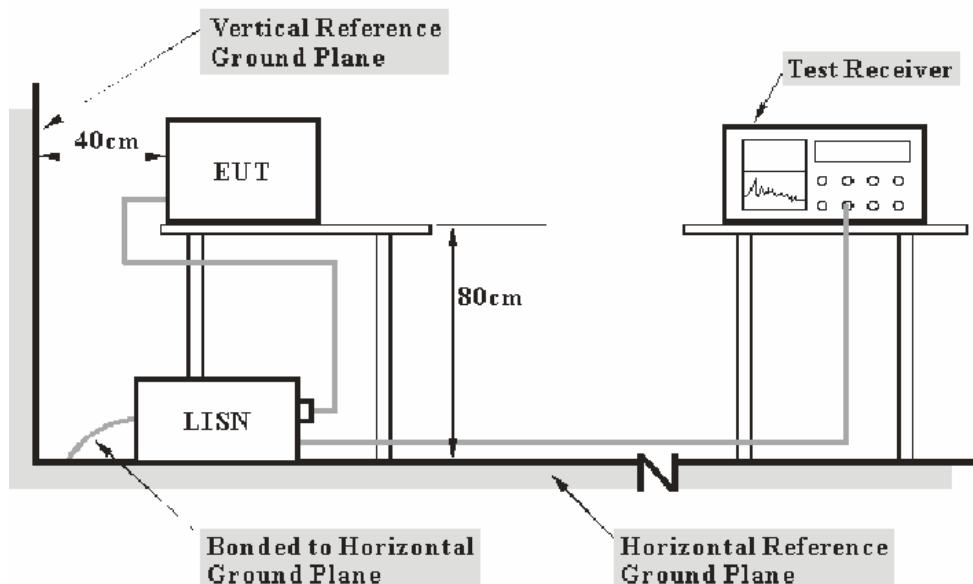
Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Spurious Emissions	Compliance

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard


FCC §15.107

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-2, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 2.4 dB.(k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.107 Class B limits.

The spacing between the peripherals was 10 cm.

The host PC was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the host PC was connected to the outlet of the first LISN, and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2012-11-24	2013-11-23
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2012-08-22	2013-08-21
Com-Power	L.I.S.N.	LI-200	12005	N/A	N/A
Com-Power	L.I.S.N.	LI-200	12208	N/A	N/A
Rohde & Schwarz	Transient limitor	ESH3Z2	DE25985	2012-07-08	2013-07-07
BACL	CE Test software	BACL-CE	V1.0	-	-

* **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Institute of Metrology (NIM).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Pulse Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss} + \text{Pulse Limiter Attenuation}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

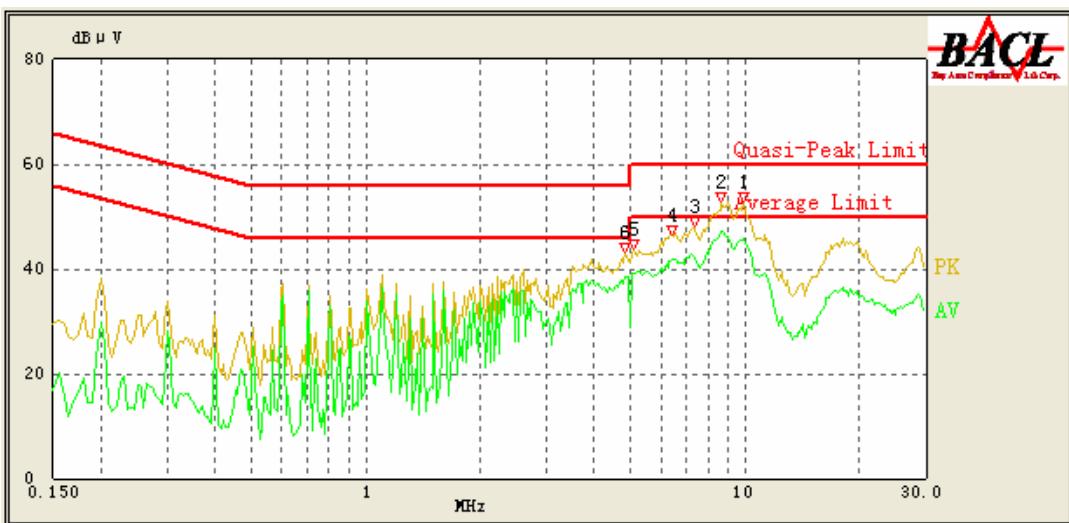
$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.107, with the worst margin reading of:

2.93 dB at 8.650 MHz in the Line conducted mode

Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	100.0 kPa

The testing was performed by Mick Yin on 2012-12-06.

EUT Operation Mode: Downloading (data transforms with Computer)

