FCC Part 15 Subpart E Test Report
for
Wireless Bypass
on the
Cable Access Radio HUB
Model: DL-5800H24

FCC ID: PPS-DL-5800H24

Date of Report: June 26, 2001

Job # J20046196

Date of Test: June 11, 2001 - June 19, 2001

Lab Code 100270-0

Nicholas Abbondante, Test Engineer

Michael F. Murphy, Staff Engineer

This report shall not be reproduced except in full, without written approval of Intertek Testing Services.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

The results contained in this report were derived from measurements performed on the identified test samples. Any implied performance of other samples on this report is dependent on the representative of the samples tested.

Date of Test: June 11, 2001-June 19, 2001

Table of Contents

1.0	Summ	ary of Tests	1
2.0	Gener	al Description	2
	2.1	Product Description	
	2.2	Related Submittal(s) Grants	
	2.3	Test Methodology	
	2.4	Test Facility	
3.0	Syster	n Test Configuration	4
	3.1	Support Equipment and description	4
	3.2	Block Diagram of Test Setup	
		3.3 Justification	6
	3.4	Software Exercise Program	
	3.5	Mode of operation during test	
	3.6	Modifications required for Compliance	
	3.7	Additions, deviations and exclusions from standards	6
4.0	Measi	rement Results	7
	4.1	Conducted Output Power at Antenna Terminal	7
	4.2	26 dB Bandwidth	8
	4.3	Power Density	9
	4.4	The ratio of the peak excursion of the modulation envelope to the peak power	r10
	4.6	Transmitter Radiated Emissions in Restricted Bands	18
	4.8	AC Line Conducted Emission	19
		4.8.1 Line Conducted Emission Limits	
	4.9	Radiated Emissions from Digital Section	21
	4.10	Radiated Emissions from Receiver Section	22
	4.11	Transmitter Duty Cycle Calculation / Measurements	23
	4.12	Frequency Stability	
5.0	List o	f Test Equipment	25

Date of Test: June 11, 2001-June 19, 2001

1.0 Summary of Tests

Wireless Bypass, Model: DL-5800H24 FCC ID: PPS-DL-5800H24

TEST	REFERENCE	RESULTS
Output power	15.407 (a)	Pass
26 dB Bandwidth*	15.407 (a)	For calculation only
Power Density	15.407 (a) (5)	Pass
The ratio of the peak excursion of the modulation envelope to the peak transmit power	15.407 (a) (6)	Pass
Out of Band Antenna Conducted Emission	15.407 (b)	Pass
Radiated Emission in Restricted Bands	15.205	Pass
AC Conducted Emission	15.207	Pass
Radiated Emission from Digital Module	15.209	Pass
Radiated Emission from Receiver	15.209	Pass
Radiation Exposure Requirement	1.1310	Pass
Frequency Stability	15.407(g)	Pass
Antenna Requirement	15.203	Pass, Professional Install

Test Engineer:	Micholas Abbondante	Date: _	6/29/01
Staff Engineer:	May	Date: _	6/29/01

Michael F. Murphy

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

2.0 **General Description**

Product Description 2.1

The EUT Model No.: DL-5800H24 is an intentional transmitter used for wireless point-to-point and point-tomultipoint communications operating in the frequency range: 5.725-5.825 GHz.

A pre-production version of the sample was received on June 11, 2001 in good condition.

Overview of the Cable Access Radio HUB

Applicant	Wireless Bypass, Inc.		
Trade Name & Model No.	Cable Access Radio HUB, Model: DL-5800H24		
FCC Identifier	PPS-DL-5800H24		
Use of Product	Point-to-point fixed and point-to-multipoint wireless interconnect		
Type of Transmission	256 QAM, 64 QAM		
Maximum RF Output (dBm) *	22.1 dBm		
Frequency Range (MHz)	5.725 - 5.825 GHz		
Number of Channel(s)	3		
Antenna(s) & Gain, dBi	Point-to-Point: Flat Panel Antenna, 23 dBi Point-to-Multipoint: Flat Panel Antenna, 23 dBi Omni-Directional, 7.5 dBi		
Antenna Requirement	 [] The EUT uses a permanently connected antenna. [] The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector. [x] The EUT requires professional installation (attach supporting documentation if using this option). 		
Manufacturer name & address	Wireless Bypass, Inc. 43 Northwestern Drive Salem, MA, 03079		

^{*} The output power depends on the gain of the antenna used.

2.2 Related Submittal(s)/Grants

Cable Access Radio CPE Model: DL-5800C24 FCC ID: PPS-DL-5800C24

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

70 Codman Hill Road, Boxborough, MA, 01719

2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the Tables in this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

Site 1C (Top Site) is a 3m and 10m sheltered emissions measurement range located in a light commercial environment in Boxborough, Massachusetts. It meets the technical requirements of ANSI C63.4-1992 and CISPR 22:1993/EN 55022:1994 for radiated and conducted emission measurements. The shelter structure is entirely fiberglass and plastic, with outside dimensions of 33 ft x 57 ft. The structure resembles a quonset hut with a center ceiling height of 16.5 ft.

The testing floor is covered by a galvanized sheet metal groundplane that is earth-grounded via copper rods around the perimeter of the site. The joints between individual metal sheets are bridged with a 2 inch wide metal strips to provide low RF impedance contact throughout. The sheets are screwed in place with stainless steel, round-head screws every three inches. Site illumination and HVAC are provided from beneath the ground reference plane through flush entry ports, the port covers are electrically bonded to the ground plane.

A flush metal turntable with 12 ft. diameter and 5000 lb. load capacity is provided for floor-standing equipment. A wooden table 80 cm high is used for table-top equipment. The turntable is electrically connected to the ground plane with three copper straps. The straps are connected to the turntable at the center of it with ground braid. The copper strap is directly connected to the groundplane at the edges of the turntable. The turntable is located on the south end of the structure and the antennas are mounted 3 and 10 meters away to the north. The antenna mast is a non-conductive with remote control of antenna height and polarization. The antenna height is adjustable from 1 to 4 meters.

All final radiated emission measurements are performed with the testing personnel and measurement equipment located below the ground reference plane. The site has a full basement underneath the turntable where support equipment may be remotely located. Operation of the antenna, turntable and equipment under test is controlled by remote controls that manipulate the antenna height and polarization and with a turntable control. Test personnel are located below the ellipse when measurements are performed, however the site maintains the ability of having personnel manipulate cables while monitoring test equipment. Ambient radiated emissions are 6 dB or more below the relevant FCC emission limits.

AC mains power is brought to the equipment under test through a power line filter, to remove ambient conducted noise. 50 Hz (240 VAC single phase), 60 Hz power (120 VAC single phase, 208 VAC three phase), and 60 Hz (480 VAC three phase) are available. Conducted emission measurements are performed with a Line Impedance Stabilization Network (LISN) or Artificial Mains Network (AMN) bonded to the ground reference plane. A removable vertical groundplane (2 meter X 2 meter area) is used for line-conducted measurements for table top equipment. The vertical groundplane is electrically connected to the reference groundplane.

Intertek Testing Services Wireless Bypass, FCC ID: PPS-DL-5800H24

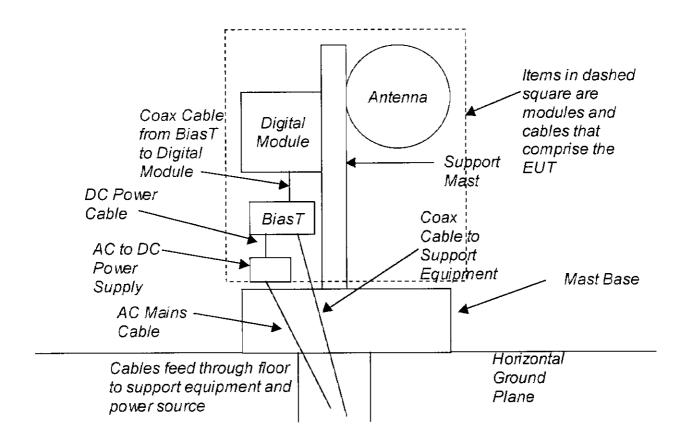
Date of Test: June 11, 2001-June 19, 2001

3.0 **System Test Configuration**

Support Equipment, Cables, and Antenna List 3.1

Description:	Model #:	Serial #:	FCC ID:
3Com Cable Modem	3CR29220	HAZHA8BDF8	N/L
3Com Cable Modem	3CR29220	HAZHA8BDCO	· N/L
RIC Monitor	X-554M	CZC000405074	HSUTRLX-554
Samtron Monitor	SC-528UXL	A9439024501	CSYSC-528UX
3Com Hub	3C16592A	0100/7D9F042259	HED3C16593A
Riverdelta CMTS	BSR1000	0110A0006	N/L
WIN Computer	WNP-II233-128-18.2	WN9710-3754	N/L
Compaq Computer	5BW130	1X06DTY8120A	N/L
Compaq Mouse	334584-007	334584-007	JNZ201213
Microsoft Mouse	02695686	02695686	C3KKMP1
Compaq Keyboard	SDM454OUL	B354ABUOAJHPPO	N/L
NMB Keyboard	RT2348TW	C0281497	AQ6-MTN71BZ15DIP
Cable Access Radio Hub	DL-5800C24	ENG1	(Pending) PPS-DL- 5800C24

Cables:


Description:	Shield:	Connector:	Length:	Quantity:
AC Mains	None	Plastic	2	. 1
Coaxial	Coaxial	Full 360° Metal	3	1

Antennas:

Description	Usage	Model No.
Telex Omni-Directional Antenna 7.5 dBi	Point-to-Multipoint	5830AA
Gabriel Flat Panel Antenna 23 dBi	Point-to-Multipoint, Point-to-Point	DFPD 1-52
Radiowaves 2 Parabolic Antenna 28 dBi	Point-to-Point	SP2-5.8
Radiowaves 4' Parabolic Antenna 34.6 dBi	Point-to-Point	SP4-5.8
Radiowaves 6' Parabolic Antenna 37.6 dBi	Point-to-Point	SP6-5.8

Date of Test: June 11, 2001-June 19, 2001

3.2 Block Diagram of Test Setup

Wireless Bypass, FCC ID: PPS-DL-5800H24

70 Codman Hill Road, Boxborough, MA, 01719

Date of Test: June 11, 2001-June 19, 2001

3.3 Justification

For emission testing, the Equipment Under Test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

The EUT is wired to transmit full power.

The signal is maximized through 360 degree rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

All support equipment was remotely located. The EUT was placed in the center of the turntable.

3.4 Software Exercise Program

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to a typical use. Data was transmitted through the system in order to activate the transmitter circuitry. The receiver circuitry was connected to the transmitted signal to activate receiver circuitry. Care was taken to ensure proper power supply voltages during testing.

3.5 Mode of operation during test

100% time transmitting signal on low and high channels.

3.6 Modifications required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Wireless Bypass prior to compliance testing):

A prescan was performed to determine if the EUT had any spurious emissions. Due to the results of this scan, the following modifications were required:

- 1) Conductive gasket (Manufacturer: TennRich P/N:FBC0402) was placed between the access panel and the chassis of the EUT with paint removed for better conductive contact.
- 2) A minimum of 20' of coaxial cable must separate the BiasT Module of the EUT from the Digital Module.

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

Date of Test: June 11, 2001-June 19, 2001

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminal FCC Rule 15.407(a)

Requirement:

For fixed point-to-point U-NII devices operating in 5.725-5.825 GHz band, the peak transmit power shall not exceed the lesser of 1 W (30 dBm) or 17 dBm + 10Log(B), where B is the 26 dB emission bandwidth in MHz (for antenna gain up to 6 dBi).

Procedure:

The antenna port of the EUT was connected to the input of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal.

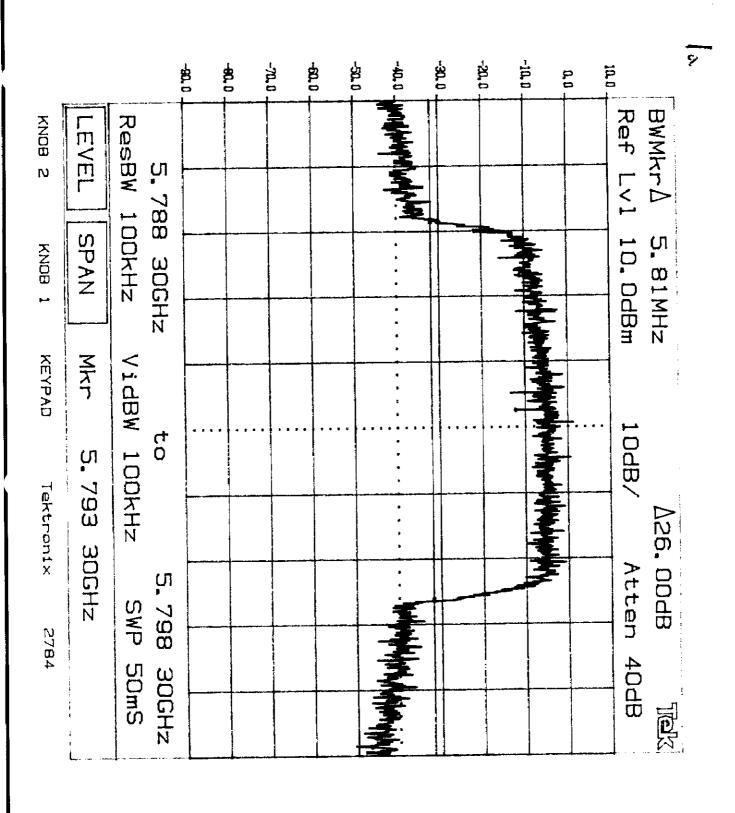
Result:

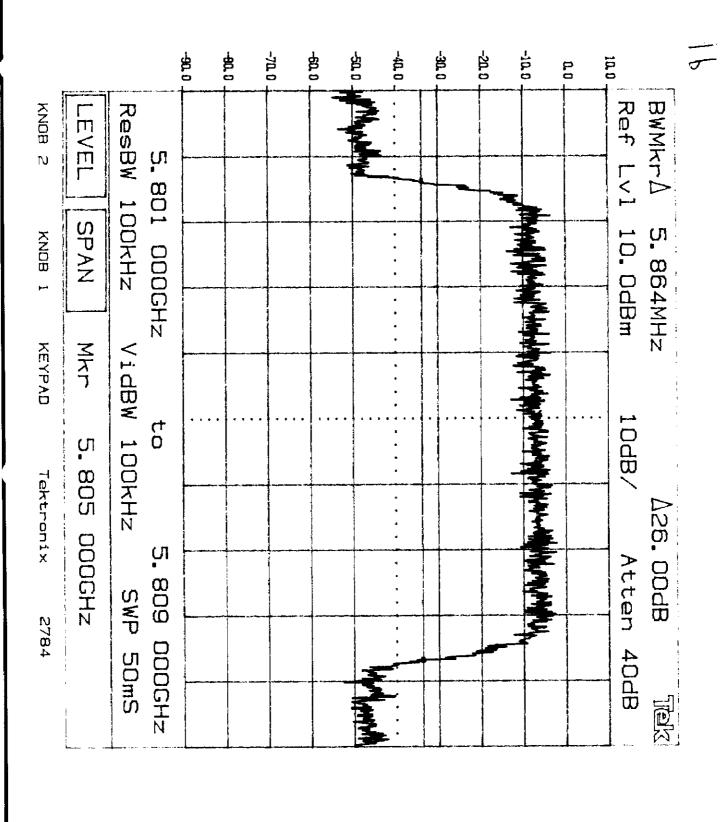
Frequency, MHz	Output Power, mW	Output Power, dBm	Limit, dBm	Maximum allowed antenna gain, dBi
Low Channel: 5793	163.0	22.1	24.7	8.6(p-mp), 25.6(p-p)
Mid Channel: 5805	102.2	20.1	24.7	10.6(p-mp), 27.6(p-p)
High Channel: 5817	65.0	18.1	24.7	12.6(p-mp), 29.6(p-p)

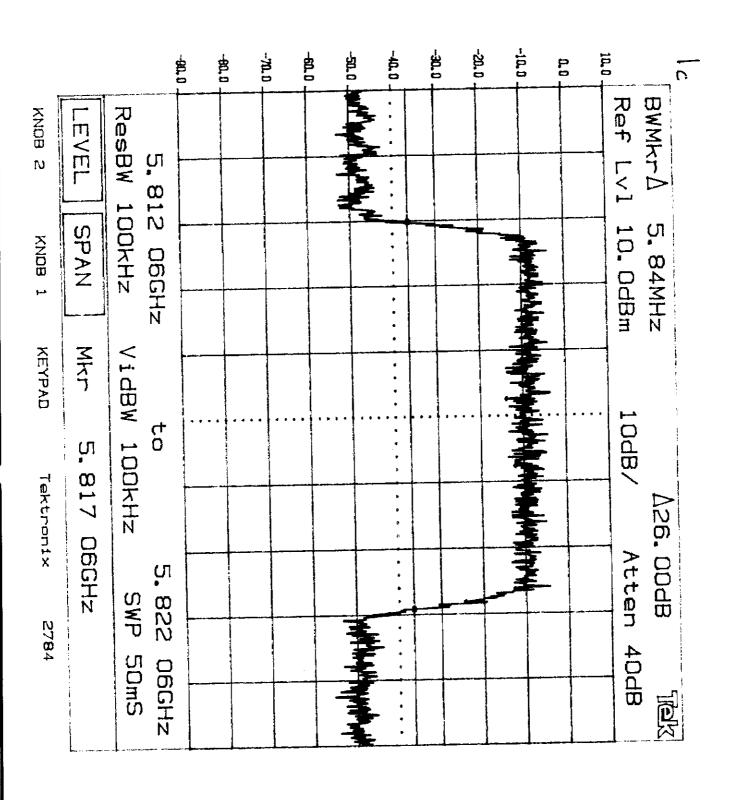
Note:

- 1. The EUT Output Power was set to maximum to produce the worse case test result.
- 2. When a higher gain antenna is used, the Output Power will be reduced further by a 1:1 ratio equal to the amount by which the antenna gain exceeds the allowed antenna gain for point to multipoint use and for point to point use.
- 3. (p-mp) refers to "Point to Multipoint" operation, while (p-p) refers to "Point to Point" operation.

