

Tobias Cremer

SAR Compliance Test Report

Test report no.: FCC_RM-776_02 Date of report: 2011-04-27

Template version: Number of pages: 17.0 48

TCC Nokia Salo Laboratory Testing laboratory: Client:

Nokia Corporation P.O.Box 86 Lise Meitner Strasse 10

Joensuunkatu 7H / Kiila 1B 89081 ULM FIN-24101 SALO, FINLAND **GERMANY** Tel. +358 (0) 7180 08000 Tel. +49 731 1754 0 Fax. +358 (0) 7180 45220 Fax. +49 731 1754 6800

TCC Nokia Copenhagen Lab.

Responsible test Janne Hirsimäki **Product contact**

engineer: person:

Tested device: RM-776 FCC ID: PPIRM-776 IC: 661U-RM776

Supplement reports: SAR Photo RM-776 03, FCC RM-640 03 for RM-640 / FCC ID: PPIRM-640 / IC: 661U-RM640

Testing has been carried out in accordance with:

Measurements made by:

47CFR §2.1093

Janne Hirsimäki

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1.	. SUMMARY OF SAR TEST REPORT	3
	1.1 Test Details	3
	1.2 MAXIMUM RESULTS	3
	1.2.1 Head Configuration	
	1.2.2 Body Worn Configuration	
	1.2.3 Maximum Drift	
	1.2.4 Measurement Uncertainty	
2.	. DESCRIPTION OF THE DEVICE UNDER TEST	
	2.1 DESCRIPTION OF THE ANTENNA	6
3.	. TEST CONDITIONS	6
	3.1 Temperature and Humidity	6
	3.2 Test Signal, Frequencies and Output Power	
	3.3 Test Cases and Test Minimisation	6
4.	. DESCRIPTION OF THE TEST EQUIPMENT	9
	4.1 MEASUREMENT SYSTEM AND COMPONENTS	C
	4.1.1 Isotropic E-field Probe Type EX3DV4	
	4.2 PHANTOMS	
	4.3 TISSUE SIMULANTS	10
	4.3.1 Tissue Simulant Recipes	
	4.3.2 System Checking	
_	4.3.3 Tissue Simulants used in the Measurements	
5.		
	5.1 DEVICE HOLDER	
	5.2 TEST POSITIONS	
	5.2.1 Against Phantom Head5.2.2 Body Worn Configuration	
	5.2.2 Body Worn Configuration	
	5.4 SAR AVERAGING METHODS.	
6.		
7.	. RESULTS	16
ΑF	PPENDIX A: SYSTEM CHECKING SCANS	26
A F	PPENDIX B: MEASUREMENT SCANS	27
Aŀ	PPENDIX B: MEASUREMENT SCANS	
AF	PPENDIX C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSU	JPA45
ΑF	PPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	47
ΑF	PPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	48
SA	PPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S) AR Report	Type: RM-776
FC	CC_RM-776_02	
Αŗ	pplicant: Nokia Corporation	Copyright © 2011 TCC Nokia

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2011-04-19
SN, HW and SW numbers of	SN: 004402/13/477598/4, HW: 0100, SW: re6.33, DUT: 15559
tested device	
Batteries used in testing	BL-5CT, DUT: 15542, 15540, 15539
Headsets used in testing	WH-102, DUT: 15027
Other accessories used in	-
testing	
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850**	128 / 824.2	29.5 dBm	Left, Cheek	0.644 W/kg	0.72 W/kg	1.6 W/kg	PASSED
WCDMA850**	4175 / 835.0	23.5 dBm	Left, Cheek	0.839 W/kg	0.94 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900**	661 / 1880.0	27.5 dBm	Right, Cheek	0.751 W/kg	0.84 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9400 / 1880.0	21.0 dBm	Left, Cheek	1.02 W/kg	1.14 W/kg	1.6 W/kg	PASSED
WLAN2450	1 / 2412.0	17.0 dBm	Left, Cheek	0.144 W/kg	0.16 W/kg	1.6 W/kg	PASSED
2-slot GPRS850 + WLAN2450	-	-	Left, Cheek	0.709 W/kg	0.79 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	-	-	Left, Cheek	0.871 W/kg	0.98 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900 + WLAN2450	-	-	Left, Cheek	0.802 W/kg	0.90 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	Left, Cheek	1.05 W/kg	1.18 W/kg	1.6 W/kg	PASSED

Copyright © 2011 TCC Nokia

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS850**	128 / 824.2	29.5 dBm	1.5 cm	0.483 W/kg	0.54 W/kg	1.6 W/kg	PASSED
WCDMA850**	4175 / 835.0	23.5 dBm	1.5 cm	0.659 W/kg	0.74 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900**	810 / 1909.8	27.5 dBm	1.5 cm	0.375 W/kg	0.42 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9262 / 1852.4	21.0 dBm	1.5 cm	0.482 W/kg	0.54 W/kg	1.6 W/kg	PASSED
WLAN2450	7 / 2442.0	17.0 dBm	1.5 cm	0.051 W/kg	0.06 W/kg	1.6 W/kg	PASSED
2-slot GPRS850 + WLAN2450	-	-	1.5 cm	0.522 W/kg	0.58 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	-	-	1.5 cm	0.702 W/kg	0.79 W/kg	1.6 W/kg	PASSED
2-slot GPRS1900 + WLAN2450	-	-	1.5 cm	0.409 W/kg	0.46 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	1.5 cm	0.494 W/kg	0.55 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.50 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

^{**}SAR data taken from FCC_RM-640_03 for RM-640 / FCC ID: PPIRM-640 / IC: 661U-RM640.

