

Report No.: FZ741229

Project No: CB10607342

FCC DFS Test Report

Equipment : Dual-Band 802.11ac 4x4 MIMO PCI Express Mini Card

Wireless Network Adapter

Brand Name : LITE-ON

Model No. : WM6687

FCC ID : PPQ-WM6687

Standard : 47 CFR FCC Part 15.407

Frequency Range: 5250 MHz - 5350 MHz

5470 MHz - 5725 MHz

Applicant : Lite-On Technology Corp.

Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City

23585, Taiwan, R.O.C

Manufacturer : Lite-On Network Communication (Dongguan) Limited

30#Keji Rd., Yin Hu Industrial Area, Qingxi Town, Dong Guan

City, Guangdong, China

Operate Mode : Client without radar detection

The product sample received on May 02, 2017 and completely tested on Jul. 18, 2017. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Sam Chen

SPORTON INTERNATIONAL INC.

lac MRA

Testing Laboratory

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No.

: 1 of 27

Report Version

: Rev. 01

Issued Date

: Jul. 27, 2017

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	
1.3	Support Equipment	11
1.4	Testing Applied Standards	
1.5	Testing Location Information	11
2	TEST CONFIGURATION OF EUT	12
2.1	Test Channel Frequencies Configuration	12
2.2	The Worst Case Measurement Configuration	12
3	DYNAMIC FREQUENCY SELECTION (DFS) TEST RESULT	13
3.1	General DFS Information	13
3.2	Radar Test Waveform Calibration	15
3.3	In-service Monitoring	20
4	TEST EQUIPMENT AND CALIBRATION DATA	26
5	MEASUREMENT UNCERTAINTY	27
APP	ENDIX A. TEST PHOTOS	A1 ~ A2
РНО	TOGRAPHS OF EUT V01	

Report No.: FZ741229

Report Version : Rev. 01 Issued Date : Jul. 27, 2017

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Limit	Result				
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	CMT ≤ 10sec	Complied				
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	CCTT ≤ 60 ms starting at CMT 200ms	Complied				
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	NOP ≥ 30 min	Complied				

Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.

 SPORTON INTERNATIONAL INC.
 P

 TEL: 886-3-327-3456
 R

 FAX: 886-3-327-0973
 Is

FCC ID: PPQ-WM6687

Page No. : 3 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

Revision History

Version	Description	Issued Date
Rev. 01	Initial issue of report	Jul. 27, 2017

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 4 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

1 General Description

1.1 Information

1.1.1 RF General Information

Specification Items	Desc	cription	
Product Type	WLAN (4TX, 4RX)		
Radio Type	Intentional Transceiver		
Power Type	From host system		
Modulation	IEEE 802.11a: OFDM (BPSK / QP	SK / 16QAM / 64QAM)	
	IEEE 802.11n/ac: see the below ta	able	
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)		
	IEEE 802.11n/ac: see the below table		
Channel Bandwidth	20/40/80 MHz operating channel bandwidth		
	☐ Master		
Operating Mode	☐ Client with radar detection		
Communication Mode		☐ Frame Based	
TPC Function	With TPC	☐ Without TPC	
Weather Band (5600~5650MHz)			
Power-on cycle	NA (No Channel Availability Check Function)		
Software / Firmware Version	10.10.80.4_e5.1.1 (r838377 WL TEST)		
Note: EUT employ a TPC mechanis output power.	sm and TPC have the capability to c	perate at least 6 dB below highest RF	

 SPORTON INTERNATIONAL INC.
 Page No.

 TEL: 886-3-327-3456
 Report V

 FAX: 886-3-327-0973
 Issued D

FCC ID: PPQ-WM6687

Page No. : 5 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

TPC Power Result For Mode 1 (Antenna Set 1):