Date of Test: June 11, 2001-June 19, 2001


4.2 26 dB Bandwidth FCC Rule 15.407(a) (for calculation only)


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer Res BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 26 dB lower than PEAK level. The 26 dB bandwidth was determined from where the channel output spectrum intersected the display line.


Frequency, MHz	26 dB Bandwidth, MHz
5793	5.81
5805	5.86
5817	5.84

Refer to the following plots for 26 dB bandwidth:

Plot 1a: Low Channel 26 dB Bandwidth Plot 1b: Mid Channel 26 dB Bandwidth Plot 1c: High Channel 26 dB Bandwidth

Date of Test: June 11, 2001-June 19, 2001

4.3 Power Density

Requirement:

For fixed point-to-point U-NII devices operating in 5.725-5.825 GHz band peak power spectral density shall not exceed 17 dBm in any 1 MHz band (for antenna gain up to 6 dBi for point to multipoint operation and gain up to 23 dBi for point to point operation). This gives an effective EIRP limit of 23.0 dBm for point to multipoint operation and 40 dBm for point to point operation.

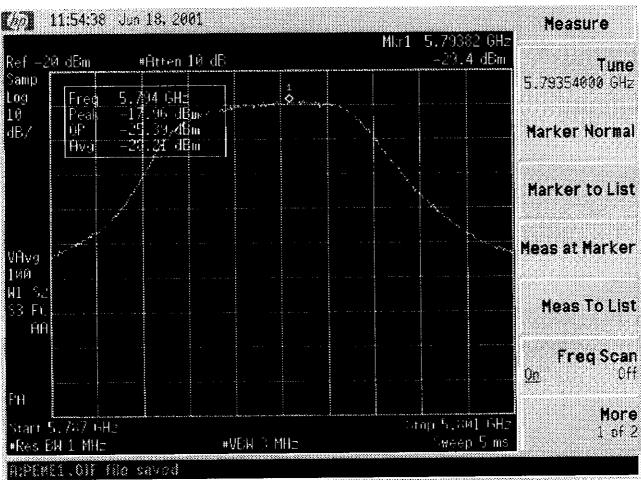
Procedure:

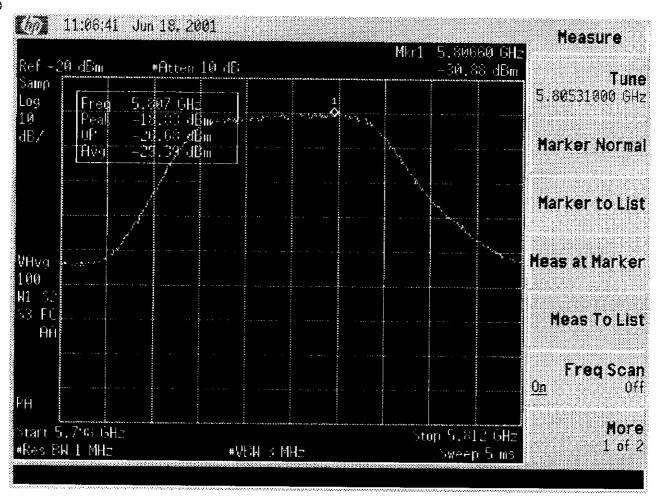
Antenna output of the EUT was coupled directly to spectrum analyzer; an external attenuator and cable were used; the losses are 30 dB for the attenuator and 5.7 dB for the cable.

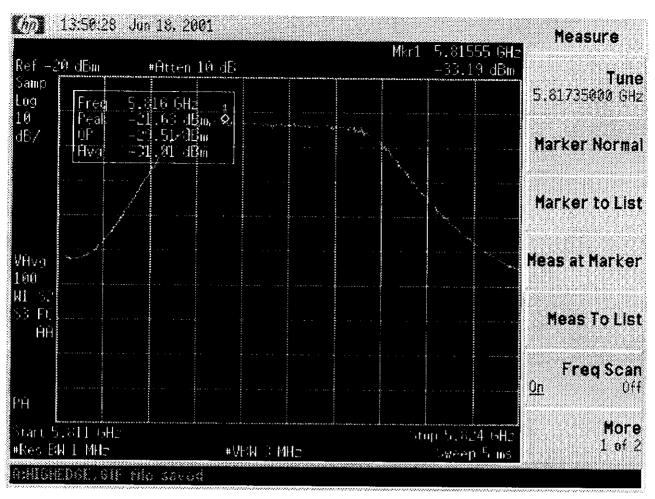
The spectrum analyzer Resolution Bandwidth was set to 1 MHz and Video Bandwidth was set to 3 MHz. The START and STOP frequencies were set to the band edges of the maximum output passband. The spectrum analyzer was set to video average, 100 sweeps were used. Maximum peak-power spectral density reading was recorded.

Result (includes losses through the measurement system):

Frequency MHz	Power Density DBm	EIRP Limit DBm	Maximum Allowed Antenna Gain dBi
5793	17.7	23.0(p-mp), 40(p-p)	5.3 (p-mp), 22.3 (p-p)
5805	16.9	23.0(p-mp), 40(p-p)	6.1 (p-mp), 23.1 (p-p)
5817	14.1	23.0(p-mp), 40(p-p)	8.9 (p-mp), 25.9 (p-p)


Refer to the following plots for power density data:


Plot 2a: Low Channel Power Density Plot 2b: Mid Channel Power Density Plot 2c: High Channel Power Density


Note:

- 1. (p-mp) refers to "Point to Multipoint" operation, while (p-p) refers to "Point to Point" operation.
- 2. When an antenna is used with gain higher than that specified as allowable for either point to point or point to multipoint operation, the output power shall be reduced by the amount in dB that the antenna gain exceeds the allowed antenna gain.

Za

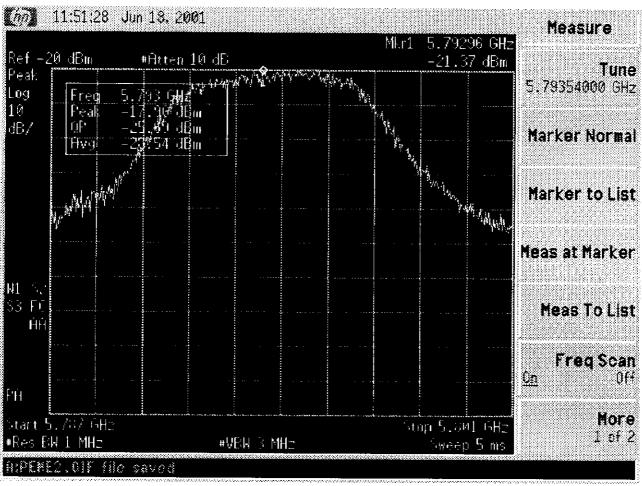
70 Codman Hill Road, Boxborough, MA, 01719

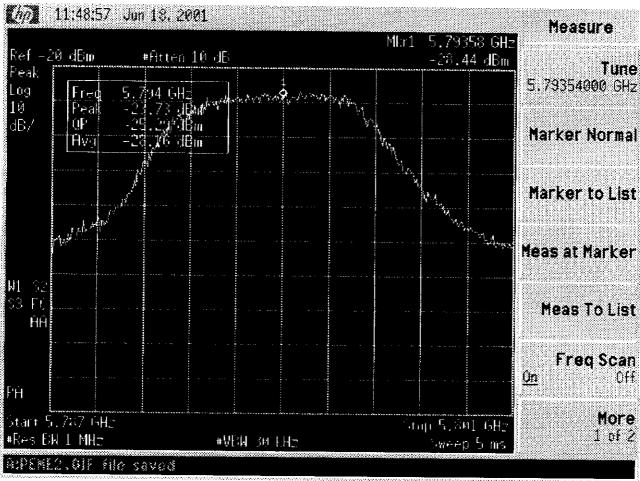
Wireless Bypass, FCC ID: PPS-DL-5800H24

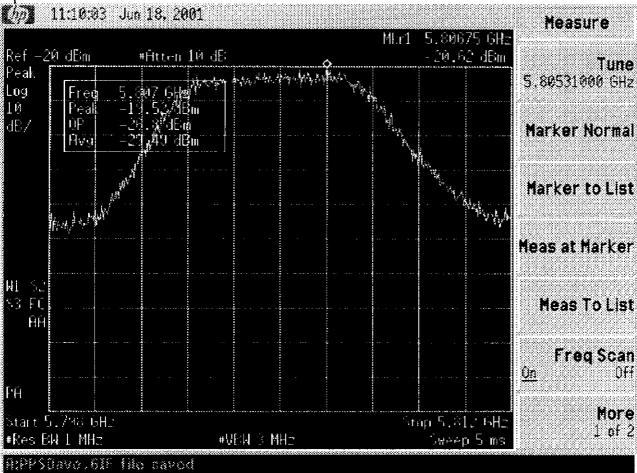
Date of Test: June 11, 2001-June 19, 2001

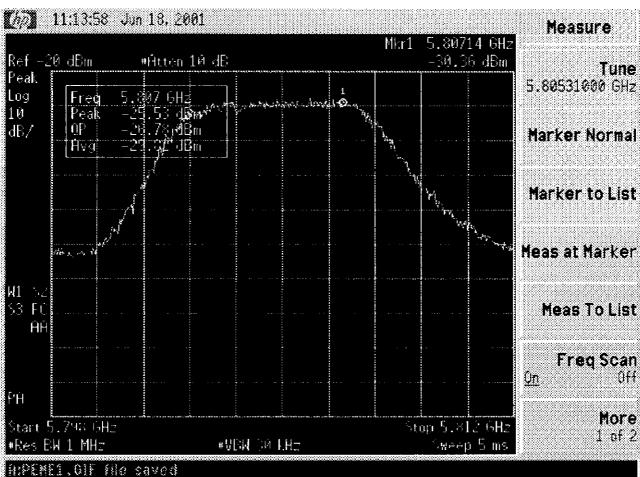
The ratio of the peak excursion of the modulation envelope to the peak power FCC Rule 15.407(a)(6)

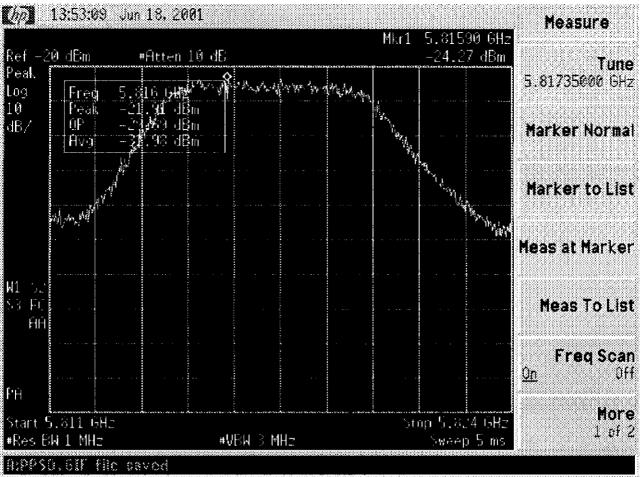
Requirement:

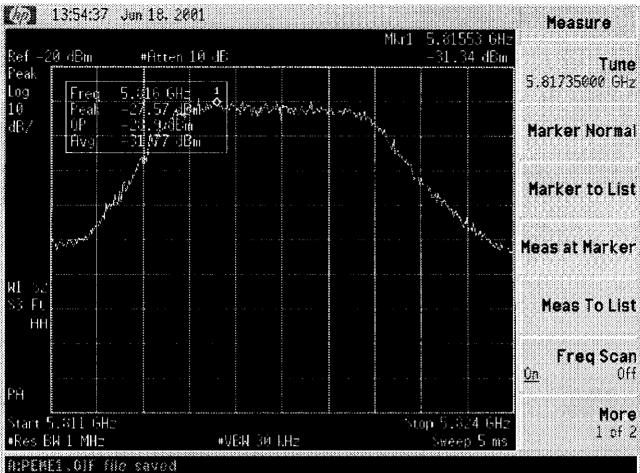

The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13 dB.


Procedure:


Spectrum Analyzer was connected to the output of the EUT. The Resolution Bandwidth was set to 1 MHz. Two plots were made in each band: with the Video Bandwidth set to 3 MHz and with the Video Bandwidth set to 30 kHz. The difference between spectrum analyzer readings indicates the ratio of the peak excursion of the modulation envelope to the peak transmit power.


Test Result:


See attached plots 3.a1, 3.a2, 3.b1, 3.b2, 3.c1 and 3.c2 for the ratio of the peak excursion of the modulation envelope to the peak power. The maximum Ratio is 6.01 dB.



Wireless Bypass, FCC ID: PPS-DL-5800H24 Date of Test: June 11, 2001-June 19, 2001

4.5 Out-of-Band Emissions FCC Rule 15.407(b)

Requirement:

For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz.

The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Note that this gives a spurious emission limit of 80 dBuV for out of band emissions, which far exceeds the limits set forth in 15.209. Therefore the limits of 15.209 were applied to any radiated emissions below 1 GHz.

Procedure:

For radiated spurious measurements, the spectrum analyzer was connected to an antenna set that spanned the range from 30 MHz to 40 GHz. The EUT was connected to the highest and lowest gain antenna of each type marketed with the EUT. For frequencies above 1 GHz, the Resolution Bandwidth was set to 1 MHz, and average measurements were performed. For frequencies below 1 GHz, the Resolution Bandwidth was set 100 kHz, and quasi-peak measurements were performed. Several plots were made in the frequency range from 30 MHz to 40 GHz. For band edge measurements, the spectrum analyzer was connected directly to the EUT antenna port via a 30 dB attenuator and a cable with 5.7 dB of loss at the transmit frequency range.

Result:

Note that all emissions detected above 1 GHz were determined to be ambient (by interrupting power to the EUT and observation that the emissions still persisted) with exception to the fundamental transmit frequency, which is measured elsewhere in this report. Also note that the marker resolution of the analyzer lead to inaccuracy in the frequency value of the fundamental emission. These values are not being measured. Photos are provided.

Refer to the following plots and data tables for spurious radiated emissions data:

Plot 4.a1 – 4.a8 and Table A: 2' Parabolic 28 dBi Gain (Point-Point)

Plot 4.b1 – 4.b8 and Table B: 6' Parabolic 37.6 dBi Gain (Point-Point)

Plot 4.cl - 4.c8 and Table C: Flat Panel 23 dBi Gain (Point-Point)

Plot 4.d1 – 4.d8 and Table D: Flat Panel 23 dBi Gain (Point-Multipoint)

Plot 4.e1 - 4.e8 and Table E: Omni-Directional 7.5 dBi Gain (Point-Multipoint)

Refer to the following plots for antenna conducted band edge measurements:

Plot 4.f1 – 4.f2: Low Channel Band Edge Measurements, 5793 MHz.

Plot 4.g1 - 4.g2: Mid Channel Band Edge Measurements, 5805 MHz.