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 4/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 4/8	824 - 849 1850 - 1910
WCDMA	850 (Band V) 1900 (Band II)		1	826 – 847 1852 – 1908
HSUPA	850 (Band V) 1900 (Band II)		1	826 – 847 1852 – 1908
BT	2450	GFSK	1	2402 – 2480
WLAN b-mode	2450	Up to 11Mbps QPSK	1	2412 – 2462
WLAN g-mode	2450	Up to 54Mbps 64QAM	1	2412 – 2462
WLAN n-mode 20MHz	2450	Up to 72.2Mbps 64QAM	1	2412 – 2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

This device has Voice-over-IP/Dual Transfer Mode capability for use at the ear. Therefore, SAR for multi slot GPRS mode was evaluated against the head profile of the phantom. Dual Transfer Mode is a feature that utilises the multi-slot GPRS capability in this device; it allows simultaneous transmission of voice and data during the same call, using the same transmitter and antenna.

This is a WCDMA HSUPA device, but SAR tests for HSUPA mode have not been performed as no HSUPA Sub-test mode has an average power > 0.25dB above the basic WCDMA 12.2kbps RMC mode. Appendix C of this report gives a summary of the measured WCDMA and HSUPA average powers; a detailed report of these WCDMA and HSUPA conducted power tests is submitted separately.

SAR Report FCC_RM-776_02 Applicant: Nokia Corporation

This is a BT Class 1 device; as its power tuning target is 10dBm (10mW), SAR testing was deemed unnecessary.

2.1 Description of the Antenna

The device has internal antennas for both cellular and WLAN use. The cellular antenna is located at the bottom underneath the back cover. The WLAN antenna is located at the bottom underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 – 22.5
Ambient humidity (RH %):	35 - 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using control software.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The transmission mode of the device in all WLAN b-mode tests was DSSS QPSK 11Mbps. This mode has the highest (or equal highest) time-averaged output power of all the WLAN b and g modulation modes in Nokia devices. In WLAN n-mode, BPSK 6.5Mbps with 20MHz bandwidth was used.

All the SAR data presented in this report for the cellular bands has been taken from FCC_RM-640_03 for RM-640 / FCC ID: PPIRM-640 / IC: 661U-RM640. The only differences between RM-776 and RM-640 that affects SAR performance are in the power levels of the band edge channels for WLAN2450 band.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 4	793	12 months	2011-09
E-field Probe EX3DV4	3573	12 months	2012-02
Dipole Validation Kit, D2450V2	749	24 months	2011-10
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Vector Network Analyzer	8753E	US38432928	12 months	2011-08
Dielectric Probe Kit	85070B	US33020420	-	-
Signal Generator	E4436B	US39260114	12 months	2011-08
Amplifier	5S1G4	25583	12 months	2011-08
Power Meter	NRVS	849305/028	12 months	2011-08
Power Sensor	NRV-Z32	100067	12 months	2011-12

4.1.1 Isotropic E-field Probe Type EX3DV4

Construction Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6

GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range $10 \mu \text{W/g to} > 100 \text{ mW/g, Linearity:} \pm 0.2 \text{ dB}$

Dimensions Overall length: 330 mm

Tip length: 10 mm Body diameter: 12 mm Tip diameter: 2.5 mm

Distance from probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 6 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

SAR Report FCC RM-776 02

Applicant: Nokia Corporation

Type: RM-776

The depth of the tissue simulant was at least 15.0 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.20
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1g	8r	σ [S/m]	[°C]
	Reference result	13.2	39.1	1.78	
	$\pm10\%$ window	11.9 - 14.5			
2450	2011-04-19	13.7	37.7	1.82	21.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

nead tissae simulant incasarements								
f		Dielectric F	Parameters	Temp				
[MHz]	Description	εr	σ [S/m]	[°C]				
	Recommended value	39.2 1.79						
	\pm 5% window	37.3 – 41.2	1.70 - 1.88					
2442	2011-04-19	37.7	1.81	21.0				

Body tissue simulant measurements

f		Dielectric F	arameters	Temp
[MHz]	Description	8r	σ [S/m]	[°C]
	Recommended value	52.7	1.94	
	\pm 5% window	50.1 – 55.3	1.85 - 2.04	
2442	2011-04-19	50.4	1.98	21.0

