

TEST REPORT

No. 2013EEB00531-EMC

for

HONG KONG IPRO TECHNOLOGY CO., LIMITED

Mobile phone

Model Name: A3

Marketing Name: IPRO

FCC ID: PQ4IPROA3

with

Hardware Version: V2.0

Software Version: A3_IPRO_3G_W25_V0.6

Issued Date: 2013-11-29

Test Laboratory:

FCC 2.948 Listed: No.310359 IC O.A.T.S listed: No.6629C-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191

Tel:+86(0)10-62304633-2678, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1.	TEST LABORATORY	. 3
1.1.	TESTING LOCATION	. 3
1.2.	TESTING ENVIRONMENT	. 3
1.3.	PROJECT DATA	. 3
1.4.	SIGNATURE	. 3
2.	CLIENT INFORMATION	. 4
2.1.	APPLICANT INFORMATION	. 4
2.2.	MANUFACTURER INFORMATION	. 4
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 5
3.1.	ABOUT EUT	. 5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	. 5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 5
3.4.	EUT SET-UPS	. 5
4.	REFERENCE DOCUMENTS	. 6
4.1.	REFERENCE DOCUMENTS FOR TESTING	. 6
5.	LABORATORY ENVIRONMENT	. 7
6.	SUMMARY OF TEST RESULTS	. 8
7.	TEST EQUIPMENTS UTILIZED	. 9
A NTR	NEV A. MEACHDEMENT DECHITC	10

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address: No. 12 Building, Shangsha Innovation and Technology Park, Futian

District

Postal Code: 518048

Telephone: +86(0)755-33322000 Fax: +86(0)755-33322001

1.2. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2013-11-06
Testing End Date: 2013-11-22

1.4. Signature

Du Zhaoxuan

(Prepared this test report)

Zhang Bojun

(Reviewed this test report)

Lu Minniu

Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: HONG KONG IPRO TECHNOLOGY CO.,LIMITED

Address /Post: ROOM C1D,6/F, WING HING INDUSTRIAL BUILDING,14 HING YIP

STREET, KWUN TONG, KOWLOON, HONG KONG.

Country: CHINA

Telephone: 00852-96669759 Fax 00852-21100996

2.2. Manufacturer Information

Company Name: HONG KONG IPRO TECHNOLOGY CO.,LIMITED

ROOM C1D,6/F, WING HING INDUSTRIAL BUILDING,14 HING YIP

STREET, KWUN TONG, KOWLOON, HONG KONG.

Country: CHINA

Address /Post:

Telephone: 00852-96669759 Fax 00852-21100996

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Mobile phone

Model Name A3
Marketing Name IPRO

FCC ID PQ4IPROA3

3.2. Internal Identification of EUT used during the test

EUT ID* SN or IMEI HW Version SW Version

EUT1 359452050997766 V2.0 A3 IPRO 3G W25 V0.6

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	Battery	1
AE2	Travel charger	/
AE3	USB cable	/
AE1		
Model		A3
Manufacturer		HONG KONG IPRO TECHNOLOGY CO.,LIMITED
Capacitance		2000mAh

3.7V

AE2

Model TC-01

Manufacturer HONG KONG IPRO TECHNOLOGY CO.,LIMITED

Length of cable 84cm

AE3

Model /
Manufacturer /
Length of cable 84cm

3.4. EUT set-ups

Nominal voltage

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1	EUT1+ AE1 + AE2	Charging mode
Set.2	EUT1+ AE1 + AE3	USB mode

^{*}EUT ID: is used to identify the test sample in the lab internally.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

GHz

Reference	Title	Version
FCC Part 15, Subpart B	Radio frequency devices	10-1-2012
		Edition
ANSI C63.4	Methods of Measurement of Radio	o-Noise 2003
	Emissions from Low-Voltage Electrica	l and

Electronic Equipment in the Range of 9 kHz to 40

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber (11.20 meters \times 6.10meters \times 5.60meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 0.5 Ω
Normalised site attenuation (NSA)	$<\pm3.5$ dB, 3 m distance, from 30 to 1000 MHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 0.5 Ω

Conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. =35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber (11.20 meters × 6.10 meters × 6.60 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C		
Relative humidity	Min. = 35 %, Max. = 60 %		
Shielding effectiveness	> 110 dB		
Electrical insulation	> 2MΩ		
Ground system resistance	< 0.5 Ω		
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 6 GHz, 3 m distance		

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:	
Р	Pass
NA	Not applicable
F	Fail

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Radiated Emission	15.109(a)	A.1	Р
2	Conducted Emission	15.107(a)	A.2	Р