Plot 4.h1 – 4.h2: High Channel Band Edge Measurements, 5817 MHz

The EUT was scanned for spurious emissions while connected to the highest and lowest gain antennas of each type that is marketed with the EUT. Band edge measurements were taken by directly connecting the spectrum analyzer to the EUT antenna port.

Date of Test: June 11, 2001-June 19, 2001

Operating frequency	Frequency, MHz	Conducted Level, dBm	EIRP Limit, dBm/MHz
	5720	-34.4	-17.0
5793 MHz		from plot 4.f1	
	5830	-26.3	-17.0
		from plot 4.f2	

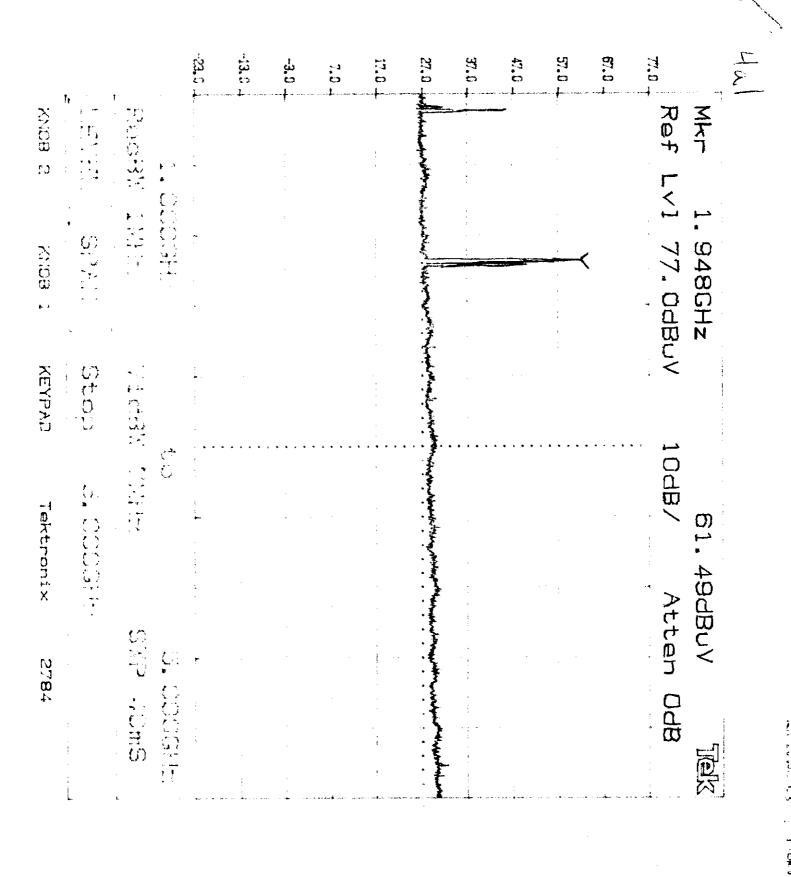
Operating frequency	Frequency, MHz	Conducted Level, dBm	Limit, dBm/MH2
	5723	-34.7	-17.0
5805 MHz		from plot 4.gl	
	5830	-26.5	-17.0
	: i	from plot 4.g2	

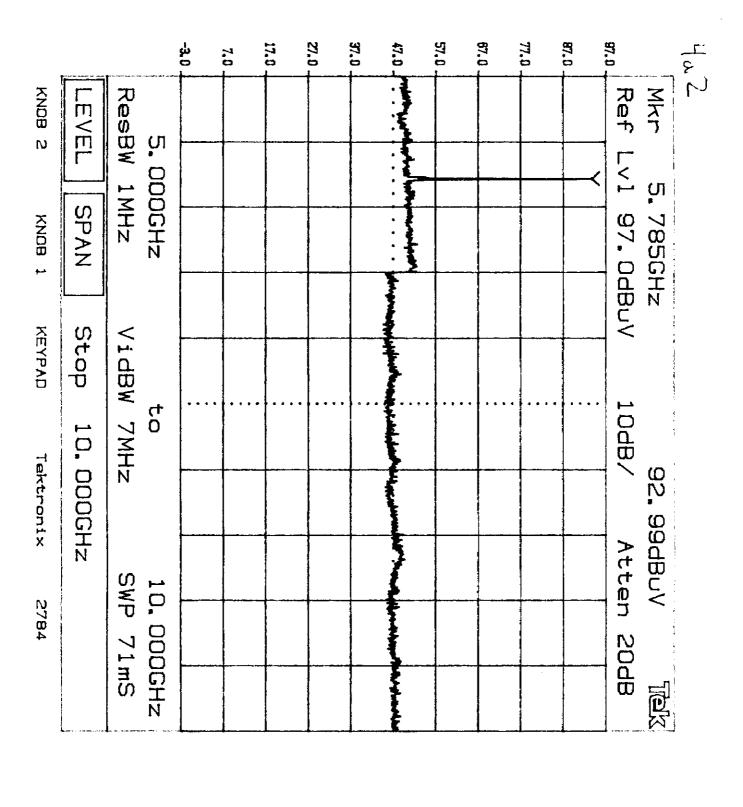
Operating frequency	Frequency, MHz	Conducted Level, dBm	Limit, dBm/MHz
	5720	-34.8	-17.0
5817 MHz		from plot 4.g1	
	5830	-25.9	-17.0
		from plot 4.g2	

Radiated Emissions / Interference

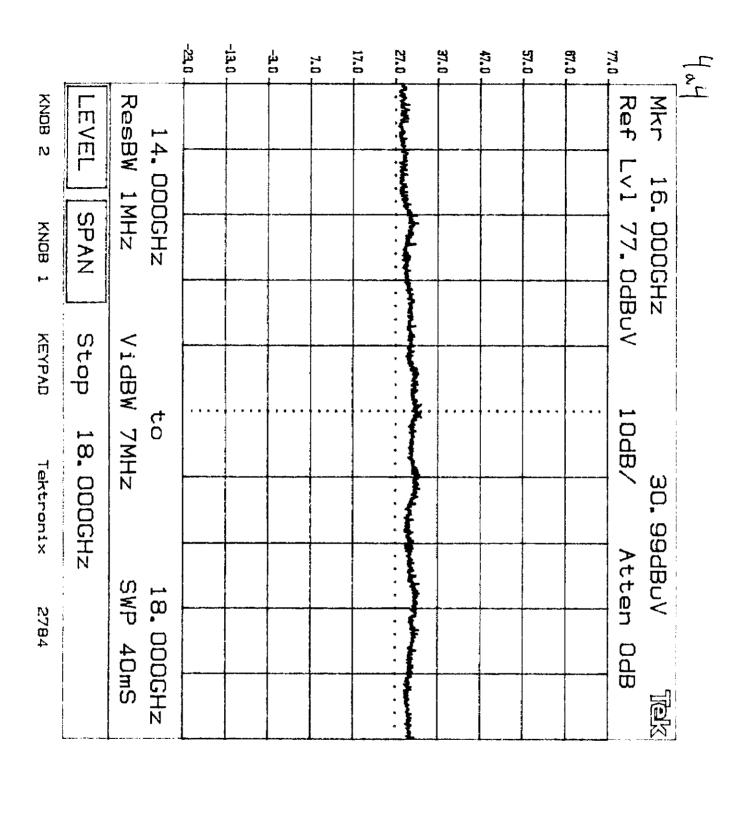
Company: Wireless Bypass ested by: Nicholas Abbondante

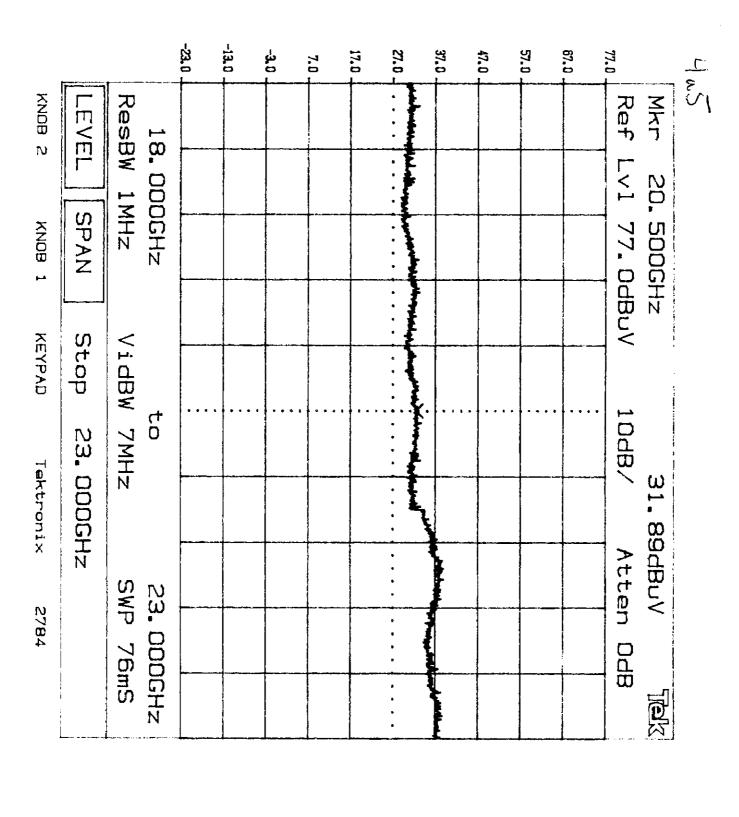
 Model:
 DL-5800H24
 Location:
 Site 1C

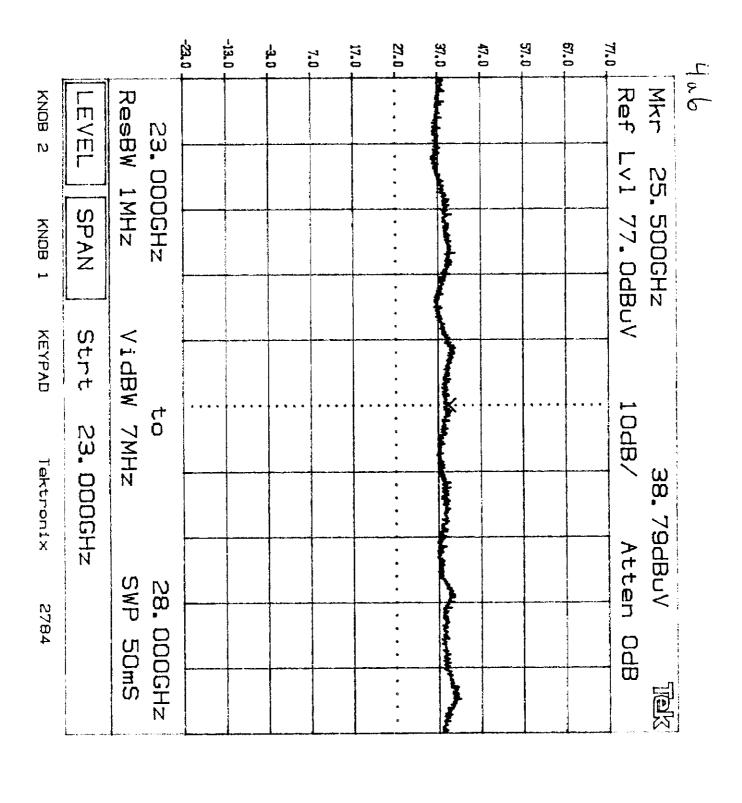

 Job No.:
 J20046196
 Detector:
 HP 8546A

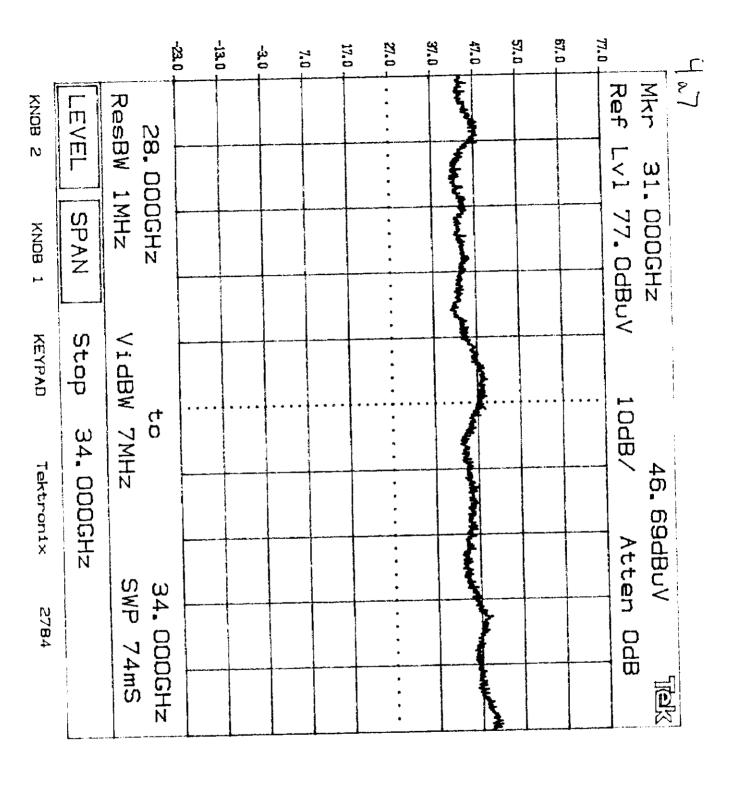

 Date:
 06/15/01
 Antenna:
 LOG1

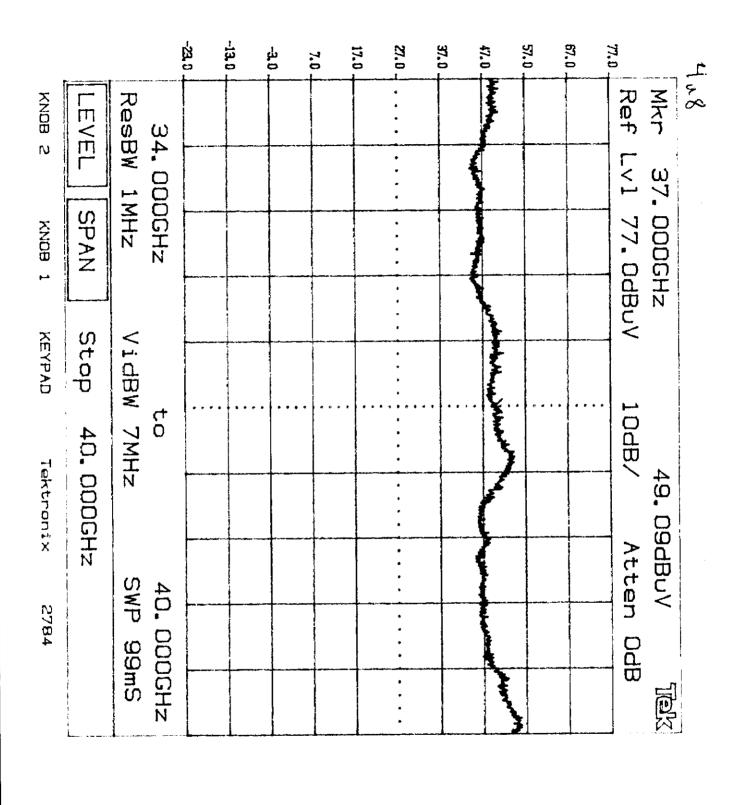
 Standard:
 FCC15
 PreAmp:
 0


Class: A Group: None Cable(s): 1C, 3 METER, PRIMAR
Notes: Radiowaves 2' parabolic on HUB Distance: 3 meters


Ant.			Antenna	Cab/e	Pre-amp	Distance			
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	dΒ	d₿	ďΒ	dB(uV/m)	dB(uV/m)	d₿
V	38.020	14.8	13.5	0.7	0.0	0.0	29.0	40.0	-11.0
V	43.780	23.4	11.0	0.8	0.0	0.0	35.1	40.0	-4.9
V	62.220	19.4	7.1	0.9	0.0	0.0	27.4	40.0	-12.6
V	74,560	21.7	6.4	0.9	0.0	0.0	29.0	40.0	-11.0
V	108.800	14.5	7.3	1.3	0.0	0.0	23.0	43.5	-20.5
V	126.300	16.7	6.8	1.4	0.0	0.0	24.8	43.5	-18.7
V	136.700	13.3	7.2	1.4	0.0	0.0	21.9	43.5	-21.6






