

Bruno Ramelli

SAR Compliance Test Report

Test report no.: FCC_RM-813_09 Date of report: 2011-10-31

Template version: 18.0 Number of pages: 51

Testing laboratory: TCC Nokia Ulm Laboratory Client: Nokia Corporation

Lise Meitner Strasse 10
89081 ULM
GERMANY
Lise Meitner Strasse 10
89081 ULM
GERMANY
GERMANY

Tel. +49 731 1754 0 Tel. +49 731 1754 0 Fax. +49 731 1754 6800

Responsible test Leif Funch Klysner Product contact

engineer: person:

Measurements made by: Daniel Albrecht, Leif Klysner

 Tested device:
 RM-813

 FCC ID:
 PPIRM-813

 IC:
 661U-RM813

Supplement reports: SAR Photo RM-813 10, FCC RM-813 04

Testing has been carried out in accordance with:

47CFR §2.1093

ce with: Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1. SUMMARY OF SAR TEST REPORT	
1.1 TEST DETAILS	
1.2.4 Measurement Uncertainty 2. DESCRIPTION OF THE DEVICE UNDER TEST	
2.1 DESCRIPTION OF THE ANTENNA	
3. TEST CONDITIONS	
 3.1 TEMPERATURE AND HUMIDITY 3.2 TEST SIGNAL, FREQUENCIES AND OUTPUT POWER 3.3 TEST CASES AND TEST MINIMISATION 	(
4. DESCRIPTION OF THE TEST EQUIPMENT	
4.1 MEASUREMENT SYSTEM AND COMPONENTS	
5. DESCRIPTION OF THE TEST PROCEDURE	14
5.1 DEVICE HOLDER	
6. MEASUREMENT UNCERTAINTY	
7. RESULTS	
APPENDIX A: SYSTEM CHECKING SCANS	
APPENDIX B: MEASUREMENT SCANSAPPENDIX B: MEASUREMENT SCANS	
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S	
APPENDIX D. REI EVANT PAGES FROM DIPOLE VALIDATION KIT REPOL	RT(S) 51

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2011-10-18 to 2011-10-28
SN, HW and SW numbers of	SN: 004402/13/663656/4, HW: 0201, SW: jc13.37, DUT: 70039
tested device	
Batteries used in testing	BL-5J, DUT: 70041, 70042, 70043
Headsets used in testing	-
Other accessories used in	-
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM 850	251 / 848.8	32.5 dBm	Left, Cheek	0.537 W/kg	0.60 W/kg	1.6 W/kg	PASSED
WCDMA 850	4233 / 846.6	23.5 dBm	Left, Cheek	0.697 W/kg	0.78 W/kg	1.6 W/kg	PASSED
GSM 1900	512 / 1850.2	30.5 dBm	Right, Cheek	0.833 W/kg	0.93 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	22.5 dBm	Left, Cheek	1.03 W/kg	1.15 W/kg	1.6 W/kg	PASSED
WLAN 2450	1 / 2412.0	13.0 dBm	Left, Cheek	0.459 W/kg	0.51 W/kg	1.6 W/kg	PASSED
GSM850 + WLAN2450	-	•	Left, Cheek	0.554 W/kg	0.62 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	-	-	Left, Cheek	0.708 W/kg	0.79 W/kg	1.6 W/kg	PASSED
GSM1900 + WLAN2450	-	-	Right, Cheek	0.880 W/kg	0.99 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	Left, Cheek	1.03 W/kg	1.15 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / <i>f</i> (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM 850	190 / 836.6	32.5 dBm	1.5 cm	0.612 W/kg	0.69 W/kg	1.6 W/kg	PASSED
WCDMA 850	4233 / 846.6	23.5 dBm	1.5 cm	0.818 W/kg	0.92 W/kg	1.6 W/kg	PASSED
GSM 1900	810 / 1909.8	30.5 dBm	1.5 cm	0.380 W/kg	0.43 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	22.5 dBm	1.5 cm	0.479 W/kg	0.54 W/kg	1.6 W/kg	PASSED
WLAN 2450	1 / 2412.0	13.0 dBm	1.5 cm	0.137 W/kg	0.15 W/kg	1.6 W/kg	PASSED
GSM850 + WLAN2450	1	-	1.5 cm	0.647 W/kg	0.72 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	•	-	1.5 cm	0.855 W/kg	0.96 W/kg	1.6 W/kg	PASSED
GSM1900 + WLAN2450	-	-	1.5 cm	0.413 W/kg	0.46 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	1.5 cm	0.517 W/kg	0.58 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.49 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 4/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 4/8	824 - 849 1850 - 1910
WCDMA	850 (Band V) 1900 (Band II)		1	826 – 847 1852 – 1908
HSUPA	850 (Band V) 1900 (Band II)		1	826 - 847 1852 - 1908
BT	2450	GFSK	1	2402 – 2480
WLAN b-mode	2450	Up to 11Mbps QPSK	1	2412 - 2462
WLAN g-mode	2450	Up to 54Mbps 64QAM	1	2412 – 2462
WLAN n-mode 20MHz	2450	Up to 72.2Mbps 64QAM	1	2412 – 2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

2.1 Description of the Antenna

The device has internal antennas for both cellular and WLAN use. The cellular antenna is located at the bottom underneath the back cover. The WLAN antenna is located at the top underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 – 22.5
Ambient humidity (RH %):	35 - 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester except for testing WLAN2450 where control software was used. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

The transmission mode of the device in all WCDMA tests was configured to 12.2kbps RMC with all TPC bits set as "1".

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

The transmission mode of the device in all WLAN b-mode tests was DSSS QPSK 11Mbps. This mode has the highest (or equal highest) time-averaged output power of all the WLAN b and g modulation modes in Nokia devices. In WLAN n-mode, BPSK 6.5Mbps with 20MHz bandwidth was used.