7. Test Equipments Utilized

NO.	Description	TYPE	SERIES NUMBER	MANUFACTURE	CAL DUE DATE	CAL PERIOD
1	Test Receiver	ESCI	100701	R&S	2014.07.31	1 year
2	Test Receiver	ESCI	100702	R&S	2014.07.31	1 year
3	Test Receiver	FSP 40	100378	R&S	2013.12.21	1 year
4	BiLog Antenna	VULB9163	9163 330	Schwarzbeck	2014.02.24	3 years
5	LISN	ESH2-Z5	100196	R&S	2014.01.23	1 year
6	Dual-Ridge Waveguide Horn Antenna	3117	00066577	ETS-Lindgren	2016.04.01	3 years
7	Universal Radio Communication Tester	E5515C	GB47460389	Agilent	2014.08.01	1 year

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission (§15.109(a))

Reference

FCC: CFR Part 15.109(a)

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (USB mode of MS and charging mode of MS) at a distance of 3 meters is tested. Tested in accordance with the procedures of ANSI C63.4 - 2003, section 8.3.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode:

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. The model of the PC is Lenovo Thinkcentre M4099t, and the serial number of the PC is SA08850737. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

A.1.3 Measurement Limit

Limit from CFR Part 15.109(a)

Frequency of emission (MHz)	Field strength (microvolts/meter)
30-88	100
88-216	150
216-960	200
Above 960	500

^{*}Note: The original limit is defined at 10m test distance. This limit is calculated according to CISPR requirements.

A.1.4 Test Condition

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)	
30-1000	120kHz (IF bandwidth)	5	
1000-4000	1MHz/1MHz	15	

A.1.5 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

Result = $P_{Mea} + A_{Rpl} = P_{Mea} + G_A + G_{PL}$

Where

G_A: Antenna factor of receive antenna

GPL: Path Loss

P_{Mea}: Measurement result on receiver.

Note: the result contains vertical part and Horizontal part

Set.1 Charging mode

Frequency(MHz)	Result(dBuV/m)	A _{Rpl} (dB)	P _{mea} (dBuV)	Polarity
1178	31.5	-4.9	36.4	Н
1276	29.8	-4.4	34.2	V
1865	33.3	-0.1	33.4	V
2357	36.6	1.7	34.9	V
2651	35.1	2.3	32.8	Н
3240	35.3	3.3	32	Н

Set.2 USB mode

Frequency(MHz)	Result(dBuV/m)	A _{Rpl} (dB)	P _{Mea} (dBuV)	Polarity
1075	38.3	-5.6	43.9	V
1500	44	-3.4	47.4	V
1596	37.8	-2.5	40.3	V
2357	37.1	1.7	35.4	V
3000.125	38.5	3	35.5	Н
3208.375	38.2	3.3	34.9	Н

Figure A.1 Radiated Emission from 30MHz to 1GHz (Set.1, Charging mode)

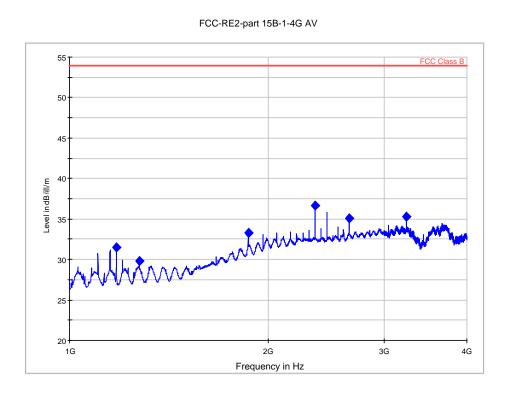


Figure A.2 Radiated Emission from 1GHz to 4GHz (Set.1, Charging mode)

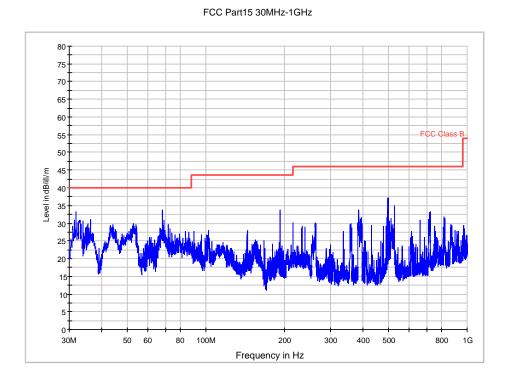


Figure A.3 Radiated Emission from 30MHz to 1GHz (Set.2, USB mode)

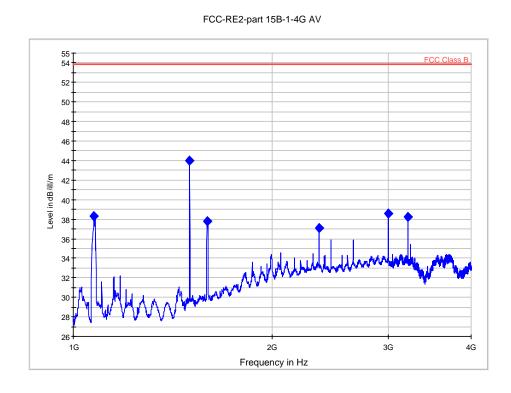


Figure A.4 Radiated Emission from 1GHz to 4GHz (Set.2, USB mode)

A.2 Conducted Emission (§15.107(a))

Reference

FCC: CFR Part 15.107(a)

A.2.1 Method of measurement

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits. Tested in accordance with the procedures of ANSI C63.4 - 2003, section 7.2.