	•		**	р П	7.0	17.0	27.0	37.0	47. D _	57.0	67.0	77.0	87. O _	97.0 -
KNDB 2	LEVEL	ResBW	10.						A PARTY OF THE PAR					NA Na t
		11	. 00											12
KNOB 1	SPAN	1MHz	10.000GHz						The same of the sa					Mkr 12.000GHz Ref Lvl 97.0dBuV
									A STATE OF THE STA					JGBC 3Hz
KEYPAD	Stop	VidBW 7MHz							The state of					V
Te	14.	7MH	ţ				•••		Kitata					10dB/
Tektronix	14. 000GHz	N												18, 79
	N	S							4)dBuV Atten
2784		SWP	14. 000GHz					-	1					ا د
4		71mS	000				-	-	<u></u>		ļ			量 20dB
		S	开z						1					

Radiated Emissions / Interference

Table: B

Company: Wireless Bypass

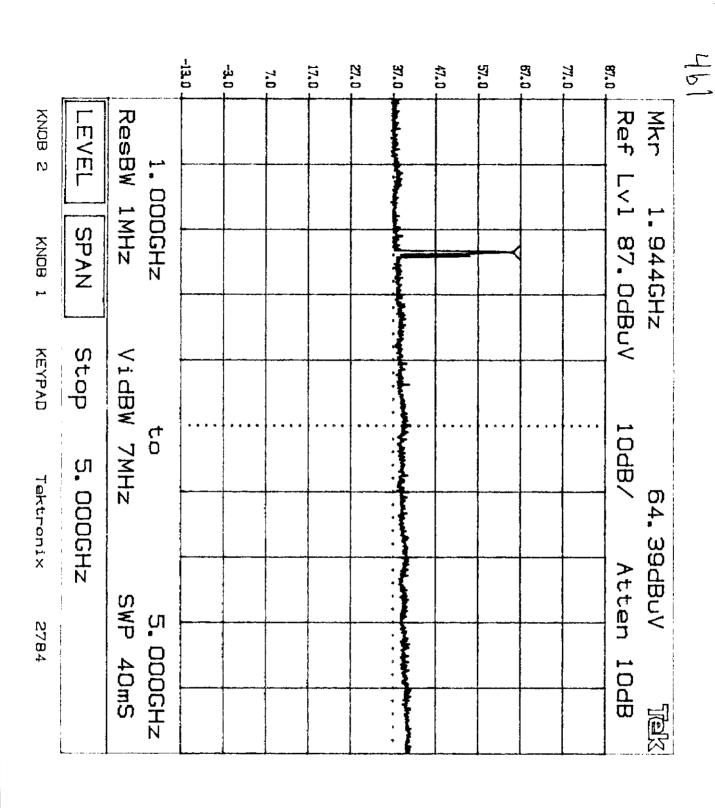
Model: DL-5800H24 Job No.: J20046196 Date: 06/14/01

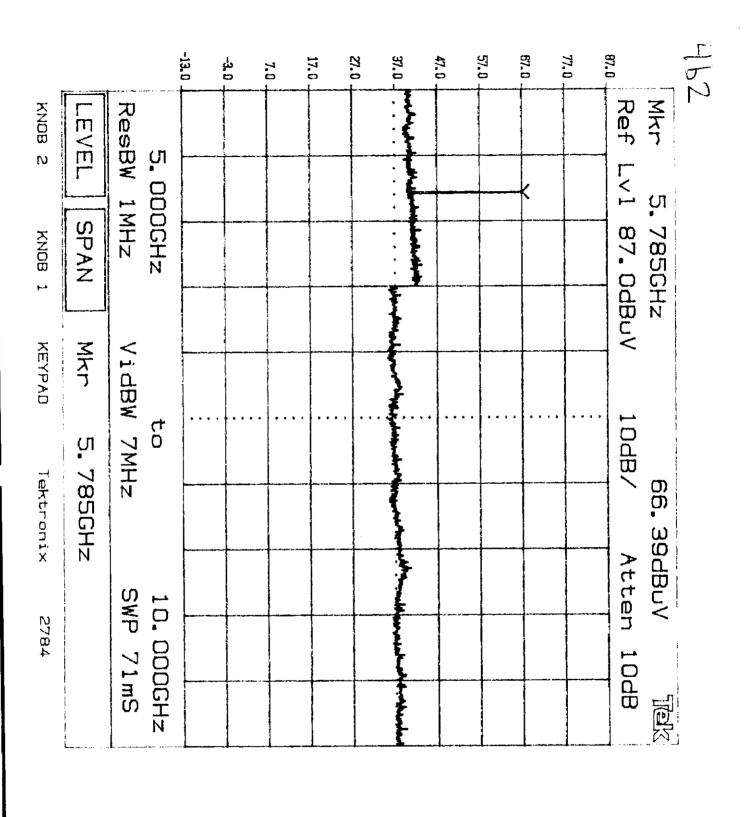
Standard: FCC15

Class: A Group: None
Notes: Radiowaves 6' Parabolic on HUB

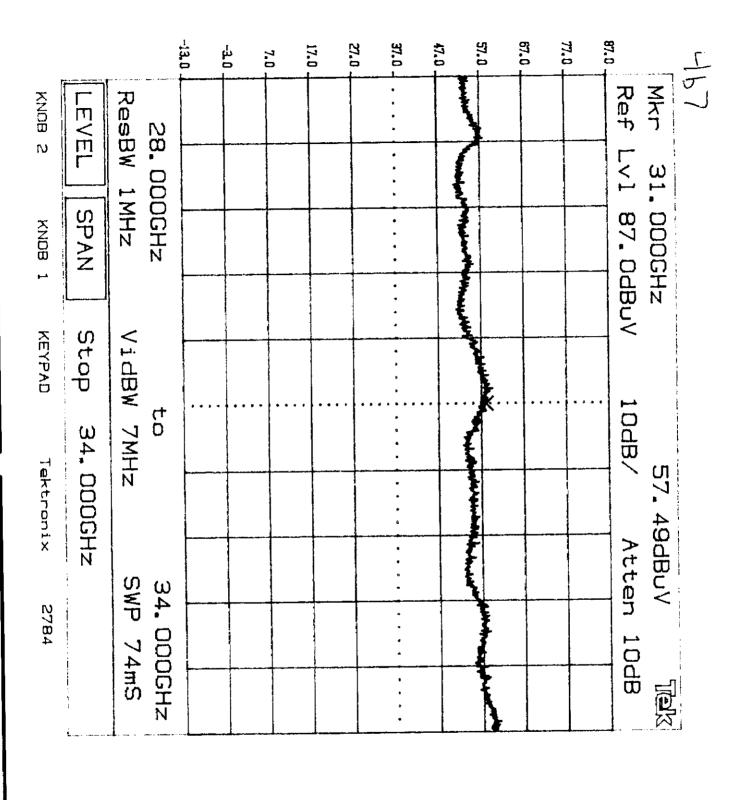
ested by: Nicholas Abbondante

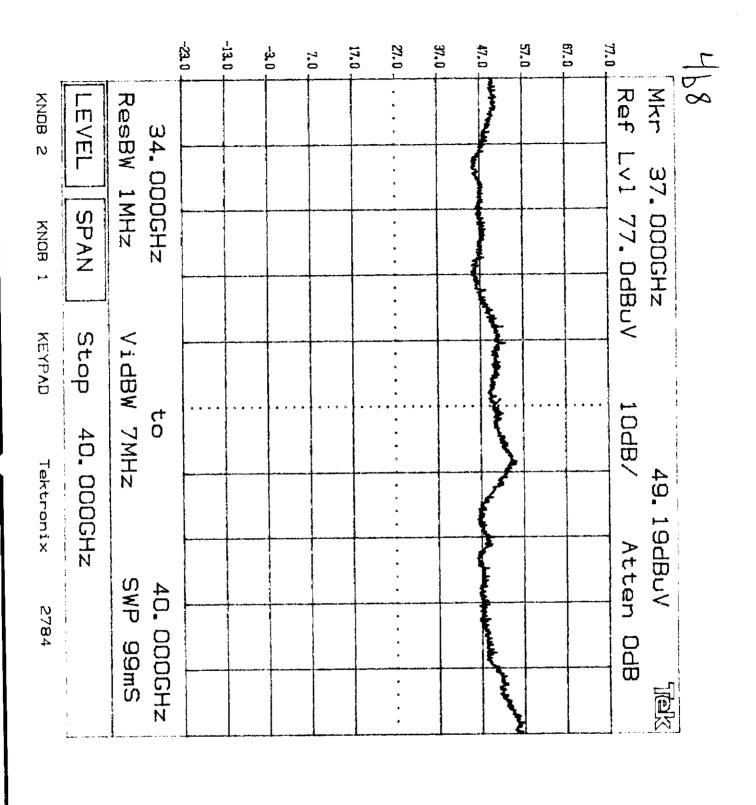
Location: Site 1C Detector: HP 8546A Antenna: LOG1


PreAmp: 0


Cable(s): 1C, 3 METER, PRIMAR

Distance: 3 me


meters


Ant.	-		Antenna	Cable	Pre-amp	Distance			
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	dΒ	dΒ	dB	dB(uV/m)	dB(uV/m)	d₿
V	36.840	14.8	14.2	0.7	0.0	0.0	29.6	40.0	-10.4
V	43.810	25.2	11.0	0.8	0.0	0.0	36.9	40.0	-3.1
V	74.560	21.2	6.4	0.9	0.0	0.0	28.5	40.0	-11.5
V	108.800	17.8	7.3	1.3	0.0	0.0	26.3	43.5	-17.2
V	110,700	18.2	7.2	1.3	0.0	0.0	26.6	43.5	-16. 9
V	134,300	16.6	7.1	1.4	0.0	0.0	25.1	43.5	-18.4
V	161,300	13.7	8.8	1.6	0.0	0.0	24.1	43.5	-19 4

				- <u>1</u> 20	ည် တ	7.0	17.0	27.0	37.0	47.0	57.0	67.0	77.0	87.0		
KNOB 2	LEVEL	ResBW	<u></u>											Ref	▲大了	H917
•			. 00											L V 1	16	
KNOB 1	SPAN	1MHz	14. 000GHz						1					Ref Lvl 87. OdBuV	16.000GHz	
	(0)dBu\	ZH	
KEYPAD	Stop	VidBW 7MHz														
- 1	18.	7MH	t t											10dB/		
Tektronix	18. 000GHz	N							1						40. 59dBuV	
	H	SWP	18.											Atten	3dBu\	
2784		1	3, 000													
		40mS	000GHz											10dB		
		•••										,				-

Intertek Testing Services

Radiated Emissions / Interference

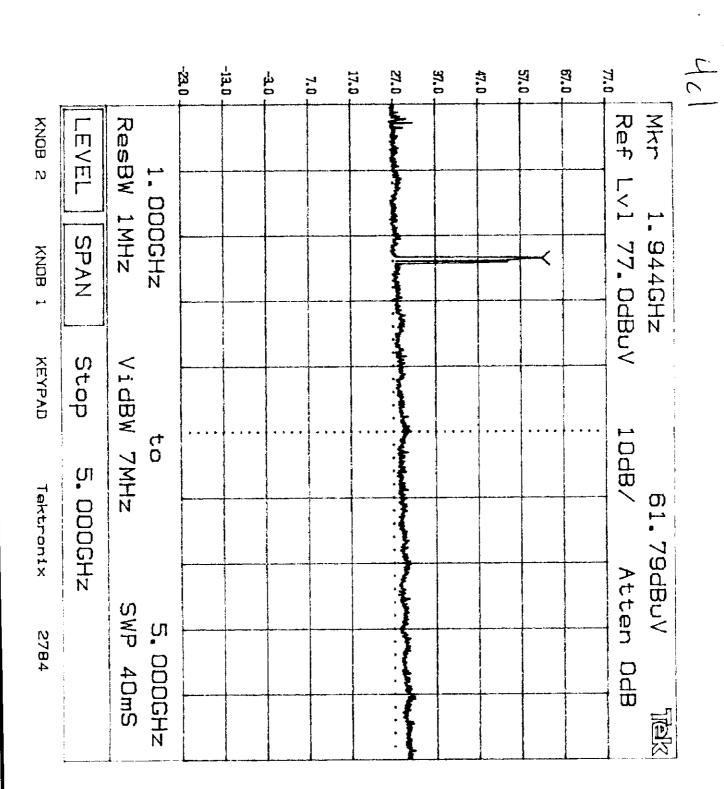
Table: C

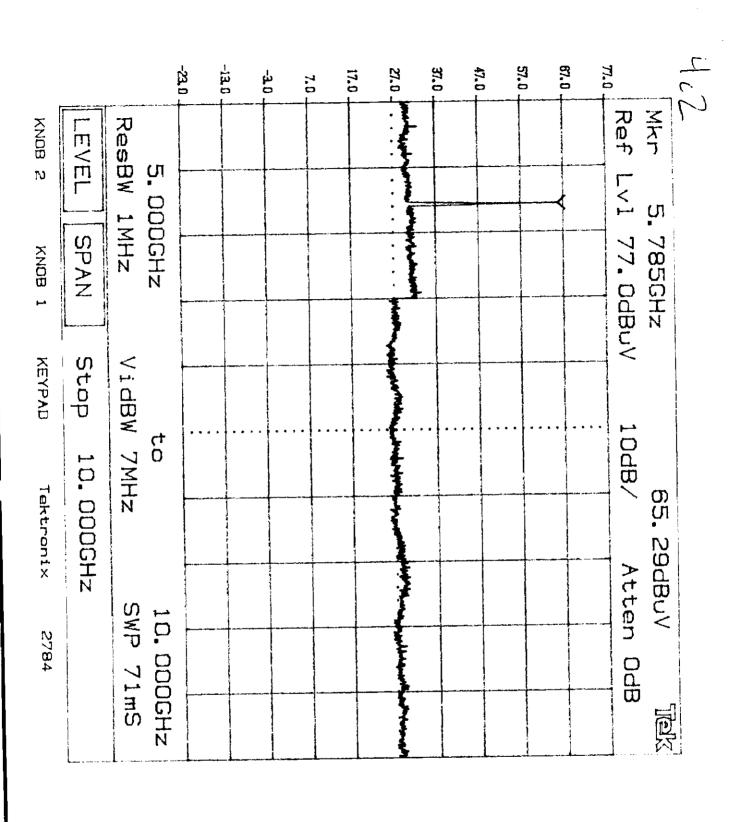
Company: Wireless Bypass

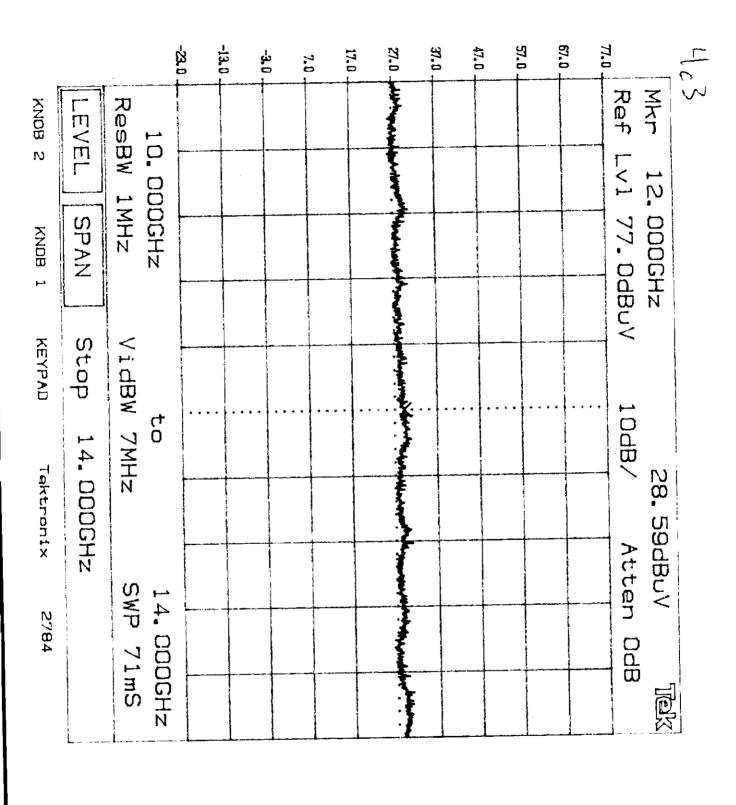
Model: DL-5800H24 Job No.: J20046196 Date: 06/15/01 Standard: FCC15