The number of test cases reported in this document has been minimised based on the earlier testing in FCC_RM-813_04.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or

display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	504	12 months	2012-04
E-field Probe ET3DV6	1676	12 months	2012-07
Dipole Validation Kit, D835V2	474	24 months	2013-06
Dipole Validation Kit, D1900V2	5d007	24 months	2013-06
Dipole Validation Kit, D2450V2	792	24 months	2013-04
DASY4 software	Version 4.7	•	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SMIQ03B	100391	36 months	2012-10
Amplifier	ZHL-42W	D050802-1	-	-
Power Meter	E4417A	GB40320113	24 months	2012-03
Power Sensor	E9325A	US40420308	12 months	2012-03
Power Sensor	E9325A	US40420291	12 months	2012-03
Call Tester	CMU200	117027	-	-
Vector Network Analyzer	8714B	GB36050238	12 months	2012-03
Dielectric Probe Kit	HP85070B	US01440027	-	-

4.1.1 Isotropic E-field Probe Type ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Optical Surface Detection ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

SAR Report FCC RM-813 09

Applicant: Nokia Corporation

Type: RM-813

Copyright © 2011 TCC Nokia

The depth of the tissue simulant was at least 15.0 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

800MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	39.74	55.97
HEC	0.25	1.21
Sugar	58.31	41.76
Preservative	0.15	0.27
Salt	1.55	0.79

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.50	70.25
Tween 20	45.23	29.41
Salt	0.27	0.34

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.20
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1g	εr	σ [S/m]	[°C]
	Reference result	2.33	40.8	0.89	
	$\pm10\%$ window	2.10 - 2.56			
835	2011-10-21	2.41	40.7	0.88	21.2
	Reference result	9.95	39.0	1.40	
	$\pm10\%$ window	8.95 – 10.95			
1900	2011-10-18	9.67	38.1	1.42	20.5
	Reference result	13.2	38.6	1.74	
	$\pm10\%$ window	11.9 - 14.5			
2450	2011-10-28	13.5	40.4	1.72	21.5

System checking, body tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1g	εr	σ [S/m]	[°C]
	Reference result	13.1	50.7	1.91	
	$\pm10\%$ window	11.8 - 14.4			
2450	2011-10-26	14.0	50.1	1.97	21.1

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	Parameters	Temp
[MHz]	Description	εr	σ [S/m]	[°C]
	Recommended value	41.5	0.90	
	± 5% window	39.4 – 43.6	0.86 - 0.95	
835	2011-10-21	40.7	0.88	21.2
	Recommended value	41.5	0.90	
	± 5% window	39.4 – 43.6	0.86 - 0.95	
836	2011-10-21	40.7	0.87	21.2
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 - 1.47	
1880	2011-10-18	38.2	1.40	20.5
	Recommended value	39.2	1.79	
	± 5% window	37.3 – 41.2	1.70 - 1.88	
2442	2011-10-28	40.4	1.72	21.5

Body tissue simulant measurements

f	·	Dielectric F	Parameters	Temp
[MHz]	Description	εr	σ [S/m]	[°C]
	Recommended value	55.2	0.97	
	± 5% window	52.4 – 58.0	0.92 - 1.02	
835	2011-10-21	55.1	0.95	21.2
	Recommended value	55.2	0.97	
	± 5% window	52.4 – 58.0	0.92 - 1.02	
836	2011-10-21	55.1	0.95	21.2
	Recommended value	53.3	1.52	
	± 5% window	50.6 – 56.0	1.44 - 1.60	
1880	2011-10-18	53.2	1.47	20.5
	Recommended value	52.7	1.94	
	± 5% window	50.1 – 55.3	1.85 – 2.04	
2442	2011-10-26	50.2	1.96	21.1

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements.

Nokia body-worn accessories are commonly available for the separation distance used in this testing.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measur	certainty	evaluat	ion				
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	8
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±12.9	116
Coverage Factor for 95%			k=2				110
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850MHz Head SAR results

			SAR av	eraged over 1g	(W/ka)
Mode	Test conf	Test configuration		Ch 190 836.6 MHz	Ch 251 848.8 MHz
GSM	Conducte	ed Power	32.5 dBm	32.5 dBm	32.5 dBm
	Left	Cheek	0.451	0.531	0.537
		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
			SAR, av	eraged over 1g	(W/kg)
Mode	Test conf	iguration	SAR, av Ch 4132	eraged over 1g Ch 4175	(W/kg) Ch 4233
Mode	Test conf	iguration			
Mode WCDMA		iguration ed Power	Ch 4132	Ch 4175	Ch 4233
			Ch 4132 826.4 MHz	Ch 4175 835.0 MHz	Ch 4233 846.6 MHz
	Conducte	ed Power	Ch 4132 826.4 MHz 23.5 dBm	Ch 4175 835.0 MHz 23.5 dBm	Ch 4233 846.6 MHz 23.5 dBm
	Conducte	ed Power Cheek	Ch 4132 826.4 MHz 23.5 dBm	Ch 4175 835.0 MHz 23.5 dBm	Ch 4233 846.6 MHz 23.5 dBm

1900MHz Head SAR results

			SAR, av	eraged over 1g	(W/kg)	
Mode	Test configuration		Ch 512	Ch 661	Ch 810	
			1850.2 MHz	1880.0 MHz	1909.8 MHz	
GSM	Conducted Power		30.5 dBm	30.5 dBm	30.5 dBm	
	Left	Cheek	-	-	-	
		Tilt	-	ı	-	
	Right	Cheek	0.833	0.780	0.811	
		Tilt	-	-	-	
			SAR, averaged over 1g (W/kg)			
Mode	Test conf	iguration	Ch 9262	Ch 9400	Ch 9538	
			1852.4 MHz	1880.0 MHz	1907.6 MHz	
WCDMA	Conducte	ed Power	22.5 dBm	22.5 dBm	22.5 dBm	
	Left	Cheek	0.988	1.01	1.03	
		Tilt	-	-	-	
	Right	Cheek	0.984	1.01	1.00	
		Tilt	-	-	-	

2450MHz Head SAR results

			eraged over 1g	1g (W/kg)	
Mode	Test conf	Test configuration		Ch 7	Ch 11
			2412.0 MHz	2442.0 MHz	2462.0 MHz
WLAN b-mode	Conducted Power		13.0 dBm	17.0 dBm	13.0 dBm
	Left	Cheek	0.459	0.394	0.405
		Tilt	-	0.363	-
	Right	Cheek	-	0.247	-
		Tilt	-	0.265	-

The measured Body SAR values for the test device are tabulated below:

850MHz Body SAR results

			SAR, av	eraged over 1g	(W/kg)
Mode	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz
GSM	Offentation	Conducted Power	32.5 dBm	32.5 dBm	32.5 dBm
ויוכט	T		32.3 UDIII	32.3 UDIII	32.3 UDIII
	Display facing	Without headset	-	-	-
	phantom	With headset	-	-	-
	Back facing	Without headset	0.527	0.612	0.603
	phantom	With headset	-	-	-
			SAR, av	eraged over 1g	(W/kg)
Mode	Device	Test configuration	Ch 4132	Ch 4175	Ch 4233
	orientation		826.4 MHz	835.0 MHz	846.6 MHz
WCDMA		Conducted Power	23.5 dBm	23.5 dBm	23.5 dBm
	Display facing	Without headset	-	-	-
	phantom	With headset	-	-	-
	Back facing	Without headset	0.760	0.758	0.818
	phantom	With headset	-	-	-

1900MHz Body SAR results

			SAR, av	eraged over 1g	(W/kg)
Mode	Device orientation	Test configuration	Ch 512	Ch 661	Ch 810
	Orientation		1850.2 MHz	1880.0 MHz	1909.8 MHz
GSM		Conducted Power	30.5 dBm	30.5 dBm	30.5 dBm
	Display facing	Without headset	-	-	-
	phantom	With headset	-	-	-
	Back facing	Without headset	0.324	0.317	0.380
	phantom	With headset	-	-	-
			SAR, av	eraged over 1g	(W/kg)
Mode	Device	Test configuration	Ch 9262	Ch 9400	Ch 9538
	orientation		1852.4 MHz	1880.0 MHz	1907.6 MHz
					1301.011112
WCDMA		Conducted Power	22.5 dBm	22.5 dBm	22.5 dBm
WCDMA	Display facing	Conducted Power Without headset			
WCDMA	Display facing phantom				
WCDMA		Without headset			

2450MHz Body SAR results

			SAR, averaged over 1g (W/kg)		
Mode	Device	Test configuration	Ch 1	Ch 7	Ch 11
	orientation		2412.0 MHz	2442.0 MHz	2462.0 MHz
WLAN b-mode		Conducted Power	13.0 dBm	17.0 dBm	13.0 dBm
	Display facing	Without headset	-	-	-
	phantom	With headset	-	-	-
	Back facing	Without headset	0.137	0.126	0.122
	Phantom	With headset	-	-	-

Simultaneous transmissions: Combined SAR results – Individual band Max results

Individual balla Flax results					
	Max. 1g SAR results				
Test configuration	WLAN	GSM 850	WCDMA 850	GSM 1900	WCDMA 1900
Head: Left, Cheek	0.459	0.537	0.697	-	1.03
Head: Left, Tilt	0.363	-	-	-	-
Head: Right, Cheek	0.247	-	-	0.833	1.01
Head: Right, Tilt	0.265	-	-	-	-
Body: Display facing phantom, Without Headset	-	-	-	-	-
Body: Display facing phantom, With headset	-	-	-	-	-
Body: Back facing phantom, Without Headset	0.137	0.612	0.818	0.380	0.479
Body: Back facing phantom, With headset	-	-	-	-	-

Simultaneous transmissions: Combined SAR results – Max + Max combined results

	Max. 1g SAR results			
Test configuration	GSM 850 + WLAN	WCDMA 850 + WLAN	GSM 1900 + WLAN	WCDMA 1900 + WLAN
Head: Left, Cheek	0.996	1.156	•	1.489
Head: Left, Tilt	-	-	-	-
Head: Right, Cheek	-	-	1.08	1.257
Head: Right, Tilt	-	-	-	-
Body: Display facing phantom, Without Headset	-	-	-	-
Body: Display facing phantom, With headset	-	-	-	-
Body: Back facing phantom, Without Headset	0.749	0.955	0.517	0.616
Body: Back facing phantom, With headset	-	-	-	-

The following table gives a more accurate assessment of the SAR values for simultaneous transmission. These values have been calculated using the SPEAG Combined Multiband algorithm, which is based on area scans. It a) converts the 2D area scans into 3D volume scans by assuming frequency-dependent decay characteristics for the E-field, b) sums the SAR values

for WLAN2450 and the cellular bands point-by-point and c) calculates the combined average SAR values.

Simultaneous transmissions: Combined SAR results – SPEAG Combined Multiband algorithm results

	Max. 1g SAR results			
Test configuration	GSM 850 + WLAN	WCDMA 850 + WLAN	GSM 1900 + WLAN	WCDMA 1900 + WLAN
Head: Left, Cheek	0.554	0.708	-	1.01
Head: Left, Tilt	-	-	-	-
Head: Right, Cheek	-	-	0.880	-
Head: Right, Tilt	-	-	-	-
Body: Display facing phantom, Without Headset	-	-	-	-
Body: Display facing phantom, With headset	-	-	-	-
Body: Back facing phantom, Without Headset	0.647	0.855	0.413	0.517
Body: Back facing phantom, With headset	-	-	-	-

Some of the Combined SAR values in the above table are less than the maximum SAR values for the contributing cellular band. This is due to a) minimal overlap of the SAR distributions of the cellular band with WLAN2450 and b) uncertainties associated with the different methods of calculation. In these cases, the maximum SAR values given for the combined Modes in the Summary table in Section 1.2 are those for the individual cellular band.

Note: Simultaneous Transmission Procedures as described in KDB648474 are not required for this product. The Combined SAR data given in the tables above has been voluntarily calculated.

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages.

Date/Time: 2011-10-21 11:01:35

Test Laboratory: TCC Nokia Type: D835V2; Serial: 474

Communication System: CW 835 Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835; Medium Notes: Liquid Temperature: 21.2 C

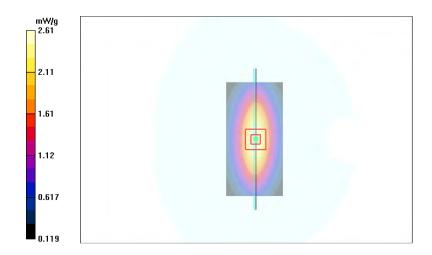
Medium parameters used: f = 835 MHz; σ = 0.876 mho/m; ε_r = 40.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.66, 6.66, 6.66); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1188
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 2.61 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.9 V/m Peak SAR (extrapolated) = 3.45 W/kg

SAR(1 g) = 2.41 mW/g SAR(10 g) = 1.59 mW/g Power Drift = -0.042 dB

Maximum value of SAR (measured) = 2.61 mW/g

Date/Time: 2011-10-18 08:59:14

Test Laboratory: TCC Nokia **Type: D1900V2; Serial: 5d007**

Communication System: CW 1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Liquid Temperature: 20.5 C