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the

separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

Nokia body-worn accessories are commonly available for the separation distance used in this testing.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Table 6.1 – Measur		ertainty	evaluat	ion			
Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	C _i .U _i (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	8
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	8
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	8
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	8
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	8
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	~
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift measurement	6.6.3	±0.0	R	√3	1	±0.0	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty	·		RSS			±12.9	116
Coverage Factor for 95%			k=2				-10
Expanded Uncertainty						±25.8	
<u> </u>				1	1		1

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850MHz Head SAR results**

				SAR, avo	eraged over 1g	(W/kg)
Hardware ID	Option used	Test conf	figuration	Ch 128	Ch 190	Ch 251
				824.2 MHz	836.6 MHz	848.8 MHz
GSM		Conducted Power		-	32.5 dBm	-
		Left	Cheek	-	0.537	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot GPRS		Conduct	ed Power			29.5 dBm
		Left	Cheek	0.644	0.543	0.520
0210	BL-5CT Sanyo		Tilt	-	0.325	-
		Right	Cheek	-	0.453	-
			Tilt	-	0.296	-
3-slot GPRS	3-slot GPRS		ed Power	-	27.7 dBm	-
		Left	Cheek	-	0.533	-
0210	BL-5CT Sanyo		Tilt	-	1	-
		Right	Cheek	-	1	-
			Tilt	-	-	-
4-slot GPRS		Conduct	ed Power	-	26.5 dBm	-
		Left	Cheek	-	0.540	-
0210	BL-5CT Sanyo		Tilt	-	1	-
		Right	Cheek	-	1	-
			Tilt	-	-	-
2-slot 8PSK EGPRS		Conduct	ed Power	27.0 dBm	-	-
		Left	Cheek	0.388	-	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-

(850MHz Table continues)

850MHz Head SAR results - continued

				SAR, avo	eraged over 1g	ı (W/kg)
Hardware ID	Option used	Test configuration		Ch 4132	Ch 4175	Ch 4233
				826.4 MHz	835.0 MHz	846.6 MHz
WCDMA		Conducted Power		23.5 dBm	23.5 dBm	23.5 dBm
		Left	Cheek	0.693	0.839	0.693
0210	BL-5CT Sanyo		Tilt	-	0.502	-
		Right	Cheek	-	0.704	-
			Tilt	-	0.468	-
		Left	Cheek	0.714	0.839	0.704
0210	BL-5CT Panasonic		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-

1900MHz Head SAR results**

				SAR, avo	eraged over 1g	(W/kg)
Hardware ID	Option used	Test conf	iguration	Ch 512 1850.2 MHz	Ch 661	Ch 810
					1880.0 MHz	1909.8 MHz
GSM		Conduct	ed Power	-	30.5 dBm	-
		Left	Cheek	-	0.713	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot GPRS		Conduct	ed Power	27.5 dBm	27.5 dBm	27.5 dBm
		Left	Cheek	-	0.716	-
0210	BL-5CT Sanyo		Tilt	-	0.206	-
		Right	Cheek	0.732	0.751	0.733
			Tilt	-	0.355	-
3-slot GPRS	3-slot GPRS		ed Power	-	25.7 dBm	-
		Left	Cheek	-	0.699	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
4-slot GPRS		Conducto	ed Power	-	24.5 dBm	-
		Left	Cheek	-	0.691	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
2-slot 8PSK EGPRS		Conduct	ed Power	-	26.0 dBm	-
		Left	Cheek	-	-	-
0210	BL-5CT Sanyo		Tilt	-	-	-
		Right	Cheek	-	0.410	
			Tilt	-	-	-

(1900MHz Table continues)

1900MHz Head SAR results - continued

				SAR, av	eraged over 1g	(W/kg)
Hardware ID	Option used	Test configuration		Ch 9262	Ch 9400	Ch 9538
				1852.4 MHz	1880.0 MHz	1907.6 MHz
WCDMA		Conducted Power		21.0 dBm	21.0 dBm	21.0 dBm
		Left	Cheek	0.905	1.02	0.953
0210	BL-5CT Sanyo		Tilt	-	0.298	-
		Right	Cheek	0.820	0.972	0.845
			Tilt	-	0.456	-
		Left	Cheek	0.739	0.795	0.794
0210	BL-5CT Panasonic		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-

2450MHz Head SAR results

				SAR, avo	eraged over 1g	(W/kg)
Hardware ID	Option used	Test configuration		Ch 1	Ch 7	Ch 11
				2412.0 MHz	2442.0 MHz	2462.0 MHz
WLAN b-mode		Conducted Power		17.0 dBm	17.0 dBm	17.0 dBm
		Left	Cheek	0.100	0.091	0.095
0100	BL-5CT Panasonic		Tilt	-	0.030	-
		Right	Cheek	-	0.067	-
			Tilt	-	0.023	-
WLAN n-mode		Conducto	ed Power	10.0 dBm	14.0 dBm	10.0 dBm
		Left	Cheek	0.010	0.020	0.009
0100	BL-5CT Panasonic		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-

