FCC ID: PPQ-WN4519R

IEEE C95.1 2005 KDB 447498 D01 V06 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

Report No.: T161223W01-MF

RF EXPOSURE REPORT

For

802.11a/b/g/n 2T2R Wireless LAN USB Module

Model: WN4519R

Trade Name: LITE-ON

Issued to

Lite-On Technology Corp.

Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan,
R.O.C

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: February 03, 2017

Report No.: T161223W01-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 03, 2017	Initial Issue	ALL	Angel Cheng

TABLE OF CONTENTS

Report No.: T161223W01-MF

1.	TEST RESULT CERTIFICATION	. 4
2.	LIMIT	. 5
3.	EUT SPECIFICATION	. 5
4.	TEST RESULTS	. 7
5	MAYIMI IM DEDMISSIRI E EYDOSI IDE	S

FCC ID: PPQ-WN4519R Report No.: T161223W01-MF

1. TEST RESULT CERTIFICATION

We hereby certify that:

The equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirement of the applicable standards. The test record, data evaluation and Equipment under Test (EUT) configurations represented herein are true and accurate accounts of the measurement of the sample's RF characteristics under the conditions specified in this report.

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
IEEE C95.1 2005 KDB 447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091	No non-compliance noted					

Approved by:

Sam Chuang Manager

Compliance Certification Services Inc.

Prepared by:

Angel Cheng Report coordinator

Compliance Certification Services Inc.

FCC ID: PPQ-WN4519R Report No.: T161223W01-MF

2. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

3. EUT SPECIFICATION

Product	802.11a/b/g/n 2T2R Wireless LAN USB Module					
Model	WN4519R					
Brand name	ne LITE-ON					
Model Discrepancy	N/A					
Frequency band (Operating)	 ⊠ 802.11b/g/n HT20: 2412MHz ~ 2462MHz 802.11n HT40: 2422MHz ~ 2452MHz 802.11a/n HT20: 5180MHz ~ 5700MHz / 5745MHz ~ 5825MHz 802.11n HT40: 5190MHz ~ 5670MHz / 5755MHz ~ 5795MHz ☐ Others 					
Device category	□ Portable (<20cm separation)□ Mobile (>20cm separation)□ Others					
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 					

Report No.: T161223W01-MF

	2.4G
	Auden PIFA Antenna T-0082
	Ant 1: Gain: 1.53dBi
	Ant 2: Gain: -0.29dBi
	PSA PIFA Antenna
	RFMTA200700NNLB002 Ant 1: Gain: 1.53dBi
	Ant 2: Gain: -0.29dBi
	5G
Antonno	Auden PIFA Antenna T-0082
Antenna Specification	Ant 1: Gain: 2.99dBi
	Ant 2: Gain: 2.75dBi
	PSA PIFA Antenna
	RFMTA200700NNLB002 Ant 1: Gain: 2.62dBi
	Ant 2: Gain: 2.49dBi
	2.4GHz: Antenna Gain: 1.53 dBi (Numeric gain: 1.42) Worst 5GHz: Antenna Gain: 2.99 dBi (Numeric gain: 1.99) Worst
	5GHz: Antenna Gain : 2.99 dBi (Numeric gain: 1.99) _{Worst}
	Directional gain = 1.53 dBi +10log (2) = 4.54 dBi (Numeric gain: 2.84)
	5GHz:
	Directional gain = 2.99 dBi +10log (2) = 6.00 dBi (Numeric gain: 3.98)
	IEEE 802.11b Mode: 17.85 dBm (60.954 mW)
Maximum	IEEE 802.11g Mode: 17.47 dBm (55.847 mW) IEEE 802.11n HT 20 Mode: 16.60 dBm (45.709 mW)
Average output	IEEE 802.11n HT 40 Mode: 15.66 dBm (36.813 mW)
power	IEEE 802.11a Mode: 18.36 dBm (68.549 mW)
	IEEE 802.11n HT 20 Mode: 19.34 dBm (85.901 mW) IEEE 802.11n HT 40 Mode: 19.53 dBm (89.743 mW)
	(,
	IEEE 802.11b Mode: 18.50 dBm (70.795 mW)
	IEEE 802.11g Mode: 18.50 dBm (70.795 mW)
Maximum	IEEE 802.11n HT 20 Mode: 17.50 dBm (56.234 mW) IEEE 802.11n HT 40 Mode: 16.50 dBm (44.668 mW)
Tune up Power	IEEE 802.11a Mode: 18.50 dBm (70.795 mW)
	IEEE 802.11n HT 20 Mode: 19.50 dBm (89.125 mW) IEEE 802.11n HT 40 Mode: 20.00 dBm (100.000 mW)
	1222 302.1111111 40 MICCO. 20.00 CDIII (100.000 IIIVV)
Evaluation	MPE Evaluation* SAB Evaluation
applied	☐ SAR Evaluation N/A
N. 1. 5. 0.1011	TECHT could not be use as transmit/receive at the same time

Notes: For 2.4GHz and 5GHz could not be use as transmit/receive at the same time.

FCC ID: PPQ-WN4519R

4. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Report No.: T161223W01-MF

FCC ID: PPQ-WN4519R Report No.: T161223W01-MF

5. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = *Numeric* antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	70.795	1.42	20	0.0200	1

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	70.795	1.42	20	0.0200	1

IEEE 802.11n HT 20 mode:

	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
I	11	2463	56.234	2.84	20	0.0318	1

IEEE 802.11n HT 40 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	6	2437	44.668	2.84	20	0.0252	1

IEEE 802.11a mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
165	5825	70.795	1.99	20	0.0280	1

IEEE 802.11n HT 20 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	165	5825	89.125	3.98	20	0.0706	1

IEEE 802.11n HT 40 mode:

I	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	110	5550	100	3.98	20	0.0792	1

C ID: PPQ-WN4519R Report No.: T161223W01-MF

6. SIMULTANEOUS TRANSMISSION SAR ANALYSIS

Both of the 2.4GHz, 5GHz can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + CPD3 / LPD3......etc. < 1

CPD = Calculation power density

LPD = Limit of power density

2.4GHz + 5GHz

Therefore, the worst-case situation is 0.0318 / 1 + 0.0792 / 1 = 0.111, which is less than "1".