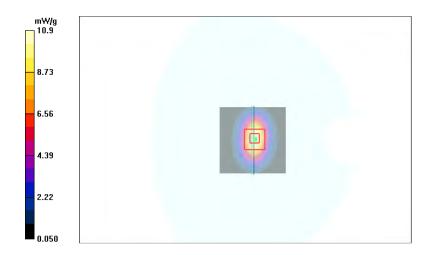
Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1421
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 10.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.67 mW/g SAR(10 g) = 5.11 mW/g Power Drift = -0.012 dB

Maximum value of SAR (measured) = 10.9 mW/g

Date/Time: 2011-10-28 08:33:09

Test Laboratory: TCC Nokia Type: D2450V2; Serial: 792

Communication System: CW 2450 Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Liquid Temperature: 21.5 C

Medium parameters used: f = 2450 MHz; $\sigma = 1.72 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

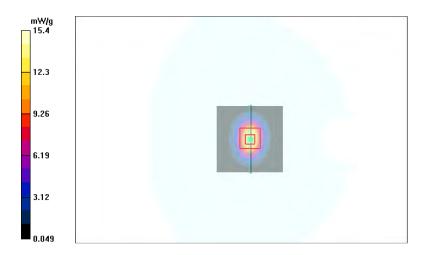
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.4 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.4 V/m Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 13.5 mW/gSAR(10 g) = 6.25 mW/g

Power Drift = -0.060 dB

Maximum value of SAR (measured) = 15.1 mW/g

Date/Time: 2011-10-26 18:18:14

Test Laboratory: TCC Nokia Type: D2450V2; Serial: 792

Communication System: CW 2450 Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Liquid Temperature: 21.1 C

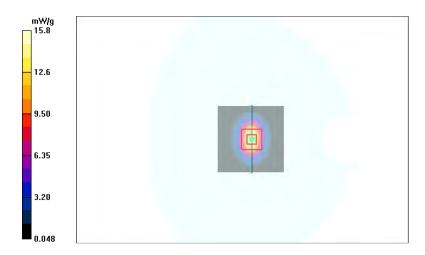
Medium parameters used: f = 2450 MHz; σ = 1.97 mho/m; ε_r = 50.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 15.8 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.0 V/m Peak SAR (extrapolated) = 34.8 W/kg

SAR(1 g) = 14 mW/g SAR(10 g) = 6.33 mW/g Power Drift = -0.001 dB

Maximum value of SAR (measured) = 15.4 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages.

Date/Time: 2011-10-21 12:01:33

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM850

Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 835; Medium Notes: Liquid Temperature: 21.2 C

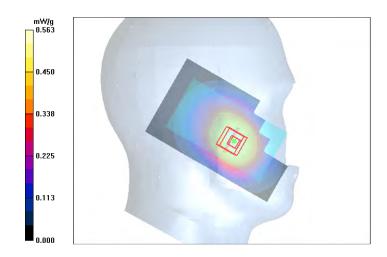
Medium parameters used: f = 849 MHz; $\sigma = 0.888$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.66, 6.66, 6.66); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1188
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.563 mW/g

Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.3 V/m
Peak SAR (extrapolated) = 0.658 W/kg
SAR(1 g) = 0.537 mW/g

SAR(10 g) = 0.403 mW/gPower Drift = 0.001 dB

Maximum value of SAR (measured) = 0.565 mW/g

Date/Time: 2011-10-21 13:10:13

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA850 Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: Head 835; Medium Notes: Liquid Temperature: 21.2 C

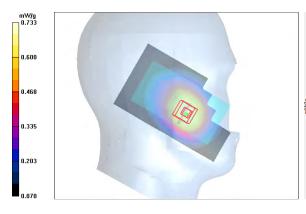
Medium parameters used: f = 847 MHz; $\sigma = 0.887$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

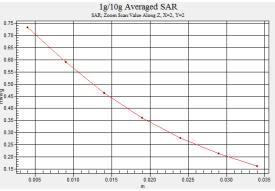
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.66, 6.66, 6.66); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1188
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.725 mW/g


Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.6 V/m
Peak SAR (extrapolated) = 0.850 W/kg
SAR(1 g) = 0.697 mW/g

SAR(10 g) = 0.523 mW/gPower Drift = 0.073 dB

Maximum value of SAR (measured) = 0.733 mW/g

Date/Time: 2011-10-18 13:57:38

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM1900

Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900; Medium Notes: Liquid Temperature: 20.5 C

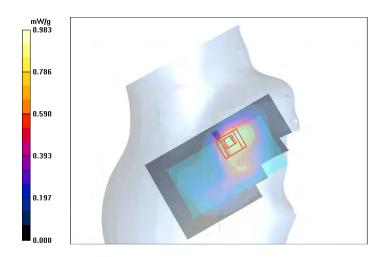
Medium parameters used: f = 1850 MHz; σ = 1.37 mho/m; ε_r = 38.3; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1421
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.983 mW/g

Cheek - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 9.05 V/m Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.833 mW/g SAR(10 g) = 0.510 mW/g Power Drift = 0.030 dB

Maximum value of SAR (measured) = 0.890 mW/g

Date/Time: 2011-10-18 11:53:55

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Liquid Temperature: 20.5 C

Medium parameters used: f = 1908 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1421
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.20 mW/g

Cheek - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 12.2 V/m Peak SAR (extrapolated) = 1.53 W/kg

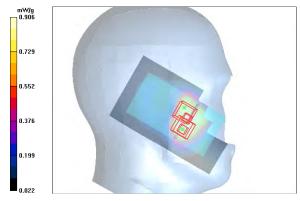
SAR(1 g) = 1.03 mW/g

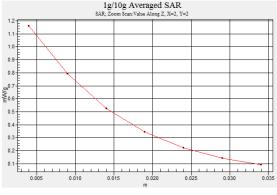
SAR(10 g) = 0.608 mW/g

Power Drift = -0.111 dB

Maximum value of SAR (measured) = 1.15 mW/g

Cheek - High/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 12.2 V/m Peak SAR (extrapolated) = 1.24 W/kg


SAR(1 g) = 0.756 mW/g

SAR(10 g) = 0.494 mW/g

Power Drift = -0.111 dB

Maximum value of SAR (measured) = 0.906 mW/g

SAR Report FCC_RM-813_09 Applicant: Nokia Corporation Type: RM-813

Date/Time: 2011-10-18 10:33:12

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA1900 Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Liquid Temperature: 20.5 C