2450MHz Head SAR results – corrected for power drift

24301112 fledd 3AR feddid Coffeeted for power diffe								
				SAR, av	eraged over 1g	(W/kg)		
Hardware ID	Option used	Test configuration		Ch 1	Ch 7	Ch 11		
				2412.0 MHz	2442.0 MHz	2462.0 MHz		
WLAN b-mode		Conducted Power		17.0 dBm	17.0 dBm	17.0 dBm		
		Left	Cheek	0.144	0.132	0.115		
0100	BL-5CT Panasonic		Tilt	-	0.034	-		
		Right	Cheek	-	0.076	-		
			Tilt	-	0.025	-		
WLAN n-mode		Conducto	ed Power	10.0 dBm	14.0 dBm	10.0 dBm		
		Left	Cheek	0.017	0.032	0.013		
0100	BL-5CT Panasonic		Tilt	-	-	-		
		Right	Cheek	-	-	-		
			Tilt	-	-	-		

The measured Body SAR values for the test device are tabulated below:

850MHz Body SAR results**

				SAR, ave	raged over 1	g (W/kg)
Hardware ID	Option used	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz
2-slot GPRS			Conducted Power	29.5 dBm	29.5 dBm	29.5 dBm
		Display facing	Without headset	-	0.345	-
0210	BL-5CT	phantom	Headset WH-102	-	0.266	-
0210	Sanyo	Back facing	Without headset	0.483	0.429	0.426
		phantom	Headset WH-102	-	0.339	-
				SAR, ave	raged over 1	g (W/kg)
Hardware ID	Option used	Device orientation	Test configuration	Ch 4132 826.4 MHz	Ch 4175 835.0 MHz	Ch 4233 846.6 MHz
WCDMA			Conducted Power	23.5 dBm	23.5 dBm	23.5 dBm
		Display facing	Without headset	-	0.509	-
0210	BL-5CT	phantom	Headset WH-102	-	0.425	-
0210	Sanyo	Back facing	Without headset	0.520	0.659	0.570
		phantom	Headset WH-102	-	0.558	-
		Display facing	Without headset	-	-	-
0210	BL-5CT	phantom	Headset WH-102	-	-	-
0210	Panasonic	Back facing	Without headset	0.510	0.659	Ch 251 848.8 MHz 29.5 dBm - - 0.426 - (W/kg) Ch 4233 846.6 MHz 23.5 dBm -
		phantom	Headset WH-102	-	-	-

1900MHz Body SAR results**

				SAR, ave	eraged over 1g	ı (W/kg)
Hardware ID	Option used	Device orientation	Test configuration	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
2-slot GPRS			Conducted Power	27.5 dBm	27.5 dBm	27.5 dBm
		Display facing	Without headset	-	0.326	-
0210	BL-5CT	phantom	Headset WH-102	-	0.310	-
0210	Sanyo	Back facing	Without headset	0.355	0.365	0.375
		phantom	Headset WH-102	-	0.344	-
				SAR, ave	eraged over 1g	(W/kg)
Hardware ID	Option used	Device orientation	Test configuration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz
WCDMA			Conducted Power	21.0 dBm	21.0 dBm	21.0 dBm
		Display facing	Without headset	-	0.361	-
0210	BL-5CT	phantom	Headset WH-102	-	0.323	-
0210	Sanyo	Back facing	Without headset	0.463	0.462	0.438
		phantom	Headset WH-102	-	0.427	Ch 810 1909.8 MHz 27.5 dBm - - 0.375 - (W/kg) Ch 9538 1907.6 MHz 21.0 dBm -
		Display facing	Without headset	-	-	-
0210	BL-5CT	phantom	Headset WH-102	-	-	-
0210	Panasonic	Back facing	Without headset	0.482	0.456	Ch 810 1909.8 MHz 27.5 dBm 0.375 - (W/kg) Ch 9538 1907.6 MHz 21.0 dBm 0.438
		phantom	Headset WH-102	-	-	-

2450MHz Body SAR results

				SAR, ave	, averaged over 1g (W/kg)		
Hardware ID	Option used	Device orientation	Test configuration	Ch 1 2412.0 MHz	Ch 7 2442.0 MHz	Ch 11 2462.0 MHz	
WLAN b-mode		Conducted Power	17.0 dBm	17.0 dBm	17.0 dBm		
0100	BL-5CT Panasonic	Display facing	Without headset	-	0.029	-	
		phantom	Headset WH-102	-	0.031	-	
		Back facing	Without headset	-	0.042	-	
		phantom	Headset WH-102	0.044	0.044	0.040	
WLAN n-mode		Conducted Power	10.0 dBm	14.0 dBm	10.0 dBm		
0100		Display facing	Without headset	-	-	-	
	BL-5CT	phantom	Headset WH-102	-	1	-	
	Panasonic	Back facing	Without headset	-	-	-	
		phantom	Headset WH-102	0.003	0.008	0.004	