Mode	Min Power (dBm)	Max Power (dBm)	Min EIRP (dBm)	Max EIRP (dBm)
802.11a_(6Mbps)_4TX	-	-	-	-
5.25-5.35GHz	12.78	18.78	17.68	23.68
5.47-5.725GHz	12.84	18.84	17.74	23.74
802.11ac VHT20_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	13.16	19.16	18.06	24.06
5.47-5.725GHz	13.17	19.17	18.07	24.07
802.11ac VHT40_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	15.89	21.89	20.79	26.79
5.47-5.725GHz	15.92	21.92	20.82	26.82
802.11ac VHT80_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	9.90	15.90	14.80	20.80
5.47-5.725GHz	17.97	23.97	22.87	28.87
802.11ac VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	12.93	18.93	23.85	29.85
5.47-5.725GHz	12.95	18.95	23.87	29.87
802.11ac VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	13.02	19.02	23.94	29.94
5.47-5.725GHz	12.92	18.92	23.84	29.84
802.11ac VHT80-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	11.02	17.02	21.94	27.94
5.47-5.725GHz	12.84	18.84	23.76	29.76

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 6 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

For Mode 2 (Antenna Set 2 with Gray Cable):

Mode	Min Power (dBm)	Max Power (dBm)	Min EIRP (dBm)	Max EIRP (dBm)
802.11a_(6Mbps)_4TX	-	-	-	-
5.25-5.35GHz	15.68	21.68	17.98	23.98
5.47-5.725GHz	15.73	21.73	18.03	24.03
802.11ac VHT20_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	16.19	22.19	18.49	24.49
5.47-5.725GHz	16.10	22.10	18.40	24.40
802.11ac VHT40_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	17.97	23.97	20.27	26.27
5.47-5.725GHz	17.81	23.81	20.11	26.11
802.11ac VHT80_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	11.99	17.99	14.29	20.29
5.47-5.725GHz	17.86	23.86	20.16	26.16
802.11ac VHT20-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	15.63	21.63	23.95	29.95
5.47-5.725GHz	15.64	21.64	23.96	29.96
802.11ac VHT40-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	15.53	21.53	23.85	29.85
5.47-5.725GHz	15.63	21.63	23.95	29.95
802.11ac VHT80-BF_Nss1,(MCS0)_4TX	-	-	-	-
5.25-5.35GHz	11.99	17.99	20.31	26.31
5.47-5.725GHz	15.55	21.55	23.87	29.87

Antenna & Band width

Antenna		Four (TX)			
Band width Mode	20 MHz	40 MHz	80 MHz		
IEEE 802.11a	V	X	X		
IEEE 802.11n	V	V	X		
IEEE 802.11ac	V	V	V		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 7 of 27
Report Version : Rev. 01

Issued Date : Jul. 27, 2017

IEEE 11n/ac Spec.

FCC ID: PPQ-WM6687

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	4	MCS0-31
802.11n (HT40)	4	MCS0-31
802.11ac (VHT20)	4	MCS0-11/Nss1-4
802.11ac (VHT40)	4	MCS0-11/Nss1-4
802.11ac (VHT80)	4	MCS0-11/Nss1-4

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration:
11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456

FAX: 886-3-327-0973

Issued Date

Issued Date : Jul. 27, 2017

: 8 of 27

: Rev. 01

1.1.2 Antenna Information

Set	Brand	Model Name (P/N)	Antenna Type	Connector	Gain (dBi)	Remark
1	PSA	RFDPA171300SBLB802	Dipole Antenna	Reversed-SMA	Note 1	-
2	ethertronics	M830520	Ceramic Antenna	N/A	Note 1	Connect with Black Cable or Grey Cable

Note 1:

Set	Gain	(dBi)	Cable loss (dB)		True Gain (dBi)		Remark
	2.4GHz	5GHz	2.4GHz	5GHz	2.4GHz	5GHz	Kemark
1	4.03	5.4	0.5	0.5	3.53	4.9	-
2	1.1	3.2	1.2	2.2	-0.1	1	Black Cable (Long)
	1.1	3.2	0.5	0.9	0.6	2.3	Gray Cable (Short)

Note 2:

The EUT has two sets of antennas and there are four antennas for each set.

The Set 2 antennas can connect with black and gray cable. After evaluating, gray cable was select as the representative cable for the test and its data was recorded in this report.

Only the lowest gain antenna Set 2 was selected to test and record in this report.

<For 2.4GHz Function>

For IEEE 802.11b/g/n/ac mode (4TX, 4RX):

Chain 1(Port 1), Chain 2(Port 2), Chain 3(Port 3) and Chain 4(Port 4) could transmit/receive simultaneously.