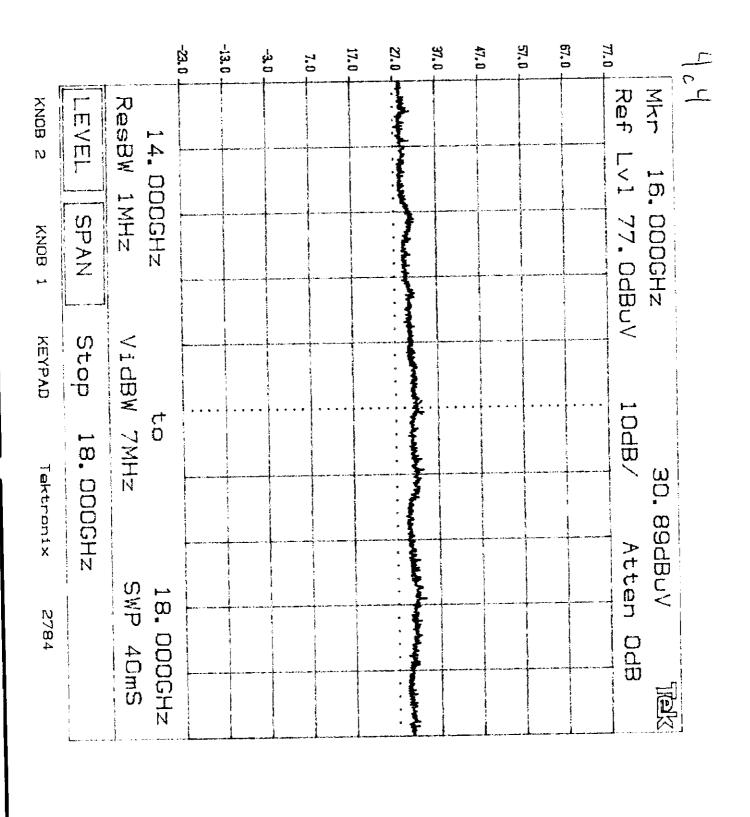
Class: A

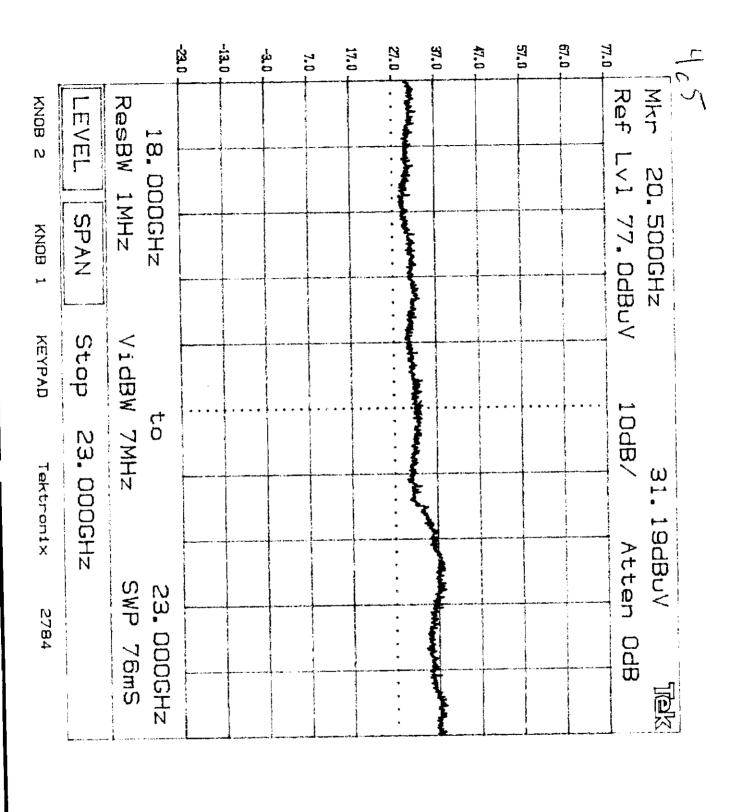
Group: None Notes: Gabriel Flat panel on HUB p-p

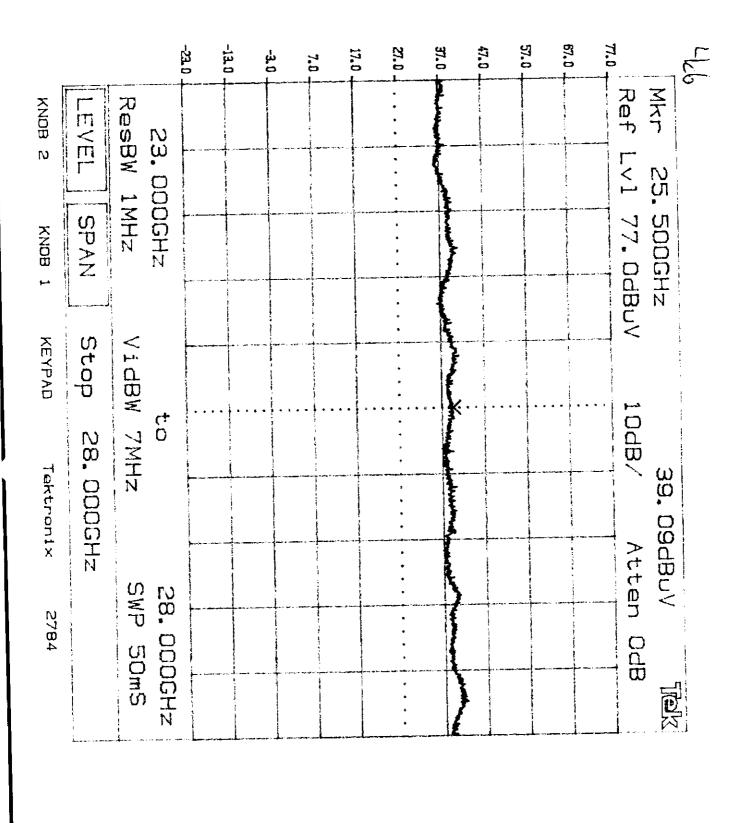

ested by: Nicholas Abbondante


Location: Site 10 Detector: HP 8546A Antenna: LOG1

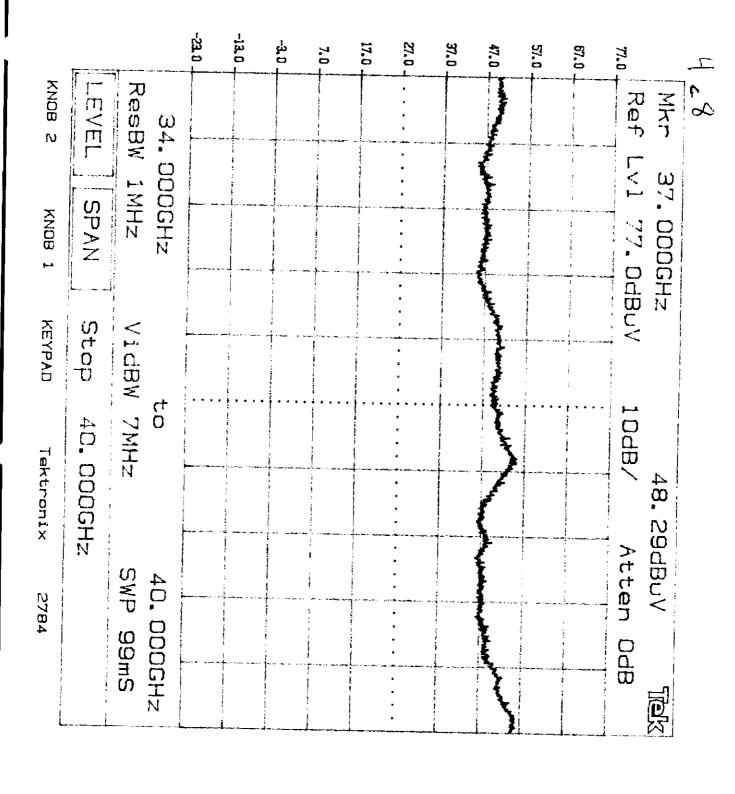

PreAmp: 0


Cable(s): 1C, 3 METER, PRIMAR Distance: 3 meters


Ant.			Antenna	Cable	Pre-amp	Distance]		
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	dΒ	d₿	dΒ	dB(uV/m)	dB(uV/m)	d₿
V	41.610	21.4	11.8	0.7	0.0	0.0	33.9	40.0	-6.1
	48.020	23.7	9.4	0.9	0.0	0.0	33.9	40.0	-6.1
V	74.510	16.3	6.4	0.9	0.0	0.0	23.6	40.0	-16.4
	87.060	14.4	6.9	1,2	0.0	0.0	22.5	40.0	-17.5
$\frac{V}{V}$	108.800	20.8	7.3	1.3	0.0	0.0	29.3	43.5	-14.2
	122,500	20.2	6.7	1.3	0.0	0.0	28.3	43.5	-15.2
<u>v</u>	133.000	15.1	7.0	1.4	0.0	0.0	23.5	43.5	-20.0
Н	611.100	19.5	21.0	3.3	0.0	0.0	43.7	46.0	-2.3







Intertek Testing Services

Radiated Emissions / Interference

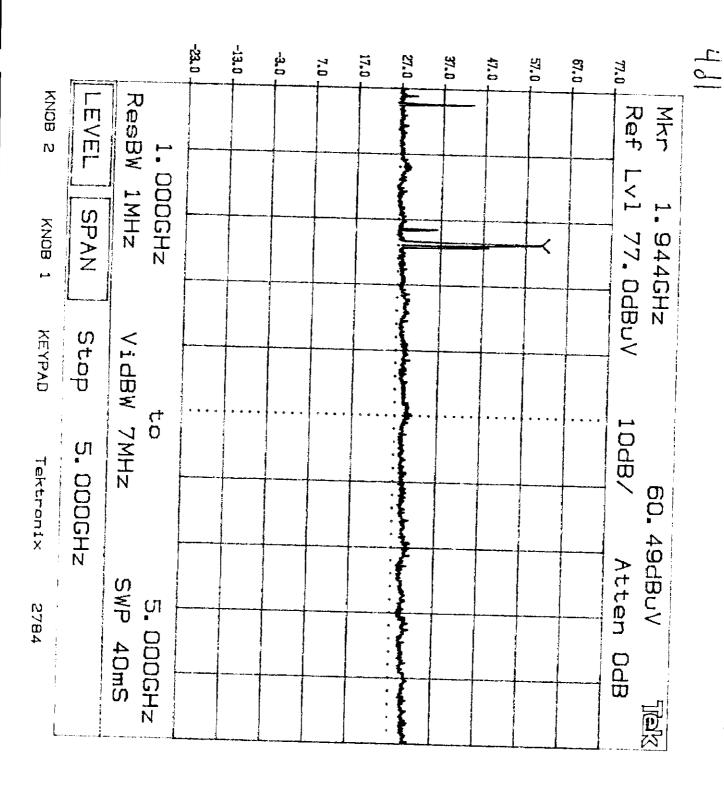
Table: D

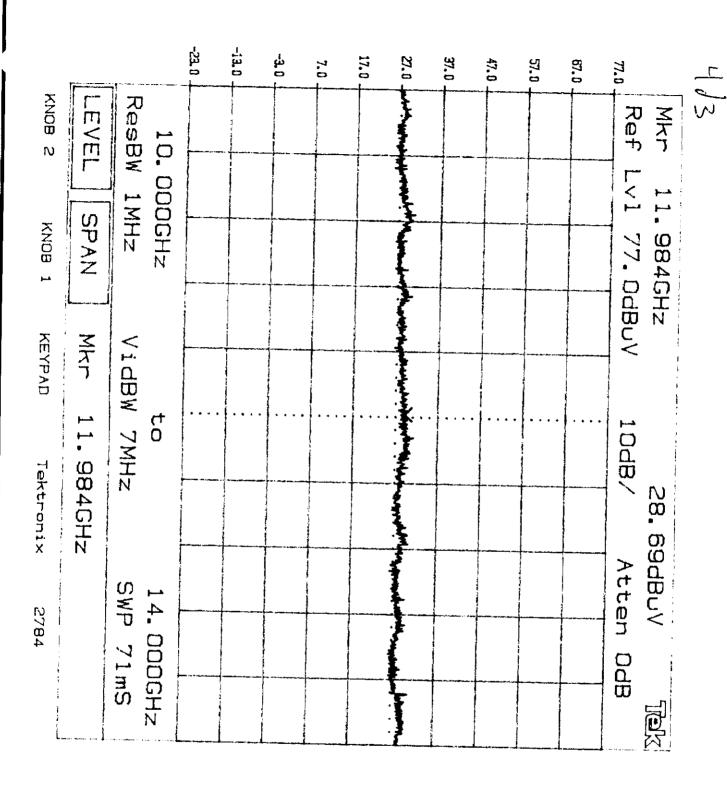
Company: Wireless Bypass

Model: DL-5800H24 Job No.: J20046196 Date: 06/15/01

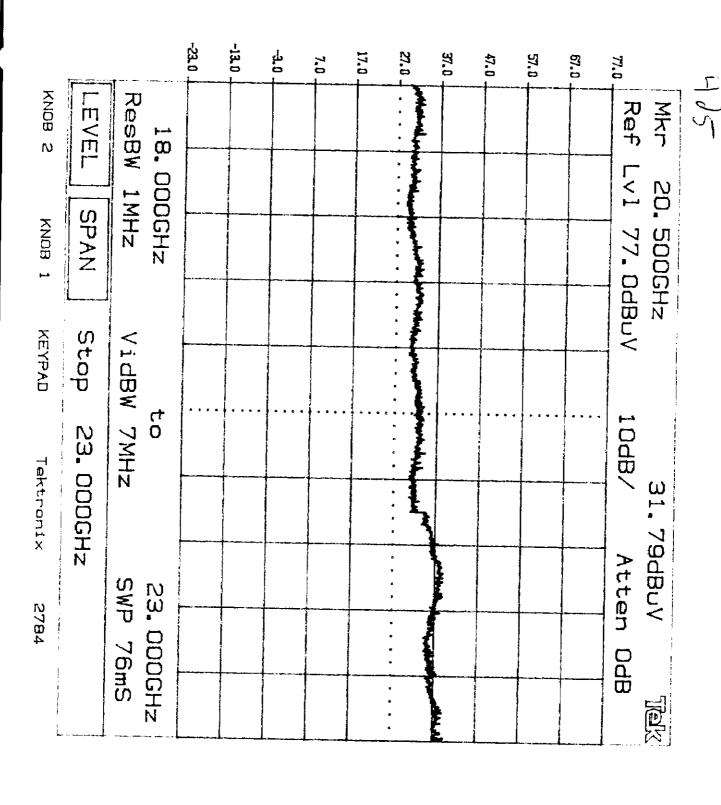
Standard: FCC15

Class: A Group: None
Notes: Gabriel Flat panel on HUB p-mp

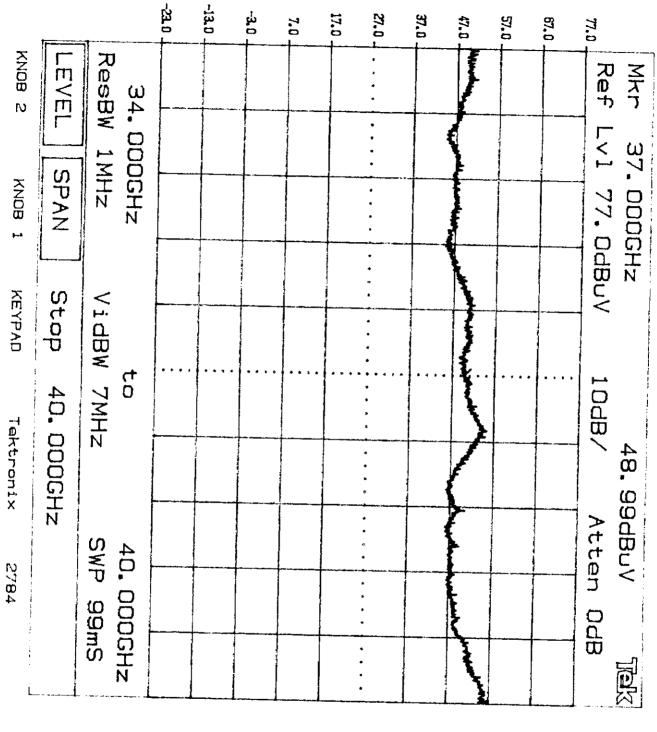

ested by: Nicholas Abbondante


Location: Site 1C Detector: HP 8546A Antenna: LOG1

PreAmp: 0


Cable(s): 1C, 3 METER, PRIMAR
Distance: 3 meters

Ant.			Antenna	Cable	Pre-amp	Distance		i	
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	ďΒ	ďΒ	đΒ	dB(uV/m)	dB(uV/m)	dB
V	40.100	20.0	12.4	0.7	0.0	0.0	33.1	40.0	-6.9
V	43.820	24.6	10.9	0.8	0.0	0.0	36.3	40.0	-3.7
V	73 930	21.6	6.4	0.9	0.0	0.0	28.9	40.0	-11.1
	108.800	15.5	7.3	1.3	0.0	0.0	24.0	43.5	-19.5
V	121.300	13.2	6.7	1.3	0.0	0.0	21.2	43.5	-19.3 -22.3
V	133.300	12.2	7.0	1.4	0.0	0.0	20.6	43.5	-22.3 -22.9