2450MHz Body SAR results – corrected for power drift

				SAR, averaged over 1g (W/kg)			
Hardware	Option	Device	Test configuration	Ch 1	Ch 7	Ch 11	
ID	used	orientation		2412.0 MHz	2442.0 MHz	2462.0 MHz	
WLAN b-mode	WLAN b-mode		Conducted Power	17.0 dBm	17.0 dBm	17.0 dBm	
0100 P		Display facing	Without headset	-	0.031	-	
	BL-5CT Panasonic	phantom	Headset WH-102	-	0.034	-	
		Back facing	Without headset	-	0.043	-	
		phantom	Headset WH-102	0.045	0.051	0.040	
WLAN n-mode		Conducted Power	10.0 dBm	14.0 dBm	10.0 dBm		
0100		Display facing	Without headset	-	-	-	
	BL-5CT	phantom	Headset WH-102	-	-	-	
	Panasonic	Back facing	Without headset	-	-	-	
		phantom	Headset WH-102	0.005	0.009	0.005	

Simultaneous transmissions: Combined SAR results – Individual band Max results

	Max. 1g SAR results					
Test configuration	WLAN	2-slot GPRS 850**	WCDMA 850**	2-slot GPRS 1900**	WCDMA 1900**	
Head: Left, Cheek	0.144	0.644	0.839	0.716	1.02	
Head: Left, Tilt	0.034	0.325	0.502	0.206	0.298	
Head: Right, Cheek	0.076	0.453	0.704	0.751	0.972	
Head: Right, Tilt	0.025	0.296	0.468	0.355	0.456	
Body: Display facing phantom, Without Headset	0.031	0.345	0.509	0.326	0.361	
Body: Display facing phantom, Headset WH-102	0.034	0.266	0.425	0.310	0.323	
Body: Back facing phantom, Without Headset	0.043	0.483	0.659	0.375	0.482	
Body: Back facing phantom, Headset WH-102	0.051	0.339	0.558	0.344	0.427	

Simultaneous transmissions: Combined SAR results – Max + Max combined results

	Combined 1g SAR values					
Test configuration	2-slot GPRS 850 + WLAN	WCDMA 850 + WLAN	2-slot GPRS 1900 + WLAN	WCDMA 1900 + WLAN		
Head: Left, Cheek	0.788	0.983	0.860	1.164		
Head: Left, Tilt	0.359	0.536	0.240	0.332		
Head: Right, Cheek	0.529	0.780	0.827	1.048		
Head: Right, Tilt	0.321	0.493	0.380	0.481		
Body: Display facing phantom, Without Headset	0.376	0.540	0.357	0.392		
Body: Display facing phantom, Headset WH-102	0.300	0.459	0.344	0.357		
Body: Back facing phantom, Without Headset	0.526	0.702	0.418	0.525		
Body: Back facing phantom, Headset WH-102	0.390	0.609	0.395	0.478		

The following table gives a more accurate assessment of the SAR values for simultaneous transmission. These values have been calculated using the SPEAG Combined Multiband algorithm, which is based on area scans. It a) converts the 2D area scans into 3D volume scans by assuming frequency-dependent decay characteristics for the E-field, b) sums the SAR values for WLAN2450 and the cellular bands point-by-point and c) calculates the combined average SAR values. It is these values that appear in the Summary table in Section 1.2.

Simultaneous transmissions: Combined SAR results – SPEAG Combined Multiband algorithm results

	Combined 1g SAR values				
Test configuration	2-slot GPRS 850 + WLAN	WCDMA 850 + WLAN	2-slot GPRS 1900 + WLAN	WCDMA 1900 + WLAN	
Head: Left, Cheek	0.709	0.871	0.802	1.05	
Head: Left, Tilt	-	-	-	-	
Head: Right, Cheek	-	-	-	-	
Head: Right, Tilt	-	-	-	-	
Body: Display facing phantom, Without Headset	-	-	-	-	
Body: Display facing phantom, Headset WH-102	-	-	-	-	
Body: Back facing phantom, Without Headset	0.522	0.702	0.409	0.494	
Body: Back facing phantom, Headset WH-102	-	-	-	-	

^{**}SAR data taken from FCC_RM-640_03 for RM-640 / FCC ID: PPIRM-640 / IC: 661U-RM640.

Note: Simultaneous Transmission Procedures as described in KDB648474 are not required for this product. The Combined SAR data given in the tables above has been voluntarily calculated.