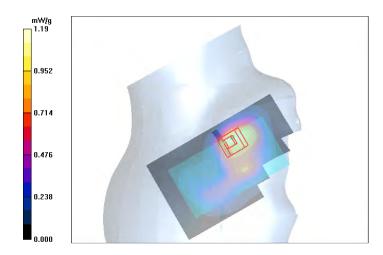
Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε_r = 38.2; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1; Type: Twin Phantom; Serial: TP-1421
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.19 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.5 V/m Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.01 mW/g SAR(10 g) = 0.616 mW/g Power Drift = -0.191 dB

Maximum value of SAR (measured) = 1.08 mW/g

Date/Time: 2011-10-28 10:32:10

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WLAN2450 b-mode

Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Liquid Temperature: 21.5 C

Medium parameters used: f = 2412 MHz; $\sigma = 1.68 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

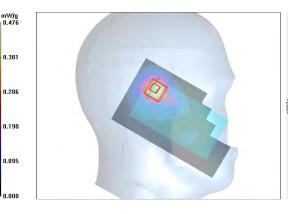
Phantom section: Left Section

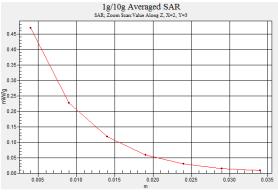
DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.476 mW/g


Cheek - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.3 V/m Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.459 mW/gSAR(10 g) = 0.221 mW/g

Power Drift = 0.056 dB

Maximum value of SAR (measured) = 0.470 mW/g

Date/Time: 2011-10-28 09:33:25

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Liquid Temperature: 21.5 C

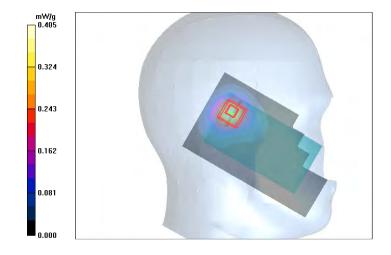
Medium parameters used: f = 2442 MHz; $\sigma = 1.72$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.405 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.1 V/m
Peak SAR (extrapolated) = 0.848 W/kg
SAR(1 g) = 0.363 mW/g

SAR(10 g) = 0.177 mW/g Power Drift = -0.009 dB

Maximum value of SAR (measured) = 0.378 mW/g

Date/Time: 2011-10-28 09:47:55

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Liquid Temperature: 21.5 C

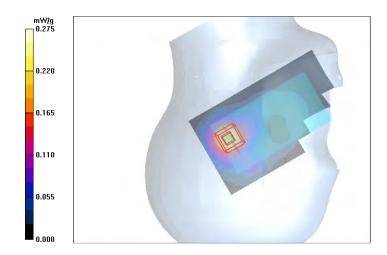
Medium parameters used: f = 2442 MHz; $\sigma = 1.72$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.275 mW/g

Cheek - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.6 V/m
Peak SAR (extrapolated) = 0.494 W/kg
SAR(1 g) = 0.247 mW/g

SAR(10 g) = 0.130 mW/gPower Drift = -0.033 dB

Maximum value of SAR (measured) = 0.272 mW/g

Date/Time: 2011-10-28 10:02:41

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Liquid Temperature: 21.5 C

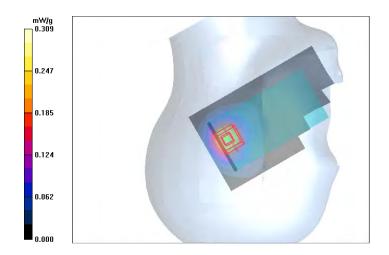
Medium parameters used: f = 2442 MHz; $\sigma = 1.72$ mho/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.309 mW/g

Tilt - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 12.9 V/m
Peak SAR (extrapolated) = 0.531 W/kg
SAR(1 g) = 0.265 mW/g

SAR(10 g) = 0.140 mW/g Power Drift = 0.086 dB

Maximum value of SAR (measured) = 0.284 mW/g

Date/Time: 2011-10-21 15:57:08

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Body 835; Medium Notes: Liquid Temperature: 21.2 C

Medium parameters used: f = 837 MHz; $\sigma = 0.952$ mho/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

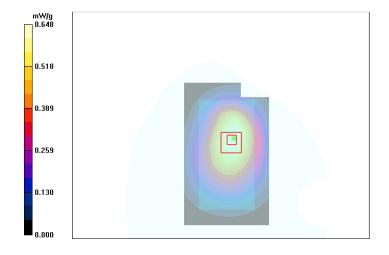
- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.42, 6.42, 6.42); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.648 mW/g

Body - Middle - No Accessory - Back Facing Phantom/Zoom Scan (6x6x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.6 V/m

Peak SAR (extrapolated) = 0.769 W/kg SAR(1 g) = 0.612 mW/g

SAR(10 g) = 0.450 mW/g

Power Drift = 0.004 dB

Maximum value of SAR (measured) = 0.650 mW/g

Date/Time: 2011-10-21 14:14:34

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA850 Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: Body 835; Medium Notes: Liquid Temperature: 21.2 C

Medium parameters used: f = 847 MHz; σ = 0.961 mho/m; ε_r = 55; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

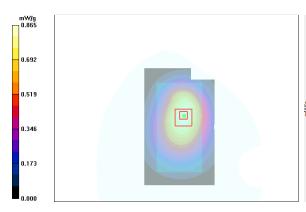
- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.42, 6.42, 6.42); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

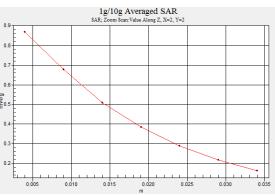
Body - High - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.865 mW/g

Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm Reference Value = 13.7 V/m


Peak SAR (extrapolated) = 1.02 W/kg


SAR(1 g) = 0.818 mW/g

SAR(10 g) = 0.603 mW/g

Power Drift = 0.008 dB

Maximum value of SAR (measured) = 0.868 mW/g

Date/Time: 2011-10-18 17:50:35

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM1900

Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Body 1900; Medium Notes: Liquid Temperature: 20.5 C

Medium parameters used: f = 1910 MHz; σ = 1.5 mho/m; ε_r = 53; ρ = 1000 kg/m³

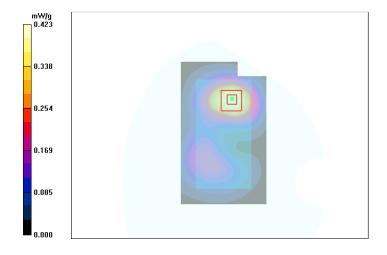
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.7, 4.7, 4.7); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn504: Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - High - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.423 mW/g


Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm Reference Value = 9.32 V/m Peak SAR (extrapolated) = 0.605 W/kg

SAR(1 g) = 0.380 mW/g SAR(10 g) = 0.235 mW/g

Power Drift = 0.016 dB

Maximum value of SAR (measured) = 0.411 mW/g

Date/Time: 2011-10-18 16:58:07

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: Body 1900; Medium Notes: Liquid Temperature: 20.5 C

Medium parameters used: f = 1908 MHz; σ = 1.5 mho/m; ε_r = 53.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

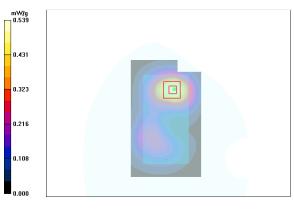
- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.7, 4.7, 4.7); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

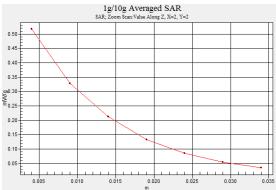
Body - High - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.539 mW/g

Body - High - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm


Reference Value = 9.73 V/m Peak SAR (extrapolated) = 0.758 W/kg


SAR(1 g) = 0.479 mW/g

SAR(10 g) = 0.296 mW/g

Power Drift = 0.060 dB

Maximum value of SAR (measured) = 0.517 mW/g

Date/Time: 2011-10-26 16:39:27

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WLAN2450 b-mode

Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Liquid Temperature: 21.1 C

Medium parameters used: f = 2412 MHz; $\sigma = 1.92 \text{ mho/m}$; $\varepsilon_r = 50.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

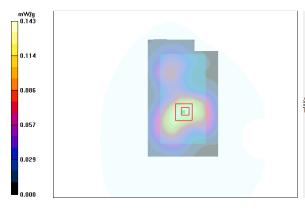
- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

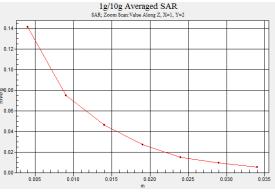
Body - Low - No Accessory - Back Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.143 mW/g

Body - Low - No Accessory - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm,

dy=7.5mm, dz=5mm Reference Value = 4.80 V/m


Peak SAR (extrapolated) = 0.292 W/kg


SAR(1 g) = 0.137 mW/g

SAR(10 g) = 0.079 mW/g

Power Drift = 0.129 dB

Maximum value of SAR (measured) = 0.141 mW/g

Date/Time: 2011-10-21 12:01:33, Date/Time: 2011-10-28 10:32:10

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM850, Communication System: WLAN2450 b-mode

Frequency: 848.8 MHz, Frequency: 2412 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: Head 835, Medium: Head 2450; Medium Notes: Liquid Temperature: 21.2 C, Medium Notes: Liquid

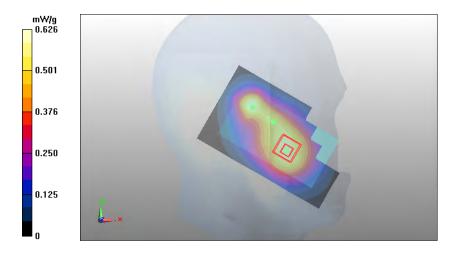
Temperature: 21.5 C

Medium parameters used: f = 849 MHz; $\sigma = 0.888$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.68 mho/m; ε_r = 40.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.66, 6.66, 6.66), ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 2, Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1188, Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.554 mW/gSAR(10 g) = 0.384 mW/g

Maximum value of SAR (measured) = 0.626 mW/g

Date/Time: 2011-10-21 13:10:13, Date/Time: 2011-10-28 10:32:10

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA850, Communication System: WLAN2450 b-mode

Frequency: 846.6 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Head 835, Medium: Head 2450; Medium Notes: Liquid Temperature: 21.2 C, Medium Notes: Liquid

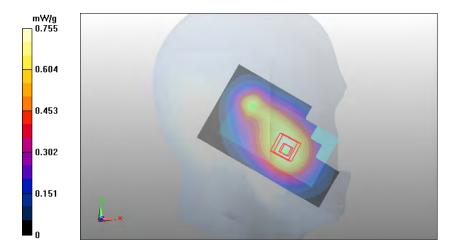
Temperature: 21.5 C

Medium parameters used: f = 847 MHz; $\sigma = 0.887$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.68 mho/m; ε_r = 40.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.66, 6.66, 6.66), ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 2, Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1188, Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.708 mW/gSAR(10 g) = 0.492 mW/g

Maximum value of SAR (measured) = 0.755 mW/g

Date/Time: 2011-10-18 13:57:38, Date/Time: 2011-10-28 09:47:55

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM1900, Communication System: WLAN2450 b-mode

Frequency: 1850.2 MHz, Frequency: 2442 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: Head 1900, Medium: Head 2450; Medium Notes: Liquid Temperature: 20.5 C, Medium Notes: Liquid

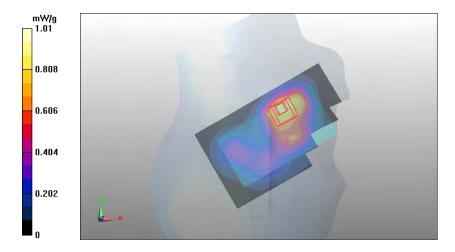
Temperature: 21.5 C

Medium parameters used: f = 1850 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2442 MHz; σ = 1.72 mho/m; ε_r = 40.4; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93), ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1, Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1421, Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Middle/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.880 mW/gSAR(10 g) = 0.512 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Date/Time: 2011-10-18 11:53:55, Date/Time: 2011-10-28 10:32:10

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA1900, Communication System: WLAN2450 b-mode

Frequency: 1907.6 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Head 1900, Medium: Head 2450; Medium Notes: Liquid Temperature: 20.5 C, Medium Notes: Liquid

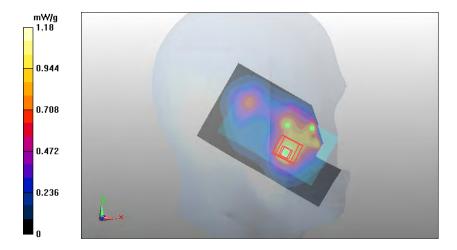
Temperature: 21.5 C

Medium parameters used: f = 1908 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.68 mho/m; ε_r = 40.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.93, 4.93, 4.93), ConvF(4.38, 4.38, 4.38); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 1, Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1421, Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - High/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 1.01 mW/gSAR(10 g) = 0.566 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