				-23.0	-13.0	<u>ئ</u> 0	7.0	17.0	27.0	37.0 J	47.0	57.0	67.0 -	77.0	
KNOB 2	LEVEL	ResBW	14.											Mkr 16.000GHz Ref Lvl 77.0dBuV	4/14
***	L	V 1MHz	14. 000GHz						1					16. Lv1	1
KNOB 1	SPAN	ZH	ZHZ											16.000GHz _v1 77.0dB	
<u>a</u>	\C													Hz DdBu\	
KEYPAD	doas	i dBW													
ન :	18.	VidBW 7MHz	40	••••	• • • •	••••	• • •		X THE			,		10dB/	!
Tektronix	18. 000GHz	Z						<u></u>	1					31.	
X !	ZHZ	S	-											31.99dBuV	
2784			18. OC						-						
		40mS	DDDGHz					·	3					SPO Spil	
Ļ		·						•	ţ					以 ·	

96 h

Intertek Testing Services

Radiated Emissions / Interference

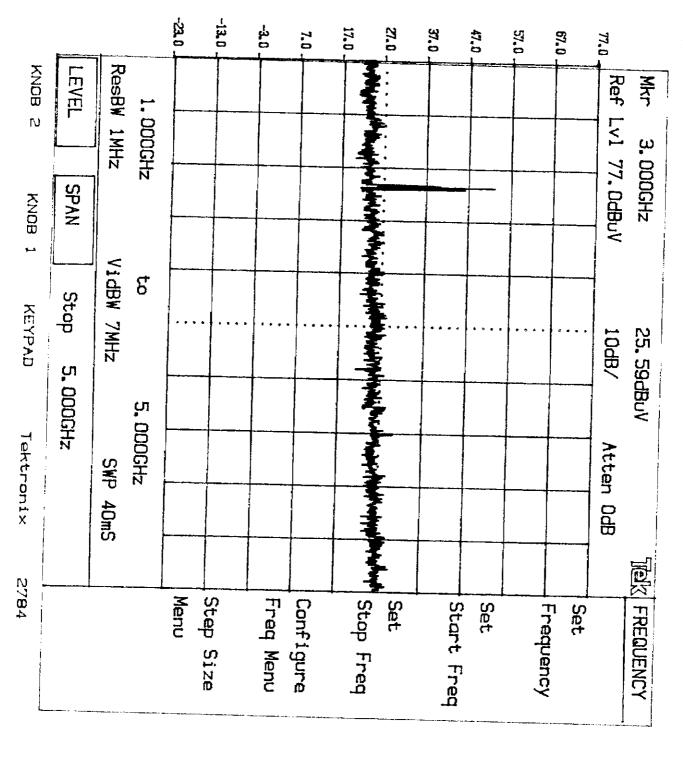
Table: E

Company: Wireless Bypass

ested by: Nicholas Abbondante Location: Site 1C

Model: DL-5800H24 Job No.: J20046196 Date: 06/14/01

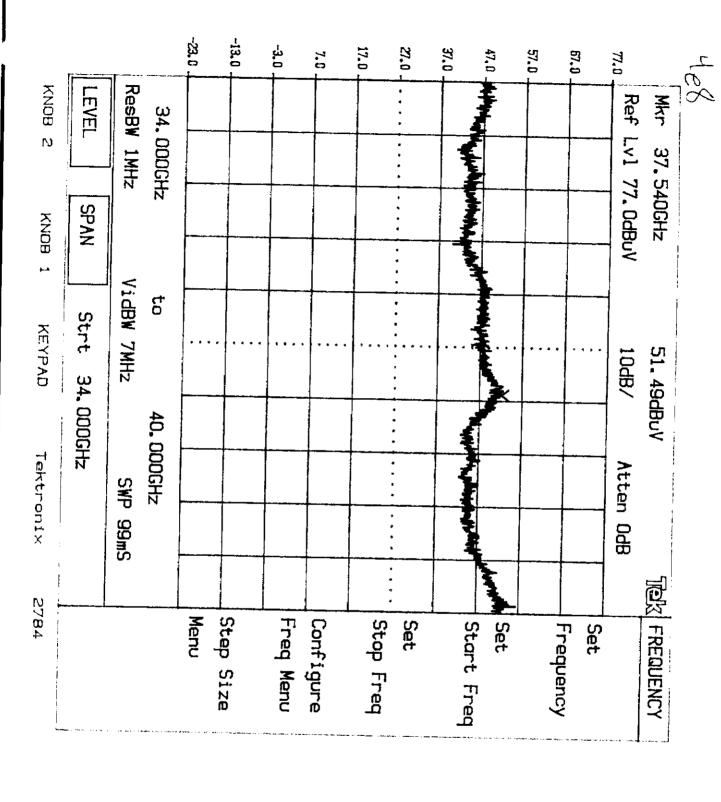
Detector: HP 8546A Antenna: LOG1

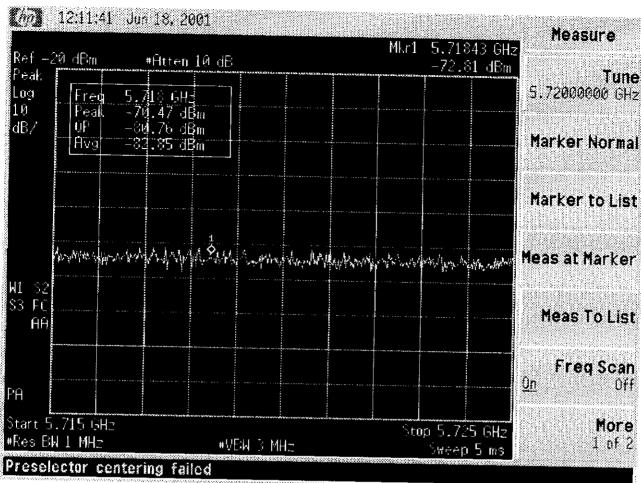

Standard: FCC15

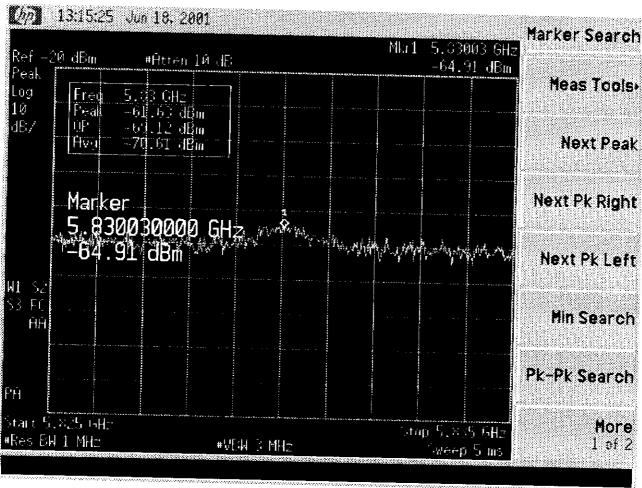
PreAmp: 0

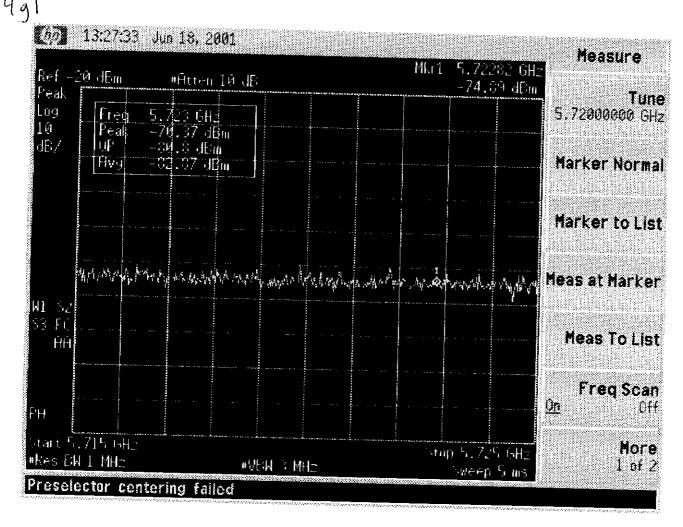
Class: A Group: None Notes: Omni Antenna on Hub

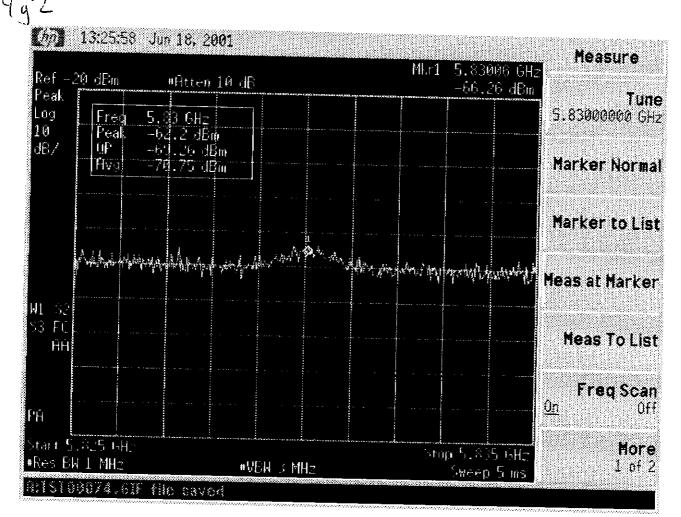
Cable(s): 1C, 3 METER, PRIMAR Distance: 3 meters

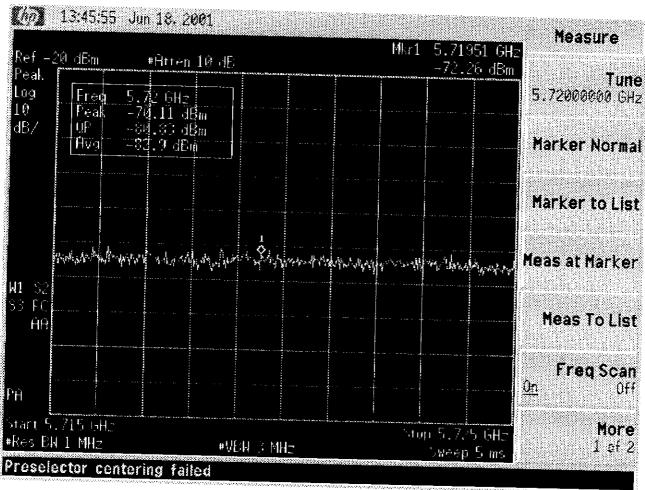

Ant.			Antenna	Cable	Pre-amp	Distance		1	-
Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin
(V/H)	MHz	dB(uV)	dB(1/m)	₫B	dB	₫B	dB(uV/m)	dB(uV/m)	d₿
<u></u>	40.340	26.1	12.3	0.7	0.0	0.0	39.1	40.0	-0.9
	51.020	20.0	8.5	0.9	0.0	0.0	29.4	40.0	-10.6
	108.800	18.9	7.3	1.3	0.0	0.0	27.4	43.5	-16.1
V	141.400	13.7	7.5	1.4	0.0	0.0	22.7	43.5	-20.8
V	157.000	12.8	8.7	1.5	0.0	0.0	23.0	43.5	-20.5
V	267.300	12.6	12.5	2.1	0.0	0.0	27.2	46.0	-18 8

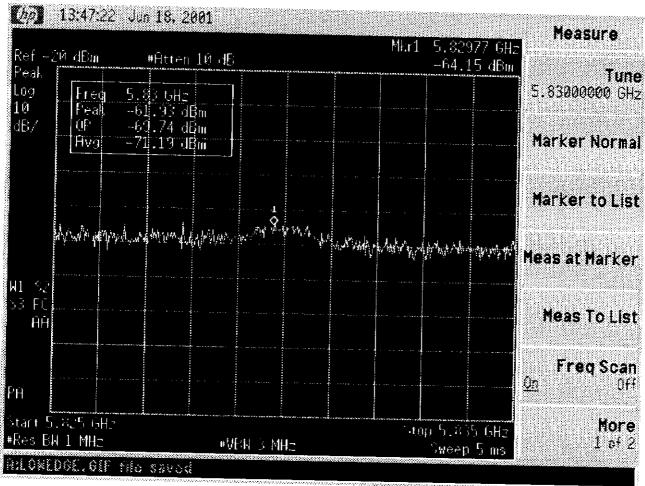


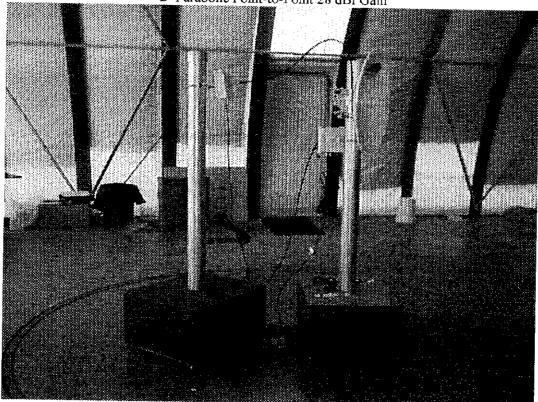

OFTH NO HURSHAM IN HUB

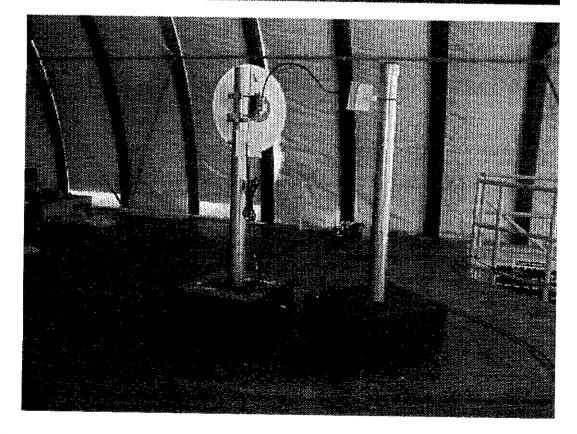

	*	-1		-23.0	-13.0	- 0 e	7.0	17.0	27.0	37,0	47.0	57.0	67.0	77.0	
KNOB 2	LEVEL	ResBW	ណ											Ref	MK,
		11	000						=======================================	-	-			Lv1	ហ
KNOB 1	SPAN	1MHz	000GHz						The state of					Lv1 77. OdBuV	5. 785GHz
. ميد								a salar a)dBu	ZHZ
KEYPAD	Stop	VidBW 7MHz						Part Line	A Million					\	,
Tel	10.0	7MH	to					Tour feet of		2445				10dB/	- Andrew - A
Tektronix	10.000GHz	IN						- State of the							51. 69dBuV
	N	SWP	10					44.44.44	la describe o					Atten	dR:
2784	,	P 71mS	10.000GHz					and the state of						an OdB	<
		⊞S	iGHz					Topological Control	د د الطب					6 0	
										1		·	•	<u>-</u>	


	<u> </u>	٦,		230	13.0	-3.0 -	7.0	17.0	27.0	37.0	47.0	57.0	67.0	77.0	
KNOB 2	LEVEL	ResBW 1MHz	23. 0						-					Ref Lvl 77. DdBuV	Mkr
		1MHz	23. 000GHz			-		<u> </u>	The state of the s					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26.745GHz
KNOB 1	SPAN		14											, odb	15GHz
1		V1				_		<u> </u>	1					>	
ΧEY	Stop	VidBW 7MHz	to						WARA.						
KEYPAD		MHz							*	<u> </u>				/BP01	33. 69dBuV
	28. 000GHz		28 . DI	 					A LANGE	-					BυV
Tektronix	NT	SWP	28. 000GHz						*					Atter	
אורנ		50mS							1	:				Atten OdB	-
Ŋ									1						
2784				Menu	Step Size	Freq Menu	Conf	Stop	Set	Star	Set		Set		FREG
:				!	Size	Menu	Configure	Stop Freq		Start Freq		r requency		ļ	PREQUENCY
Ĺ	menter transcription	··· - 			· · · · · · · · · · · · · · · · · · ·	ero la nce og n <u>u</u> n		••••	* 						