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2011-04-19 08:53:56

Test Laboratory: TCC Nokia

Type: D2450V2; Serial: D2450V2 - SN:749

Communication System: CW2450 Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\epsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

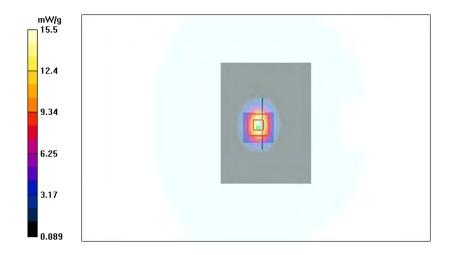
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.69, 6.69, 6.69); Calibrated: 2011-02-17 Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.8 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.3 V/m Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.7 mW/gSAR(10 g) = 6.39 mW/g

Power Drift = 0.017 dB

Maximum value of SAR (measured) = 15.5 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 2011-04-19 11:50:06

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: t= 20.5 C

Medium parameters used: f = 2412 MHz; σ = 1.78 mho/m; ε_r = 37.9; ρ = 1000 kg/m³

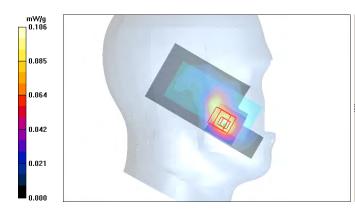
Phantom section: Left Section

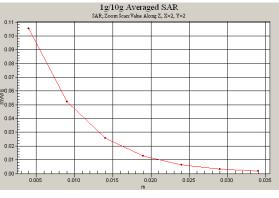
DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.69, 6.69, 6.69); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek – Low - BL-4CT Panasonic/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.106 mW/g

Cheek - Low - BL-4CT Panasonic/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm,


dz=5mm


Reference Value = 1.93 V/m Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.100 mW/gSAR(10 g) = 0.052 mW/g

Power Drift = 1.58 dB

Maximum value of SAR (measured) = 0.106 mW/g

Date/Time: 2011-04-19 10:41:09

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

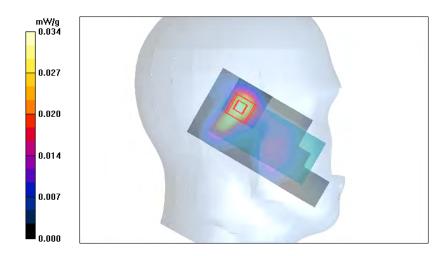
Communication System: WLAN2450 Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium Notes: t= 20.5 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.69, 6.69, 6.69); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793: Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Tilt - Middle - BL-4CT Panasonic/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.037 mW/g

Tilt - Middle - BL-4CT Panasonic/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.17 V/m
Peak SAR (extrapolated) = 0.054 W/kg

SAR(1 g) = 0.030 mW/g SAR(10 g) = 0.016 mW/g Power Drift = 0.574 dB

Maximum value of SAR (measured) = 0.034 mW/g

Date/Time: 2011-04-19 11:05:37

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium Notes: t= 20.8 C

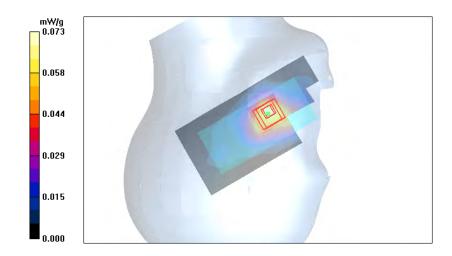
Medium parameters used: f = 2442 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.44, 4.44, 4.44); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek - Middle - BL-4CT Panasonic/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.075 mW/g

Cheek - Middle - BL-4CT Panasonic/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.43 V/m Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.067 mW/gSAR(10 g) = 0.037 mW/gPower Drift = -0.532 dB

Maximum value of SAR (measured) = 0.073 mW/g

Date/Time: 2011-04-19 11:22:09

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3165
- ConvF(4.44, 4.44, 4.44); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Tilt - Middle - BL-4CT Panasonic/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.028 mW/g

Tilt - Middle - BL-4CT Panasonic/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.21 V/m Peak SAR (extrapolated) = 0.043 W/kg

SAR(1 g) = 0.023 mW/g SAR(10 g) = 0.011 mW/g Power Drift = 0.392 dB

Maximum value of SAR (measured) = 0.025 mW/g

Date/Time: 2011-04-19 13:07:24

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 n-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium Notes: t= 20.5 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³

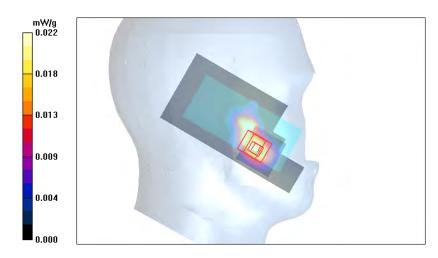
Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.69, 6.69, 6.69); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM1; Type: SAM; Serial: TP-1126
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Cheek - Middle - BL-4CT Panasonic/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.045 mW/g


Cheek - Middle - BL-4CT Panasonic/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 0.579 V/m Peak SAR (extrapolated) = 0.037 W/kg