Date/Time: 2011-10-21 15:57:08, Date/Time: 2011-10-26 16:39:27

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM850, Communication System: WLAN2450 b-mode

Frequency: 836.6 MHz, Frequency: 2412 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: Body 835, Medium: Body 2450; Medium Notes: Liquid Temperature: 21.2 C, Medium Notes: Liquid

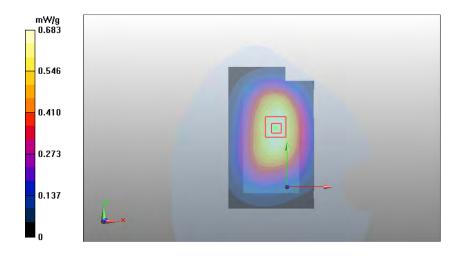
Temperature: 21.1 C

Medium parameters used: f = 837 MHz; $\sigma = 0.952$ mho/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.92 mho/m; ϵ_r = 50.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.42, 6.42, 6.42), ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - Middle - No Accessory - Back Facing Phantom 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Low - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.647 mW/g SAR(10 g) = 0.453 mW/g

Maximum value of SAR (measured) = 0.683 mW/g

Date/Time: 2011-10-21 14:14:34, Date/Time: 2011-10-26 16:39:27

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA850, Communication System: WLAN2450 b-mode

Frequency: 846.6 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 835, Medium: Body 2450; Medium Notes: Liquid Temperature: 21.2 C, Medium Notes: Liquid

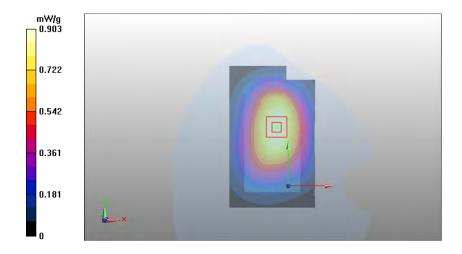
Temperature: 21.1 C

Medium parameters used: f = 847 MHz; $\sigma = 0.961$ mho/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³, Medium parameters used: f

= 2412 MHz; σ = 1.92 mho/m; ε_r = 50.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(6.42, 6.42, 6.42), ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Low - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.855 mW/g SAR(10 g) = 0.599 mW/g

Maximum value of SAR (measured) = 0.903 mW/g

Date/Time: 2011-10-18 17:50:35, Date/Time: 2011-10-26 16:39:27

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: GSM1900, Communication System: WLAN2450 b-mode

Frequency: 1909.8 MHz, Frequency: 2412 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: Body 1900, Medium: Body 2450; Medium Notes: Liquid Temperature: 20.5 C, Medium Notes: Liquid

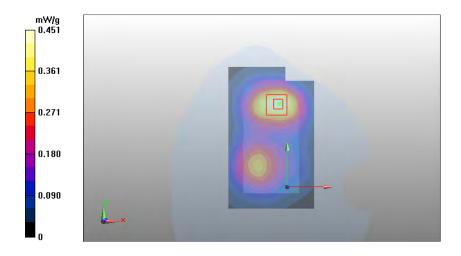
Temperature: 21.1 C

Medium parameters used: f = 1910 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_f = 53$; $\rho = 1000$ kg/m³, Medium parameters used: f

= 2412 MHz; σ = 1.92 mho/m; ε_r = 50.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.7, 4.7, 4.7), ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Low - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.413 mW/g SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.451 mW/g

Date/Time: 2011-10-18 16:58:07, Date/Time: 2011-10-26 16:39:27

Test Laboratory: TCC Nokia

Type: RM-813; Serial: 004402/13/663656/4

Communication System: WCDMA1900, Communication System: WLAN2450 b-mode

Frequency: 1907.6 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Body 1900, Medium: Body 2450; Medium Notes: Liquid Temperature: 20.5 C, Medium Notes: Liquid

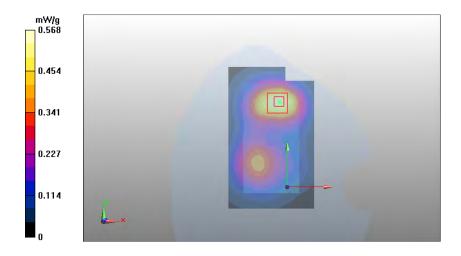
Temperature: 21.1 C

Medium parameters used: f = 1908 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_f = 53.1$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.92 mho/m; ε_r = 50.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1676; Probe Notes:
- ConvF(4.7, 4.7, 4.7), ConvF(4.09, 4.09, 4.09); Calibrated: 2011-07-14
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn504; Calibrated: 2011-04-08
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1420
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Low - No Accessory - Back Facing Phantom/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.517 mW/g SAR(10 g) = 0.304 mW/g

Maximum value of SAR (measured) = 0.568 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia GmbH (Ulm)

Certificate No: ET3-1676_Jul11

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object

ET3DV6+SN:1676

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

July 14, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	מו	Cal Date (Certificate No.) Scheduled Calibration	
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372) Apr-12	
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Name Function Signature
Calibrated by:

Claudio Leubler Laboratory Technician

Approved by:

Katja Pokovic Technical Manager

Issued: July 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1676

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k≃2)
900	41.5	0.97	6.21	6.21	6.21	0.68	1.91	± 12.0 %
1750	40.1	1.37	5.31	5.31	5.31	0.56	2.33	± 12.0 %
1950	40.0	1.40	4.93	4.93	4.93	0.55	2.34	± 12.0 %
2450	39.2	1.80	4.38	4.38	4.38	0.78	1.75	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if figuid compensation formula is applied to

^{*} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ET3DV6- SN:1676

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittlvity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
900	55.0	1.05	6.19	6.19	6.19	0.76	1.83	± 12.0 %
1750	53.4	1.49	4.83	4.83	4.83	0.59	2.87	± 12.0 %
1950	53.3	1.52	4.70	4.70	4.70	0.62	2.54	± 12.0 %
2450	52.7	1.95	4.09	4.09	4.09	0.99	1.22	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia GmbH (Ulm)

Accreditation No.: SCS 108

Certificate No: D835V2-474 Jun11

CALIBRATION CERTIFICATE

Object D835V2 - SN: 474

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 14, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	8-Jun-11 (No. DAE4-601_Jun11)	Jun-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Eurotion	Cinnakun
	Marie College	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	O Hier
Approved by:	Katja Pokovic	Technical Manager	
гириотов бу.	rvaga i Oković	recimical Manager	XX Rg