AC 120V/60 Hz, Line

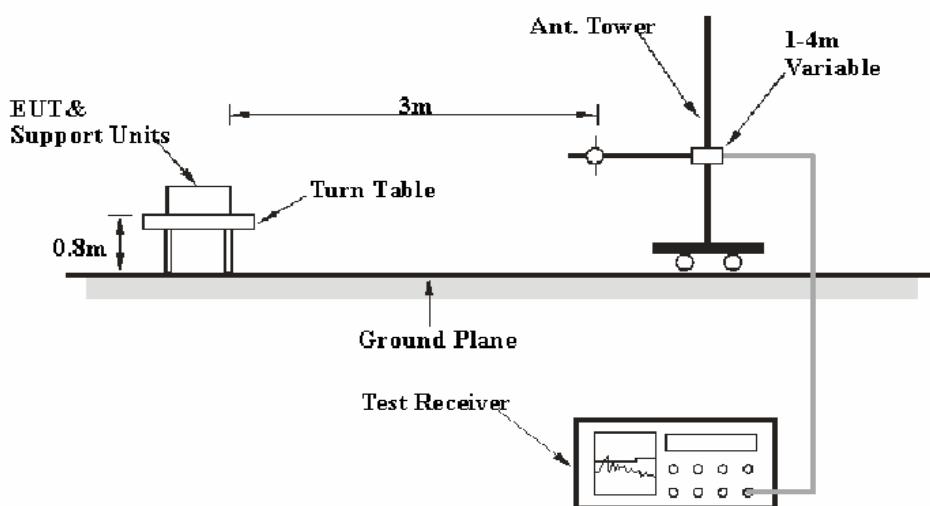
Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
8.650	47.07	10.44	50.00	2.93	Ave.
9.960	45.96	10.49	50.00	4.04	Ave.
4.835	38.49	10.29	46.00	7.51	Ave.
7.340	42.26	10.39	50.00	7.74	Ave.
6.370	41.35	10.35	50.00	8.65	Ave.
9.960	49.47	10.49	60.00	10.53	QP
5.005	39.20	10.30	50.00	10.80	Ave.
8.650	47.77	10.44	60.00	12.23	QP
7.340	43.53	10.39	60.00	16.47	QP
4.835	39.43	10.29	56.00	16.57	QP
6.430	42.11	10.35	60.00	17.89	QP
5.060	39.97	10.30	60.00	20.03	QP

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
8.720	46.41	10.44	50.00	3.59	Ave.
9.910	45.00	10.49	50.00	5.00	Ave.
14.415	44.90	11.15	50.00	5.10	Ave.
7.245	42.43	10.38	50.00	7.57	Ave.
21.600	41.41	12.40	50.00	8.59	Ave.
6.340	41.19	10.34	50.00	8.81	Ave.
14.415	49.42	11.15	60.00	10.58	QP
8.715	47.58	10.44	60.00	12.42	QP
9.910	46.25	10.49	60.00	13.75	QP
21.600	44.95	12.40	60.00	15.05	QP
7.245	43.15	10.38	60.00	16.85	QP
6.340	42.71	10.34	60.00	17.29	QP

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Applicable Standard


FCC §15.109

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2, the Treatment of Uncertainty in EMC Measurements, the estimation of the uncertainty of radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 4.0 dB. (k=2, 95% level of confidence), and the uncertainty will not be taken into consideration for all the test data recorded in the report.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10cm.

The host PC was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 1000 MHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP

Test Procedure

For the radiated emissions test, the host PC and relevant equipments were connected to AC floor outlet for downloading mode.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All the data was recorded in the Quasi-peak detection mode from 30 MHz to 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	8447E	1937A01046	2012-11-24	2013-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2012-08-08	2013-08-07
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
R&S	Auto test Software	EMC32	V6.30	-	-

* **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Institute of Metrology (NIM).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

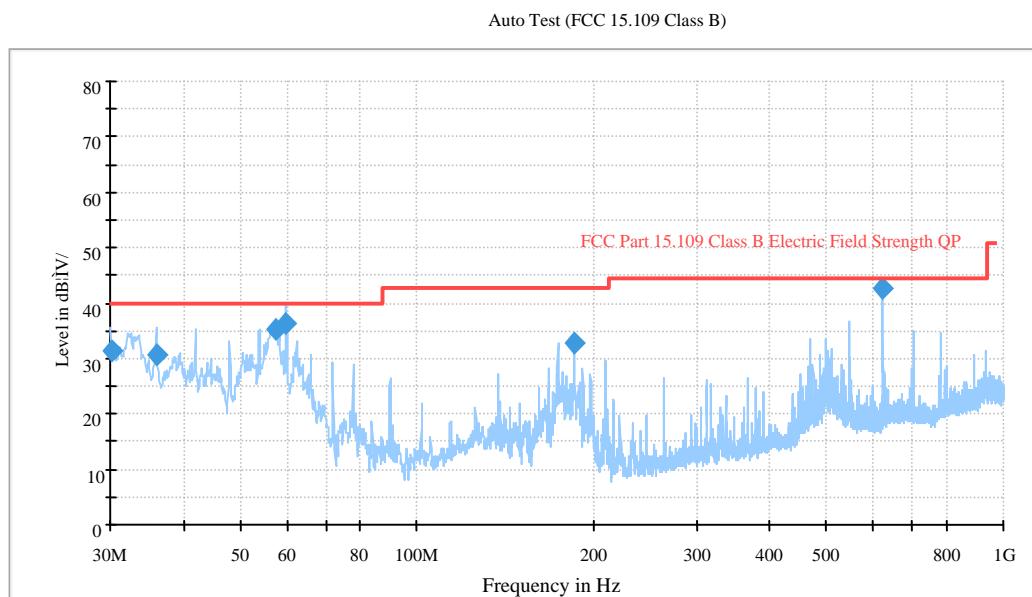
The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.109 Class B, with the worst margin reading of:

3.2 dB at 623.985300 MHz in the Horizontal polarization


Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	100.0 kPa

The testing was performed by Mick Yin on 2012-12-06.

EUT Operation Mode: Downloading (data transform with Computer)

Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB)	Limit (dB μ V/m)	Margin (dB)
623.985300	42.8	151.0	H	262.0	-8.2	46.0	3.2
59.975600	36.4	112.0	V	44.0	-20.7	40.0	3.6
57.523750	35.3	108.0	V	56.0	-20.9	40.0	4.7
30.186562	31.2	149.0	V	95.0	-6.8	40.0	8.8
36.099650	30.8	103.0	V	0.0	-11.6	40.0	9.2
185.844775	32.7	113.0	H	85.0	-16.0	43.5	10.8

***** END OF REPORT *****