A.2.2 EUT Operating Mode:

The MS is operating in the USB mode and charging mode. During the test MS is connected to a PC via a USB cable in the case of USB mode and is connected to a charger in the case of charging mode. The model of the PC is Lenovo Thinkcentre M4099t, and the serial number of the PC is SA08850737. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

A.2.3 Measurement Limit

Frequency of emission (MHz)	Conducted limit (dBµV)				
	Quasi-peak Average				
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency					

A.2.4 Test Condition in charging mode

Voltage (V)	Frequency (Hz)	
120	60	

RBW	Sweep Time(s)
9kHz	1

A.2.5 Measurement Results

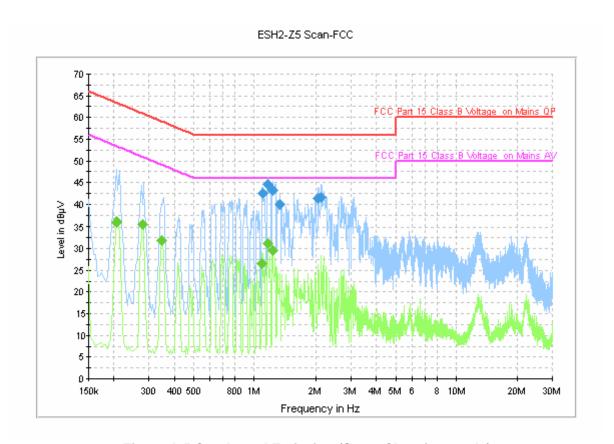


Figure A.5 Conducted Emission (Set.1, Charging mode)

Final Measurement Detector 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	(dBµV)
1.102000	42.5	FLO	L1	10.1	13.5	56.0
1.170000	44.5	FLO	L1	10.1	11.5	56.0
1.238000	43.2	FLO	L1	10.1	12.8	56.0
1.346000	39.9	FLO	N	10.1	16.1	56.0
2.058000	41.4	FLO	L1	10.1	14.6	56.0
2.126000	41.5	FLO	L1	10.1	14.5	56.0

Final Measurement Detector 2

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	$(dB\mu V)$
0.206000	36.1	FLO	L1	10.0	17.3	53.4
0.278000	35.5	FLO	L1	10.0	15.4	50.9
0.346000	32.0	FLO	L1	10.0	17.1	49.1
1.094000	26.5	FLO	L1	10.1	19.5	46.0
1.170000	31.2	FLO	L1	10.1	14.8	46.0
1.238000	29.6	FLO	L1	10.1	16.4	46.0

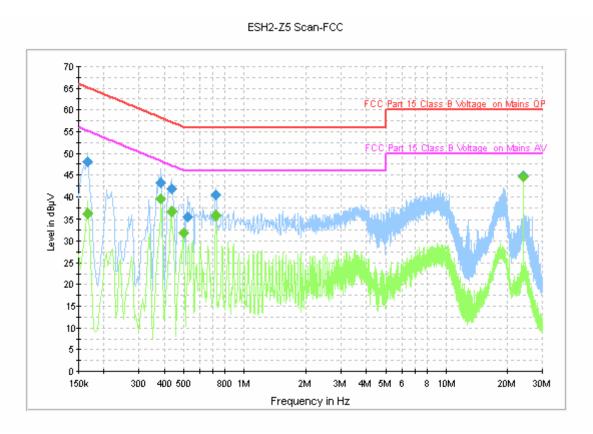


Figure A.6 Conducted Emission (Set.2, USB mode)

Final Measurement Detector 1

Frequency	QuasiPeak	DE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	$(dB\mu V)$
0.166000	48.0	FLO	L1	10.0	17.1	65.2
0.382000	43.1	FLO	N	10.0	15.1	58.2
0.434000	41.7	FLO	L1	10.0	15.5	57.2
0.526000	35.6	FLO	L1	10.0	20.4	56.0
0.722000	40.5	FLO	L1	10.0	15.5	56.0
24.002000	44.7	FLO	N	10.6	15.3	60.0

Final Measurement Detector 2

Frequency	Average	DE	T :	Corr.	Margin	Limit
(MHz)	(dBµV)	PE	Line	(dB)	(dB)	(dBµV)
0.166000	36.4	FLO	L1	10.0	18.8	55.2
0.386000	39.5	FLO	N	10.0	8.7	48.1
0.434000	36.8	FLO	L1	10.0	10.4	47.2
0.498000	31.9	FLO	L1	10.0	14.1	46.0
0.722000	35.8	FLO	L1	10.0	10.2	46.0
24.002000	44.6	FLO	N	10.6	5.4	50.0

END OF REPORT