SAR(1 g) = 0.020 mW/gSAR(10 g) = 0.00919 mW/g

Power Drift = -2.00 dB

Maximum value of SAR (measured) = 0.022 mW/g

Date/Time: 2011-04-19 16:50:11

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

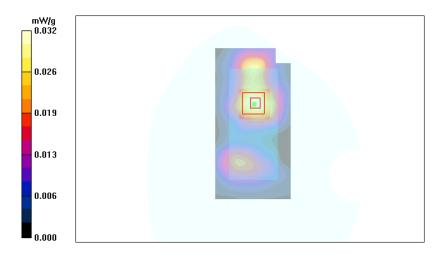
DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.8, 6.8, 6.8); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM2; Type: SAM; Serial: TP-1570
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Body - Middle - No Accessory - Display Facing Phantom - BL-4CT Panasonic/Area Scan (51x101x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.032 mW/g

Body - Middle - No Accessory - Display Facing Phantom - BL-4CT Panasonic/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.70 V/m Peak SAR (extrapolated) = 0.051 W/kg

SAR(1 g) = 0.029 mW/gSAR(10 g) = 0.017 mW/g

Power Drift = -0.288 dB

Maximum value of SAR (measured) = 0.032 mW/g

Date/Time: 2011-04-19 17:13:55

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.8, 6.8, 6.8); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793: Calibrated: 2010-09-08
- Phantom: SAM2; Type: SAM; Serial: TP-1570
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

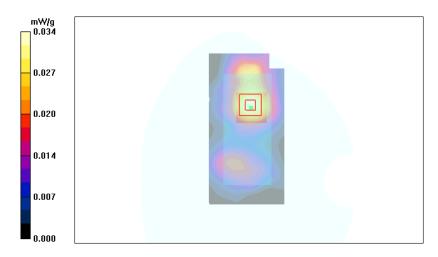
Body - Middle - Headset WH-102 - Display Facing Phantom - BL-4CT Panasonic/Area Scan (51x101x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.036 mW/g

Body - Middle - Headset WH-102 - Display Facing Phantom - BL-4CT Panasonic/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 2.34 V/m

Peak SAR (extrapolated) = 0.053 W/kg SAR(1 g) = 0.031 mW/g

SAR(10 g) = 0.018 mW/g

Power Drift = 0.454 dB

Maximum value of SAR (measured) = 0.034 mW/g

Date/Time: 2011-04-19 17:55:30

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.8, 6.8, 6.8); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793: Calibrated: 2010-09-08
- Phantom: SAM2; Type: SAM; Serial: TP-1570
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

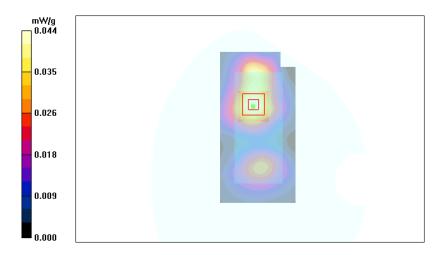
Body - Middle - No accessory - Back Facing Phantom - BL-4CT Panasonic/Area Scan (51x101x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.048 mW/g

Body - Middle - No accessory - Back Facing Phantom - BL-4CT Panasonic/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 3.26 V/m

Peak SAR (extrapolated) = 0.073 W/kg

SAR(1 g) = 0.042 mW/gSAR(10 g) = 0.024 mW/g

Power Drift = 0.068 dB

Maximum value of SAR (measured) = 0.044 mW/g

Date/Time: 2011-04-19 17:32:18

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 b-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.8, 6.8, 6.8); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM2; Type: SAM; Serial: TP-1570
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

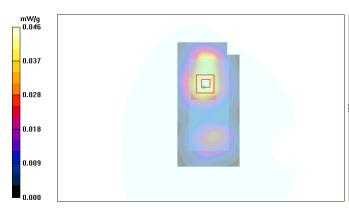
Body - Middle - Headset WH-102 - Back Facing Phantom - BL-4CT Panasonic/Area Scan (51x101x1):

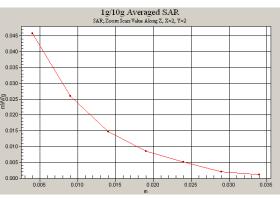
Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.046 mW/g

Body - Middle - Headset WH-102 - Back Facing Phantom - BL-4CT Panasonic/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 3.03 V/m


Peak SAR (extrapolated) = 0.078 W/kg

SAR(1 g) = 0.044 mW/g

SAR(10 g) = 0.025 mW/g Power Drift = 0.671 dB

Maximum value of SAR (measured) = 0.046 mW/g

Date/Time: 2011-04-19 19:09:51

Test Laboratory: TCC Nokia

Type: RM-776; Serial: 004402/13/477598/4

Communication System: WLAN2450 n-mode

Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: t= 20.8 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3573
- ConvF(6.8, 6.8, 6.8); Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn793; Calibrated: 2010-09-08
- Phantom: SAM2; Type: SAM; Serial: TP-1570
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