<For 5GHz Function>

For IEEE 802.11a/n/ac mode (4TX, 4RX):

Chain 1(Port 1), Chain 2(Port 2), Chain 3(Port 3) and Chain 4(Port 4) could transmit/receive simultaneously.

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 9 of 27
Report Version : Rev. 01

Issued Date

: Jul. 27, 2017

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144.

Report No.: FZ741229

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134, 142.

For 80MHz bandwidth systems, use Channel 58, 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5470~5725 MHz	108	5540 MHz	134	5670 MHz
5470~5725 MHZ Band 3	110	5550 MHz	136	5680 MHz
Dallu 3	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz	-	-

 SPORTON INTERNATIONAL INC.
 Page No.
 : 10 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017

1.2 Accessories

N/A

1.3 Support Equipment

	Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID						
1	Notebook*2	DELL	E4300	DoC			
2	WLAN AP	D-LINK	DIR860L	KA2IR860LA1			

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

1.5 Testing Location Information

	Testing Location								
	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.								
	TEL: 886-3-327-3456 FAX: 886-3-327-0973								
\boxtimes	JHUBEI	HUBEI ADD: No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.							
	TEL: 886-3-656-9065 FAX: 886-3-656-9085								
Te	Test Condition Test Site No. Test Engineer Test Environment Test Date								
	DFS Site DF01-CB Kenneth Huang 25°C / 59% 18-Jul-17								

Test site Designation No. TW0006 with FCC

Test site registered number IC 4086D with Industry Canada.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 11 of 27
Report Version : Rev. 01

Issued Date : Jul. 27, 2017

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration					
IEEE Std. Test Channel Freq. (MHz)					
802.11ac (VHT80)	5530 MHz				

Report No.: FZ741229

2.2 The Worst Case Measurement Configuration

Tł	The Worst Case Mode for Following Conformance Tests							
Tests Item Dynamic Frequency Selection (DFS)								
Test Condition	Radiated measurement The EUT shall be configured to operate at the highest transmitter output powe setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used. The DFS rada test signals have been aligned to the direction corresponding to the EUT's maximum antenna gain.							
Modulation Mode	802.11ac (VHT80)							

 SPORTON INTERNATIONAL INC.
 Page No.
 : 12 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values						
Parameter Value						
Non-occupancy period	Minimum 30 minutes					
Channel Availability Check Time	60 seconds					
Channel Move Time	10 seconds (Note 1).					
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).					
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).					

Report No.: FZ741229

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values						
Maximum Transmit Power	Value (see note)					
EIRP ≥ 200 mW	-64 dBm					
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm					
EIRP < 200 mW and PSD >= 10dBm/MHz	-64 dBm					

- Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 13 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode					
Requirement	Master	Client without radar detection	Client with radar detection			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 14 of 27

Report Version : Rev. 01

Issued Date : Jul. 27, 2017

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	[(1) (19×10 ⁶)]	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$Roundup \left\{ \left(\frac{1}{360} \right) \times \left(\frac{19 \times 10^6}{PRI} \right) \right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4 11-20 200-500		200-500	12-16	60%	30
Aggrega	ate (Radar Type	80%	120		

Report No.: FZ741229

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time

 SPORTON INTERNATIONAL INC.
 Page No.
 : 15 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

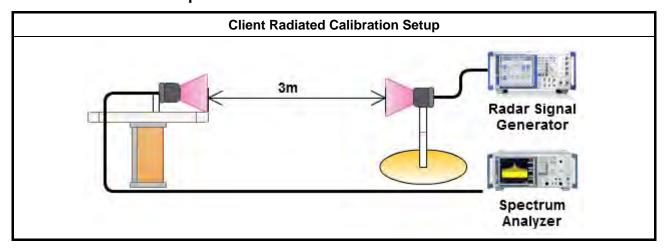
 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017

between the first and second pulses is chosen independently of the time between the second and third pulses.