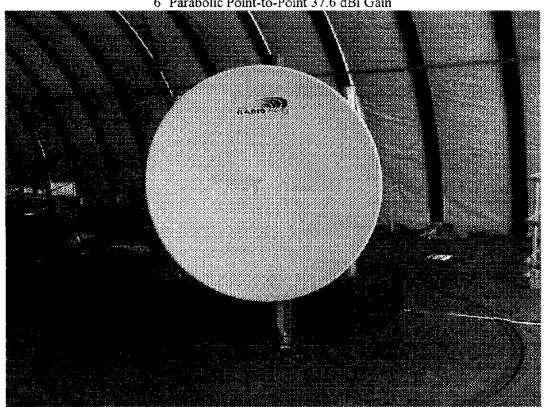


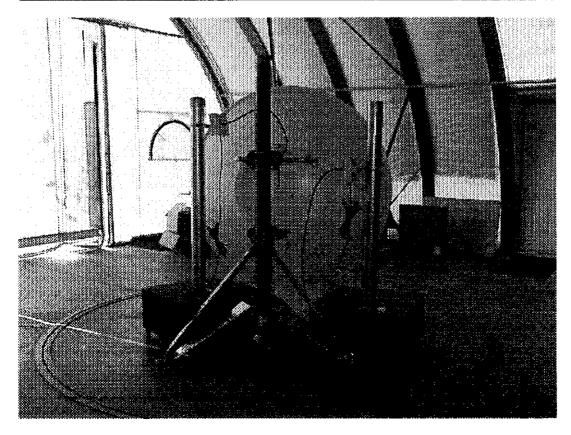






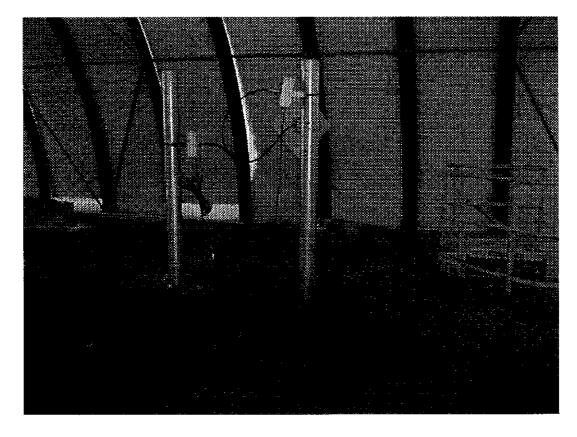
Configuration Photograph





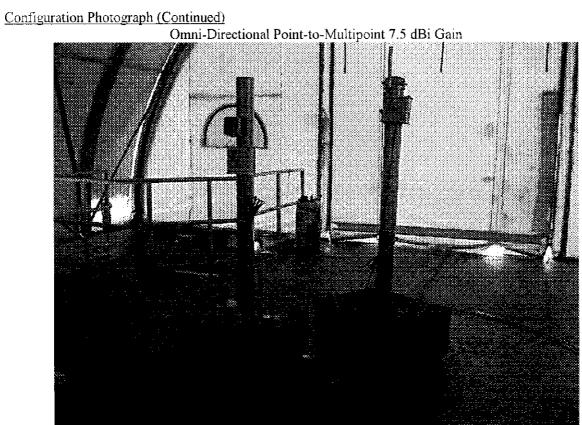
Configuration Photograph (Continued)

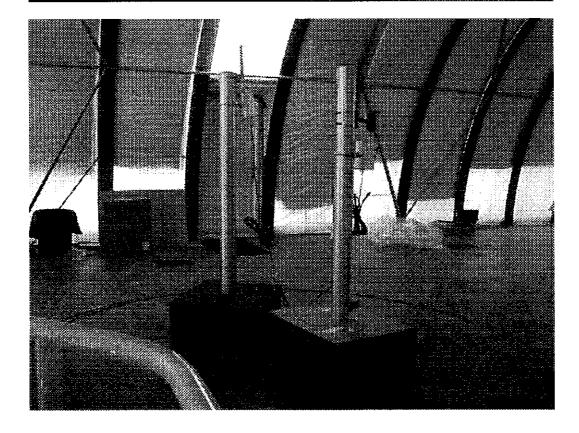
6' Parabolic Point-to-Point 37.6 dBi Gain



Configuration Photograph (Continued)

Flat Panel Point-to-Point 23 dBi Gain




Configuration Photograph (Continued)

Flat Panel Point-to-Multipoint 23 dBi Gain

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

4.6 Transmitter Radiated Emissions in Restricted Bands FCC Rule 15,205

Radiated emission measurements were performed from 30 MHz to 40,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz.

The EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

A sample calculation is included. All measurements were performed with quasi-peak detection unless otherwise specified. Emissions within the restricted bands are subject to the limits set forth in 15.209. No emissions were detected above 1 GHz. Refer to section 4.5 for data.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF - AG where FS = Field \ Strength \ in \ dB\mu V/m RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V CF = Cable \ Attenuation \ Factor \ in \ dB AF = Antenna \ Factor \ in \ dB AG = Amplifier \ Gain \ in \ dB
```

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