Issued: June 14, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-474_Jun11

DASY5 Validation Report for Head TSL

Date: 14.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 474

Communication System: CW; Frequency: 835 MHz

Medium: HSL900V2

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011

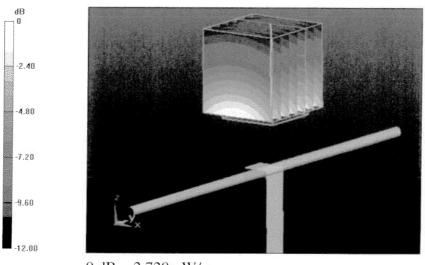
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.048 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.439 W/kg

SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.718 mW/g

0 dB = 2.720 mW/g

DASY5 Validation Report for Body TSL

Date: 14.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 474

Communication System: CW; Frequency: 835 MHz

Medium: MSL900V2

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

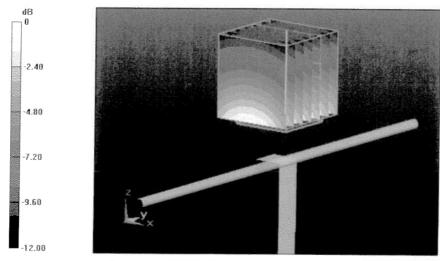
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.624 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.578 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

Maximum value of SAR (measured) = 2.859 mW/g

0 dB = 2.860 mW/g

Certificate No: D835V2-474_Jun11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia GmbH (Ulm)

Certificate No: D1900V2-5d007_Jun11

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d007

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 16, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	8-Jun-11 (No. DAE4-601_Jun11)	Jun-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D'Hier
Approved by:	Katja Pokovic	Technical Manager	00 110

Issued: June 16, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d007_Jun11

DASY5 Validation Report for Head TSL

Date: 15.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d007

Communication System: CW; Frequency: 1900 MHz

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

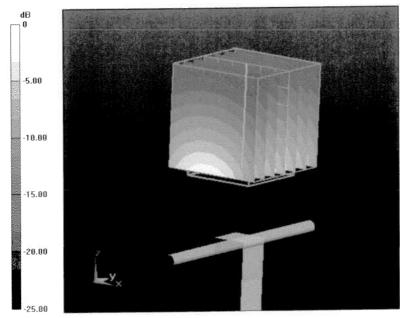
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.068 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.126 W/kg

SAR(1 g) = 9.95 mW/g; SAR(10 g) = 5.19 mW/g

Maximum value of SAR (measured) = 12.246 mW/g

0 dB = 12.250 mW/g

Certificate No: D1900V2-5d007_Jun11 Page 5 of 8

DASY5 Validation Report for Body TSL

Date: 16.06.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d007

Communication System: CW; Frequency: 1900 MHz

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

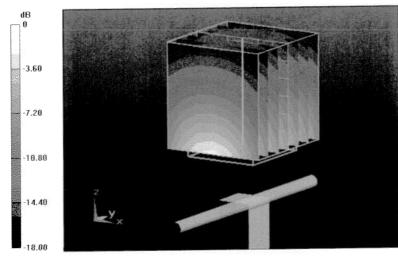
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 08.06.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.029 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.022 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.863 mW/g

0 dB = 12.860 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia GmbH (Ulm)

Accreditation No.: SCS 108

Certificate No: D2450V2-792_Apr11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 792

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: April 6, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
US37292783	06-Oct-10 (No. 217-01266)	Oct-11
SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Name	Function	Signature
Mike Meili	Laboratory Technician	F1. Meil
Katja Pokovic	Technical Manager	SO 18
	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Mike Meili	GB37480704 06-Oct-10 (No. 217-01266) US37292783 06-Oct-10 (No. 217-01266) SN: 5086 (20g) 29-Mar-11 (No. 217-01368) SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) SN: 601 10-Jun-10 (No. DAE4-601_Jun10) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-09) 100005 4-Aug-99 (in house check Oct-09) US37390585 S4206 18-Oct-01 (in house check Oct-10) Name Function Mike Meili Laboratory Technician

Issued: April 7, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2- 792_Apr11

DASY5 Validation Report for Head TSL

Date/Time: 05.04.2011 15:23:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:792

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

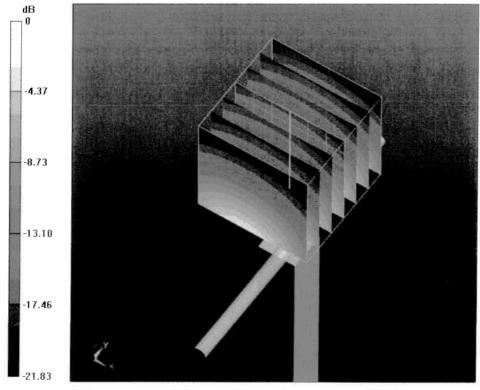
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY52, V52.6.2 Build (424)

• Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Head / d=10mm, Pin=250 mW / Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.0 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.049 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.19 mW/g

Maximum value of SAR (measured) = 16.730 mW/g

0 dB = 16.730 mW/g

Certificate No: D2450V2- 792_Apr11

DASY5 Validation Report for Body TSL

Date/Time: 06.04.2011 15:17:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:792

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.91 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

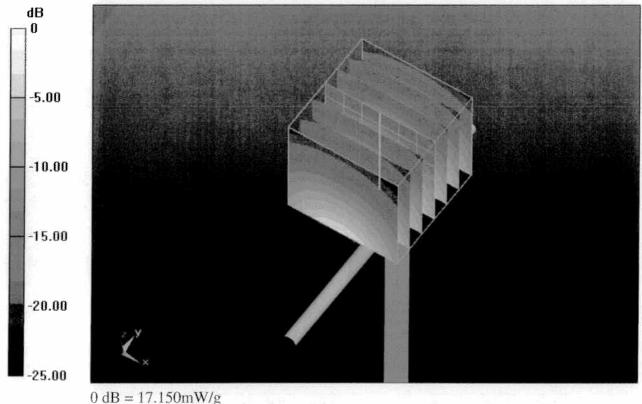
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.2 Build (424)

Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Body / d=10mm, Pin=250 mW / Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.347 V/m; Power Drift = 0.0071 dB

Peak SAR (extrapolated) = 27.543 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 17.145 mW/g