Report No.: FZ741229

The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

3.2.3 Frequency Hopping Radar Test Waveform

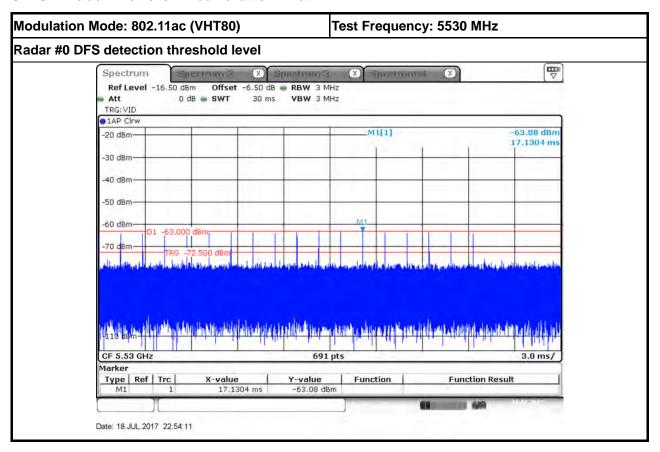

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

3.2.4 DFS Threshold Level

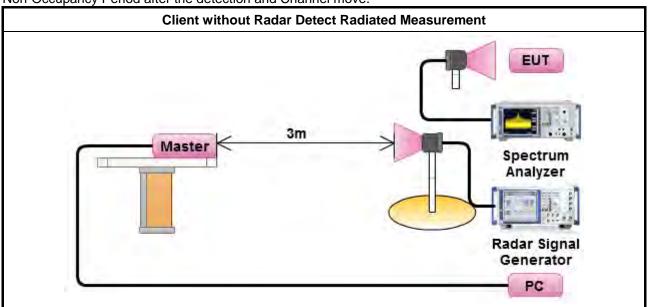
DFS Threshold Level				
DFS Threshold level:	-63	dBm	at the antenna connector	
			in front of the antenna	
The Interference Radar Detection Threshold Level is is $-64 dBm + 0 [dBi] + 1 dB = -63 dBm$. That had been taken into account the output power range and antenna gain.				

3.2.5 Calibration Setup


 SPORTON INTERNATIONAL INC.
 Page No.
 : 16 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

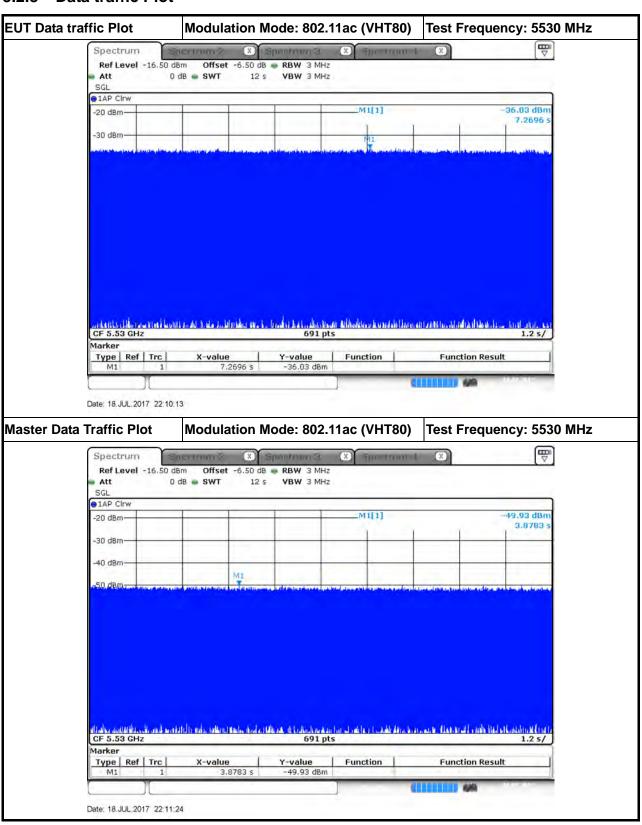
 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017



3.2.6 Radar Waveform calibration Plot

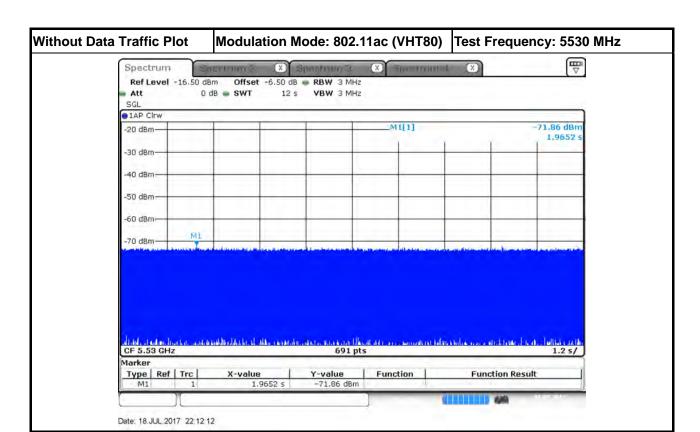
3.2.7 Test Setup

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.



SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 17 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017



3.2.8 Data traffic Plot

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 18 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 19 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

3.3

In-service Monitoring

3.3.1 **In-service Monitoring Limit**

In-service Monitoring Limit				
Channel Move Time	10 sec			
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.			
Non-occupancy period	Minimum 30 minutes			

Report No.: FZ741229

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 **Test Procedures**

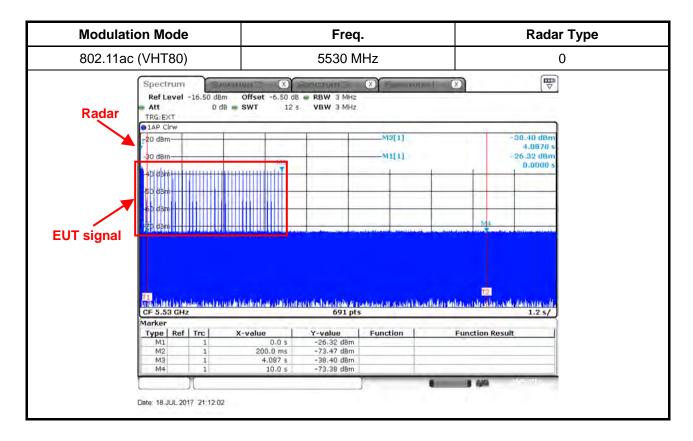
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst

Test Method

on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.

Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0 sec plot. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.

Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.


SPORTON INTERNATIONAL INC. Page No. : 20 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01 FAX: 886-3-327-0973 Issued Date : Jul. 27. 2017

SPORTON LAB. FCC DFS Test Repor

3.3.4 Test Result of Channel Move Time

Modulation Mode: 802.11ac (VHT80)

Parameter	Test Result	Limit	
Farameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Channel Move Time (sec.)	4.087	< 10s	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687

 Page No.
 : 21 of 27

 Report Version
 : Rev. 01

 Issued Date
 : Jul. 27, 2017

3.3.5 Test Result of Channel Closing Transmission Time

Modulation Mode: 802.11ac (VHT80)

Parameter	Test Result	Limit	
Farameter	Туре 0	Lillit	
Test Channel (MHz)	5530 MHz	-	
Channel Closing Transmission Time (ms) (Note)	40.875	< 60ms	

Report No.: FZ741229

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 22 of 27

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973
 Issued Date
 : Jul. 27, 2017

Mod	dulation Mode		Freq	Radar Typ	
802.11ac (VHT80)			5530 M	0	
	osing Transmissio Oms additional inte			0 ms starting a	at the beginning of the C
Radar	Ref Level -16.50 de Att 0 TRG:EXT	100	Spantrum 3 3 • RBW 3 MHz 5 VBW 3 MHz	X Spectrum	(X)
luai	●1AP Clrw -20 dBm			M3[1]	-45.79 dBm
_	20 40			Mi[1]	4.111125 s -25.87 dBm
	-30 dBm-				0.000000 s
	40 d8m + + + + + + + + + + + + + + + + + + +	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-50 d8m-			I I I I	
_	- 0000				
	-60 d8m				
UT alama	-70 dBm				
UT signa	الماران العالنات السادية الماران المار	Allegania de la destación de l	والمالية المالية المالية المالية المالية المالية	والمراضع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج	mite and and and interest the month of the second
	CF 5.53 GHz	distants de line nabbit altimateur	ին մուս ինկերկան 32001 թ	kod tib Mill Linnido La La blest ts	ւնուն ու լուրագրել իրև որ հանականումը հանականում ու հանականում ու հանականում ու հանականում ու հանականում ու հ 600.0 ms/
	Marker				
	Type Ref Trc	X-value	Y-value	Function	Function Result
	M1 1 M2 1	0.0 s 200.0 ms	-25.87 dBm -75.63 dBm		
	M3 1	4.111125 s	-45.79 dBm		
	1110				