```
FS = RR + LF
where FS = Field Strength in <math>dB\mu V/m
RR = RA - AG \text{ in } dB\mu V
LF = CF + AF \text{ in } dB
```

Assume a receiver reading of $52.0~dB\mu V$ is obtained. The antenna factor of 7.4~dB and cable factor of 1.6~dB is added. The amplifier gain of 29~dB is subtracted, giving a field strength of $32~dB\mu V/m$. This value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

$RA = 52.0 \text{ dB}\mu\text{V}$	AF = 7.4 dB
$RR = 23.0 \text{ dB}\mu\text{V}$	CF = 1.6 dB
LF = 9.0 dB	AG = 29.0 dB
FS = RR + LF	$FS = 23 + 9 = 32 dB\mu V/t$

Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

- 4.8 AC Line Conducted Emission FCC Rule 15.207
- 4.8.1 Line Conducted Emission Limits

Conducted Emissions Limits, Section 15.107(a)

Frequency (MHz)	Class B (uV)	Class B (dBuV)
0.45 - 1.705	250	48
1.705 to 30.000	250	48

Note: Three sets of units are commonly used for EMI measurement, decibels below one milliwatt (-dBm), decibels above a microvolt (dB μ V), and microvolts (μ V). To convert between them, use the following formulas: $20 LOG_{10}(\mu V) = dB\mu V$, $dBm = dB\mu V$ -107.

Test Result

See Table F.

The EUT passed the test

Intertek Testing Services

Conducted Emissions / Interference

Table: F

Company: Wireless Bypass

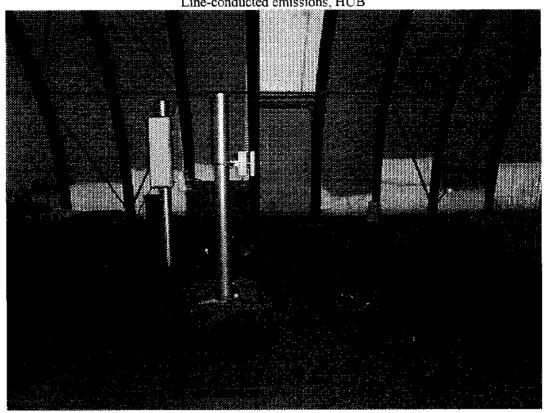
Model: DL-5800H24 Job No.: J20046196 Date: 06/12/01

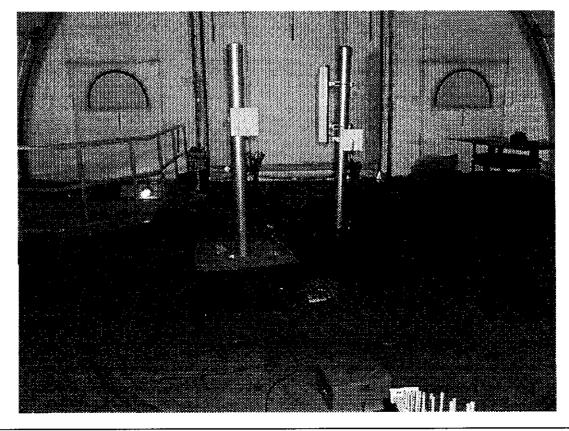
Standard: FCC15E Class: A

Group: None Notes: LISN10, CBL110E, AGL001, DS25A

System Loss: Includes the Cable and LISN loss.

Tested by: Nicholas Abbondante


Location: Site 1C Detector: Agilent E7405A Cable(s): 1C, CBL11


Limiter: no

	Reading	Reading	Attenuator	System		Quasi-Peak	(
Frequency	Side A	Side B	Factor	Loss	Net	Limit	Margin
MHz	d₿	₫B	₫B	dΒ	dB(uV)	dB(uV)	dΒ
0,513	12.3	-0.9	20.0	1.3	33,6	48.0	-14.4
0.617	13,1	-0.3	20.0	1.3	34.4	48.0	-13.6
1.131	19.5	4.2	20.0	0.5	40.0	48.0	-8.0
2.055	8.0	4.1	20.0	0.4	28.4	48.0	-19.6
6.473	12.8	11.8	20.0	0.7	33.5	48.0	-14.5
16.860	18.5	18.7	20.0	0.8	39.5	48.0	-8.5
20.660	18.3	18.5	20.0	0.9	39.4	48.0	-8.6
27.040	14.8	14.5	20.0	1.1	35.9	48.0	-12.1

Configuration Photograph

Line-conducted emissions, HUB

Intertek Testing Services

70 Codman Hill Road, Boxborough, MA, 01719

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

4.9 Radiated Emissions from Digital Section FCC Rule 15.109

Test was performed as described in the section 4.6.

The digital section was scanned at the same time as the entire system. Test data can be found in section 4.5. The limits are equivalent to the limits of 15.209.

Intertek Testing Services Wireless Bypass, FCC ID: PPS-DL-5800H24

70 Codman Hill Road, Boxborough, MA, 01719

Date of Test: June 11, 2001-June 19, 2001

4.10 Radiated Emissions from Receiver Section FCC Ref: 15.109, 15.111

The receiver was scanned at the same time as the entire system and according to the procedure set forth in section 4.6. The limits are equivalent to those set forth in 15.209. Test data can be found in section 4.5.

Intertek Testing Services

70 Codman Hill Road, Boxborough, MA, 01719

Wireless Bypass, FCC ID: PPS-DL-5800H24

Date of Test: June 11, 2001-June 19, 2001

4.11 Transmitter Duty Cycle Calculation / Measurements FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty cycle = Maximum ON time in 100 msec/100

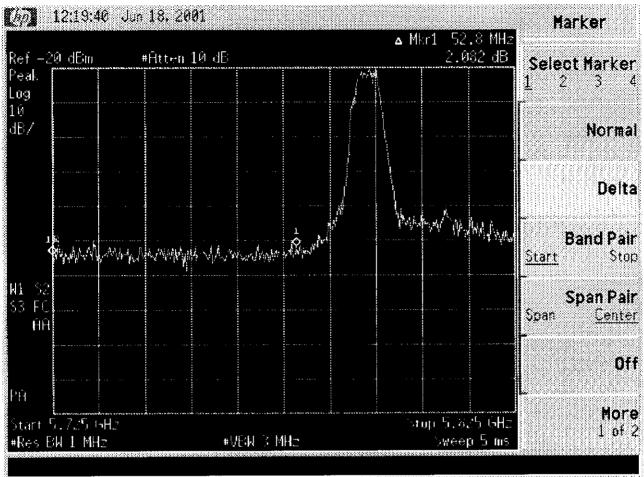
Duty cycle correction, dB = 20 * log (DC)

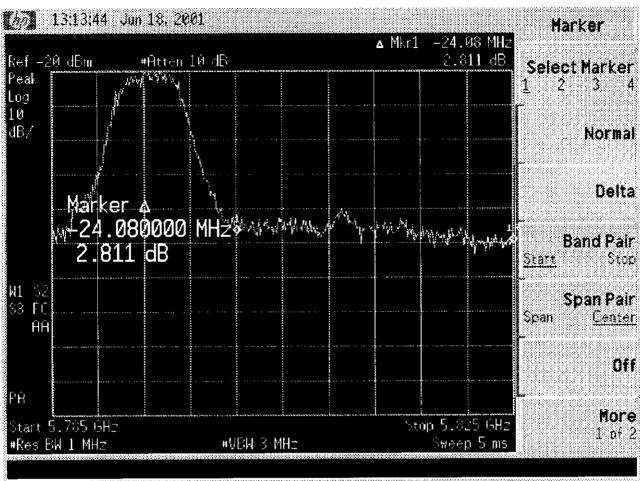
	See attached spectrum analyzer chart(s) for transmitter timing
	See transmitter timing diagram provided by manufacturer
X	Not applicable.

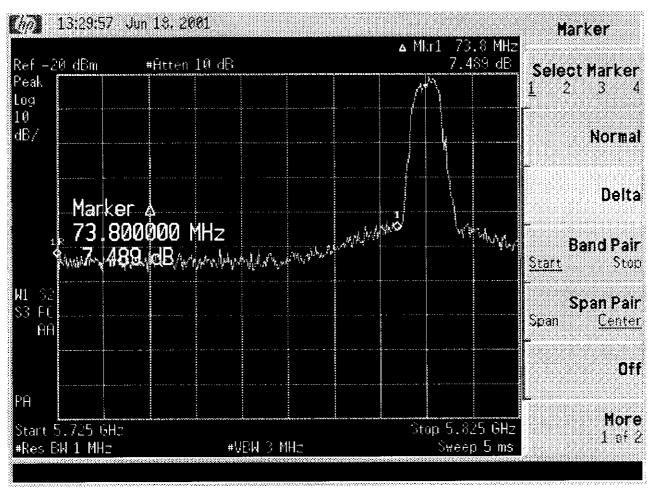
Intertek Testing Services

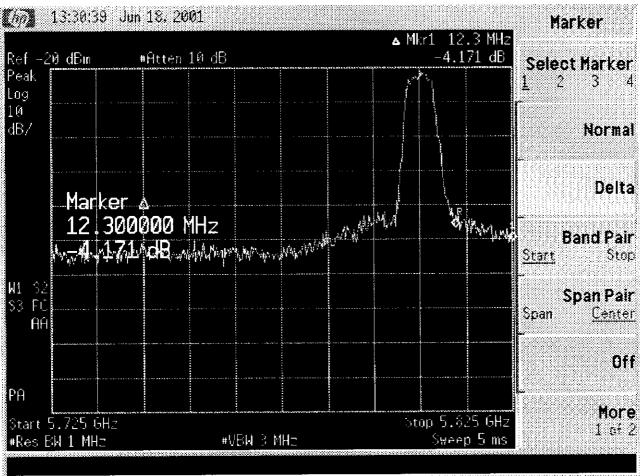
Wireless Bypass, FCC ID: PPS-DL-5800H24

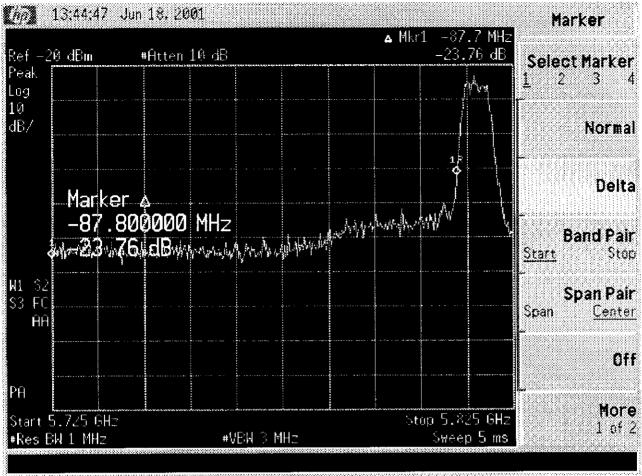
70 Codman Hill Road, Boxborough, MA, 01719

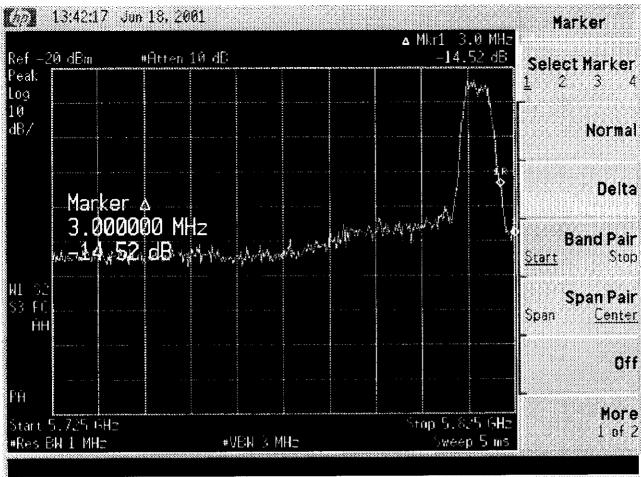

Date of Test: June 11, 2001-June 19, 2001


4.12 Frequency Stability FCC Rule 15.407(g)


The EUT antenna output was connected directly to the input of the spectrum analyzer via a 30 dB attenuation pad and a high frequency cable with 5.7 dB of loss. Measurements were made from the 26dBc bandwidth point. or lower, of the fundamental frequency to the nearest band edge for both the high and low band edges. The frequency margin between these two points was then compared with the worst case frequency stability for the oscillators used. It was found that the frequency margin was much greater than the possible frequency deviation of the fundamental, so the EUT passes.


Refer to Exhibit A for a discussion of the worst case frequency stability of the EUT. Refer to the following plots for supporting data:


Plot 5.a1-5.a2: Frequency Stability Margin Low Channel Plot 5.b1-5.b2: Frequency Stability Margin Mid Channel Plot 5.c1-5.c2: Frequency Stability Margin High Channel



Wireless Bypass

wireless solutions for CMTS and CATV distribution

06/20/2001

Transmitter Mute Switch & Transmitter Frequency Stability

To Whom It May Concern:

Wireless Bypass has built a transmitter mute function into the U-NII models PPS-DL5800H24 & PPS-DL5800C24. These mute functions can be traced using the supplied documentation. Specifically, the transmitter mute will take effect from 90% to 10% in less than 1 millisecond in the event of a PLL out of lock, and less than 1 microsecond in the absence of data.

Frequency stability of the PPS-DL5800C24 is controlled by one upconversion at 5,700 GHz. Overall stability over temperature is +/- 1.0 PPM & over time +/- 1.0 PPM yielding a total of +/- 11,400 hz over time and temp.

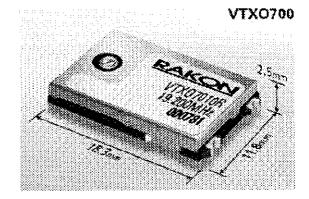
Frequency stability of the PPS-DL5800H24 is controlled by two upconversions. One conversion is at 625 MHz, and the other is at 5.700 GHz. Overall stability over temperature is +/- 1.0 PPM & over time +/- 1.0 PPM yielding a total of +/- 12,650 hz over time and temp

The attached crystal specification is applicable to all cases.

Thank you for your help in this matter,

David Blumberg, Wireless Bypass 43 Northwestern Drive Salem NH 03079

MODEL VTXO700


Voltage Controlled Temperature Compensated Crystal Oscillators Low profile surface mountable VCTCXO available in custom frequencies from 8.2MHz to 32MHz with a clipped sinewave output

Product Description

This Colpitts oscillator uses the direct two-port temperature compensation method. Operating on the fundamental mode, the circular AT-cut crystal is housed in the environmentally rugged UM-1 SLIM resistance weld package.

The product can be configured to operate on any voltage between 2.7V and 5V. A mechanical trimmer is available for adjusting the frequency.

Customized frequencies readily available make this model suitable for many timing and frequency applications where an HCMOS output is required.

Features

- Compatible with normal solder reflow processes
- Excellent temperature stability performance
- * Able to operate over industrial temperature ranges
- * Low hysteresis
- Low power consumption
- * Excellent vibration performance
- * Very good phase noise performance
- Frequency control ranges from 6 to 50ppm available

1.0 SPECIFICATION REFERENCES

1.1 Model VTXO710R 10.0 MHz Description
1.2 Reference Number
1.3 Company Wireless Bypass

2.0 FREQUENCY CHARACTERISTICS

Line	Parameter .	Test Condition	Min.	Max.	Units
2.1	Nominal Frequency	Nominal Frequency referenced to 25 deg. C.		10.0	MHz
2.2	Frequency calibration	Frequency at 23 deg. C +/-2 deg. C (see Note 1)		1.0	+/-ppm
2.3	Frequency stability over temperature	Referenced to frequency reading at 25 deg. C. Temperature varied at max. of 2 deg. C per minute. Control voltage held at voltage control range midpoint. (Note 2)		1.0	+/ppm
2.4	Temperature range	The operating temperature range over which the frequency stability is measured (Note 3)	-20.0	70.0	Degrees C
2 .5	Frequency perturbations	Peak to peak amplitude of frequency perturbation within operating temperature range (Note 1)		0.5	ppm
2.6	Frequency slope	Minimum of 1 frequency reading every 2 degrees C, over the operating		0.5	ppm/deg C

© 1998 Riskon Limited PG 01

	of perturbations	temperature range (Note 1)			
2.7	Static temperature hysteresis	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25 deg C		0.4	+/ppm
2.8	Supply voltage stability	Supply voltage varied $\pm 1/-5\%$ at 25 deg C. Frequencies above 25MHz are not able to be specified below the max. value given. (Note 1)		0.3	+ / - ppm
2.9	Load sensitivity	+/-10% load change		0.2	- /- pp m
2.10	Root Allan Variance	1 second Tau. (Note 1)		1.0	ррь
2.11	Long term stability	Frequency drift over 1 year (Note 1)		1.0	+/-ppm
2.12	G Sensitivity	Gamma vector of all three axes from 30Hz to 1500Hz (Note 1)		1.0	ppb/G
2.13	Trimmer adjustment	Manual adjustment using trimmer tool	3.0		+/-ppm
3.0	POWER SUPPL	LY			
Line	Parameter	Test Condition	Min.	Max.	Units
3.1	Supply voltage	Supply voltage range based on nominal 5V	4.75	5.25	V
3.2	Current	At Max. supply voltage		2.0	mA
4.0	CONTROL VOL	.TAGE			
Line	Parameter	Test Condition	Min.	Мах.	Units
4.1	Control voltage range	Determined by supply voltage (Note 5). The nominal control voltage value is midway between the minimum and maximum.	0.5	4.5	V
4.2	Frequency tuning	Frequency shift from Min. to Max. control voltages (Note 6)	6.0		ppm
4.3	Frequency tuning linearity	Deviation from straight line curve fit (Note 1)		20.0	c _{//3}
4.4	Port input impedance		100.0		K Ohms
5.0	OSCILLATOR	OUTPUT			
Line	Parameter	Test Condition	Min.	Max.	Units
5.1	Output waveform	Clipped sinewave			
5.2	Output voltage level	At min, supply voltage	1,0		V
5.3	Output load resistance	Operating range	18.0	22.0	K Ohms

© 1998 Rakon Limited PG 02

5.4 Output load capacitance

Operating range

4.5

5.5 pF

6.0 SSB PHASE NOISE

Line	Parameter	Test Condition	Min.	Max.	Units
	Quiescent mea dBc/Hz are typ	surement at room temperature. Phase noise dependent on oscillato ical values.	r freq	uency.	The
6.1	SSB Phase noise density	1Hz offset		-70.0	dBe/Hz
6.2	SSB Phase noise density	10Hz offset		-100.0	dBc/Hz
6.3	SSB Phase noise density	100Hz offset		-130,0	dBc/Hz
6.4	SSB Phase noise density	1KHz offset		-145.0	dBc/Hz
6.5	SSB Phase noise density	10KHz offset		-150.0	dBc/Hz

7.0 ENVIRONMENTAL

The oscillator shall meet electrical characteristics and suffer no physical damage after being subject to the following conditions:

7.1	Shock	Half sinewave acceleration of 100G peak amplitude for 11ms duration, 3 cycles each plane.
-----	-------	---

7.2 Random Vibration

10G RMS 30Hz to 1500Hz duration of 6 Hours.

7.3 Humidity

After 48hours at 85 deg C +/-2% deg C 85% relative humidity non-condensing

7.4 Thermal shock

test

Exposed at -40 deg C for 30 minutes then to 85 deg C for 30 minutes constantly for a period of 5 days.

7.5 Storage temperature

-40 to 85 deg C

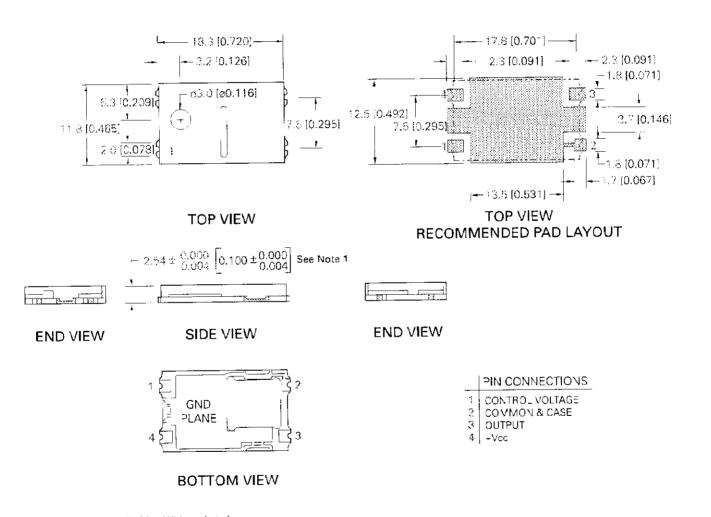
8.0 MARKING

8.1	Туре	Engrave
8.2	Line 1	Rakon logo
8.3	Line 2	Model descriptive
8.4	Line 3	Frequency in MHz (to 3 decimal places or greater depending on the no. of significant digits after the decimal point)
8.5	Line 4	Date code WWYY

9.0 MANUFACTURING INFORMATION

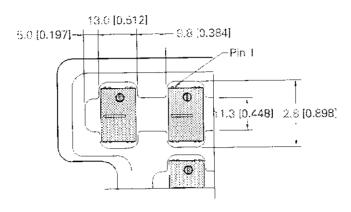
9.1	Reflow and
	washing

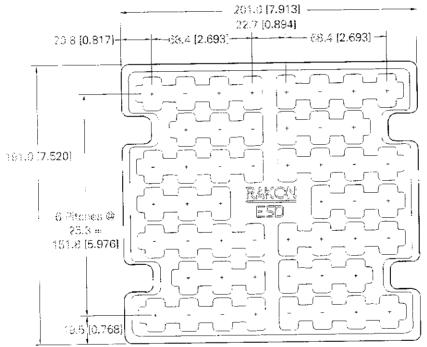
Able to withstand normal solder reflow processes but not aqueous washing due to presence of trimmer with open dielectric exposure.

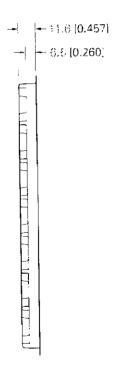

9.2 Packaging description

Tape and reel

10.0 SPECIFICATION NOTES


10.1	Note 1	The Max. value is the specification. A Min. value, if present, indicates the tightest specification available.
10.2	Note 2	A max, frequency stability over the temperature is required to be specified. For this model, values between to +/-1ppm and +/-10ppm are available. Standard options are +/-1ppm, +/-1.5ppm, +/-2ppm and +/-2.5ppm.
10.3	Note 3	The operating temperature range needs to be specified. The extremes for this model are -40 and $+85$ deg C. If either or both ends of the operating temperature range are at these extremes, then the frequency stability options are limited to greater than $+/-1$.5ppm.
10.4	Note 4	Standard power supply options are 2.7V, 3V, 3.3V, 4V or 5V, but any value between Min. & Max. is available.
10.5	Note 5	This range is normally 0.5V to Supply voltage less 0.5V i.e. for a supply voltage of 3V, the range is 0.5V to 2.5V.
10.6	Note 6	The Min value is the specification. A Max value, if present, indicates the widest tuning range available for this model (subject to other parameters).


© 1998 Rakon Limited



Note: 1. 2.54 Max Without Label

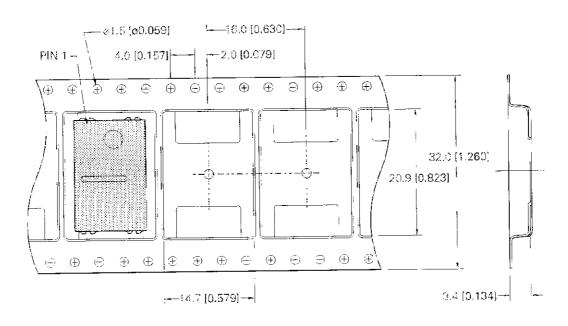
TITLE: VTXO700 MODEL		FILENAME: CAT024	REVISION	l: B	- Toleran - XX	ces: = ±0.5	
RELATED DRAWINGS:	VTXO CLIPPED SINEV	VAVE	DATE:	27 JAN 99	- X.X - X.XX	$=\pm0.10$	DVKUN
	TEST CIRCUIT (CAT13 700 SERIES TRAY (CA	· ·	SCALE:	2:1	-	$= \pm 0.05$ = ± 0.05 = $\pm 1.0^{\circ}$	PRECISION QUARTZ CRYSTALS
			Millimetre	es [inch]	Hole	$=\pm0.10$	©1 998 Rakon Limited

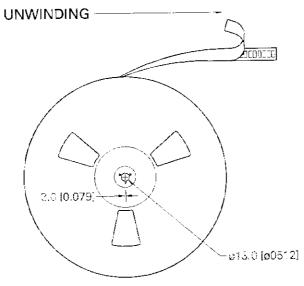
TRAY DETAIL (Scale 1:2) 50 Oscilators Per Tray 21 (20+1 top) Trays Per Small Box 4 Small Boxes Per Large Box

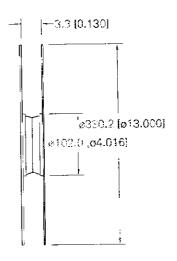
TITLE: 700 SERIES TRAY FILENAME: CAT095 REVISION: A

RELATED DRAWINGS: TXO700 MODEL (CAT017)

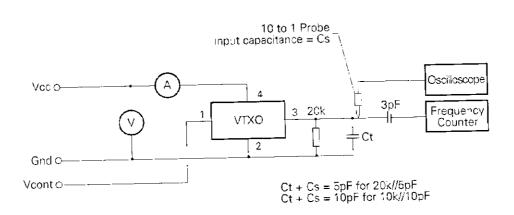
VTXO700 MODEL (CAT024)


DATE: 24 JULY 98


SCALE: 1:1


Millimetres [inch]

@1998 Rakon Limited



REEL DETAIL SCALE 1:5

Tolerances: REVISION: A TITLE: 700 TAPE & REEL FILENAME: CAT098 ==0.5 DATE: 16 DEC 98 ==0.10 RELATED DRAWINGS: TXO700 VTXO700 $=\pm0.05$ SCALE: 2:1 1:5 $X.XXX = \pm 0.05$ = ± 1.0° Millimetres [inch] Hole = ±0.10 ©1998 Rakon Limited

TITLE: VTXO CLIPPED SINEWAVE TEST CIRCUIT FILENAME: CAT135 REVISION: A

RELATED DRAWINGS: VTXO400 VTXO500 VTXO700 DATE: 3 SEPT 98
VTXO4080S VTXO4080S SCALE: NTS

Millimetres [inch] PRECISION QUARTZ CRYSTALS

01998 Rakon Limited

© 1998 Rakon Limited

5.0 List of Test Equipment

Equipment	Manufacturer	Model	Serial#	Cal. Due
Spectrum Analyzer	Agilent	E7405A	US40240205	11/28/01
Spectrum Analyzer	Tektronix	2784	B010153	12/13/01
EMI Receiver Set W/RF Filter	Hewlett Packard	85462A	3325A00160	12/28/01
Plotter, Digital Pen	Hewlett Packard	7470A	2308A23938	#
Cable, SMA-SMA <18GHz	Sucoflex	104PE	CBLSHF203	8/21/01
Attenuator, 30 dB	Weinschel Corp.	23-30-34	AR6008	8/14/01
High Frequency Horn Antenna	EMCO	3116	9310-2222	2/04/02
Horn Antenna	EMCO	3115	9610-4980	11/01/01
Antenna	EMCO	3142	9701-1116	7/18/01
MW Cable (DC-40GHz) 24"	Astrolab	32029-2-2909K - 24TC	CBL049	8/17/01
MW Cable (DC-40GHz) 48"	Astrolab	32029-2-2909K-48TC	CBL050	8/17/01
Cable, BNC/BNC	Alpha	RG58B/U	CBL110E	9/10/01
LISN, 50uH, .01-50MHz, 24A	Solar Electronics	9252-50-R-24-BNC	941712	5/02/02
Attenuator, 20 dB	Mini Circuits	20 dB, 50 Ohm	DS25A	8/14/01
Peak Power Meter	Hewlett Packard	8900D	3607U00673	7/31/01
Peak Power Sensor	Hewlett Packard	84811A	3318A05091	8/01/01

[#] Calibration is not required