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

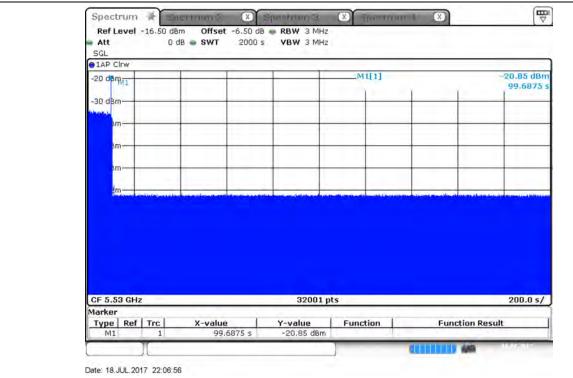
B is the number of spectrum analyzer sampling bins

C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (0.188 ms)= S (6000 ms) / B (32000) C (40.875 ms) = N (218) X Dwell (0.188 ms)

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 23 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

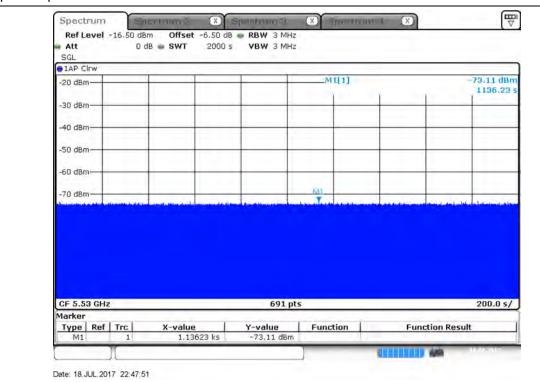
Test Result of Non-Occupancy Period

Modulation Mode: 802.11ac (VHT80)

Parameter	Test Result	Limit	
Farameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Non-Occupancy Period (min.)	≥30	≥ 30 min	

Modulation Mode	Freq.				
802.11ac (VHT80)	5530 MHz				
Non-Occupancy Period					
During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring					

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 24 of 27 Report Version : Rev. 01 Issued Date : Jul. 27, 2017

Report No. : FZ741229

Non-associated test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 25 of 27

Report Version : Rev. 01

Issued Date : Jul. 27, 2017

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV40	101026	9kHz~40GHz	Sep. 14, 2016	Radiated (DF01-CB)
Vector Signal generator	R&S	SMU200A	102782	25MHz-6GHz	Dec. 16, 2016	Radiated (DF01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	Jul. 06, 2017	Radiated (DF01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Dec. 05, 2016	Radiated (DF01-CB)
RF Power Divider	ANAREN	2 Way	DFS-01-DV-02	1GHz ~ 6GHz	Oct. 24, 2016	Radiated (DF01-CB)
RF Power Divider	MTJ	2 Way	DFS-01-DV-03	1GHz ~ 6GHz	Oct. 24, 2016	Radiated (DF01-CB)
RF Power Divider	ANAREN	4 Way	DFS-01-DV-01	1GHz ~ 6GHz	Oct. 24, 2016	Radiated (DF01-CB)
RF Cable-high	Woken	RG402	High Cable-57	1 GHz –18 GHz	Oct. 24, 2016	Radiated (DF01-CB)
RF Cable-high	Woken	RG402	High Cable-58	1 GHz –18 GHz	Oct. 24, 2016	Radiated (DF01-CB)

Note: Calibration Interval of instruments listed above is one year.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-327-0973 FCC ID: PPQ-WM6687 Page No. : 26 of 27
Report Version : Rev. 01
Issued Date : Jul. 27, 2017

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Radiated Emission	2.9 dB	Confidence levels of 95%

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456

FAX: 886-3-327-0973

Page No.

Report Version
Issued Date

FCC ID: PPQ-WM6687

 Page No.
 : 27 of 27

 Report Version
 : Rev. 01

 Issued Date
 : Jul. 27, 2017