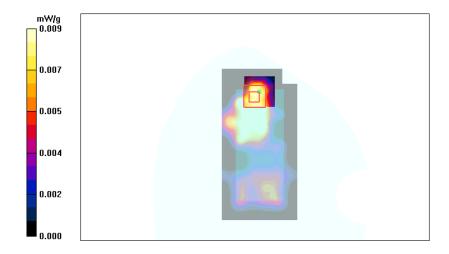
Body - Middle - Headset WH-102 - Back Facing Phantom - BL-4CT Panasonic/Area Scan (51x101x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.020 mW/g

Body - Middle - Headset WH-102 - Back Facing Phantom - BL-4CT Panasonic/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 1.37 V/m Peak SAR (extrapolated) = 0.024 W/kg


SAR(1 g) = 0.0084 mW/g

SAR(10 g) = 0.00379 mW/g

Power Drift = 0.506 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.009 mW/g

Date/Time: 2010-06-07 20:23:01, Date/Time: 2011-04-19 11:50:06

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: 2-slot GPRS850, Communication System: WLAN2450

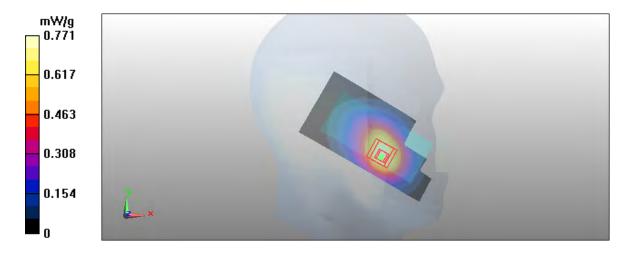
Frequency: 824.2 MHz, Frequency: 2412 MHz; Duty Cycle: 1:4.2, Duty Cycle: 1:1

Medium: Head 835, Medium: HSL2450; Medium Notes: Medium Temperature: 22.2 C, Medium Notes: t= 20.5 C Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.88 mho/m; ϵ_r = 40.4; ρ = 1000 kg/m³, Medium

parameters used: f = 2412 MHz; σ = 1.78 mho/m; ϵ_r = 37.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3118, Probe: EX3DV4 SN3573
- ConvF(5.85, 5.85, 5.85), ConvF(6.69, 6.69, 6.69); Calibrated: 2009-09-22, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 4, Phantom: SAM1; Type: Twin Phantom, Type: SAM; Serial: TP-1410, Serial: TP-1126
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Low - BL-5CT Sanyo/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low - BL-4CT Panasonic/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.709 mW/g SAR(10 g) = 0.472 mW/g

Maximum value of SAR (measured) = 0.771 mW/g

Date/Time: 2010-06-07 13:37:42, Date/Time: 2011-04-19 11:50:06

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: WCDMA850, Communication System: WLAN2450

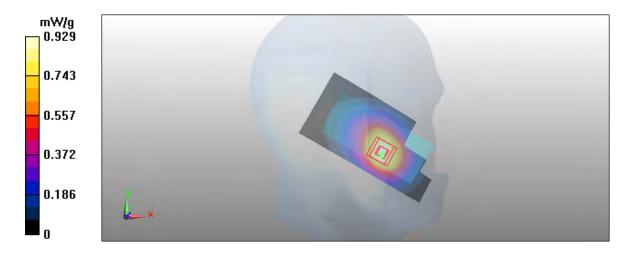
Frequency: 835 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Head 835, Medium: HSL2450; Medium Notes: Medium Temperature: 22.2 C, Medium Notes: t= 20.5 C Medium parameters used: f = 835 MHz; $\sigma = 0.891$ mho/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.78 mho/m; ϵ_r = 37.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3118, Probe: EX3DV4 SN3573
- ConvF(5.85, 5.85, 5.85), ConvF(6.69, 6.69, 6.69); Calibrated: 2009-09-22, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 4, Phantom: SAM1; Type: Twin Phantom, Type: SAM; Serial: TP-1410, Serial: TP-1126
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Middle - BL-5CT Sanyo/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low - BL-4CT Panasonic/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.871 mW/g SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 0.929 mW/g

Date/Time: 2010-06-17 20:19:36, Date/Time: 2011-04-19 11:50:06

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: 2-slot GPRS1900, Communication System: WLAN2450

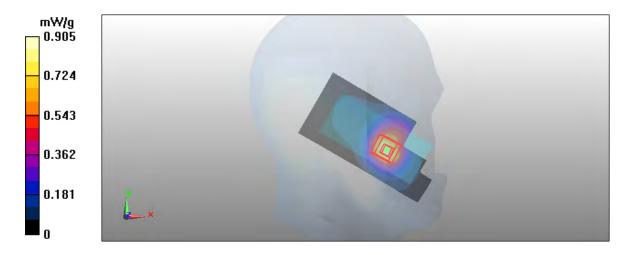
Frequency: 1880 MHz, Frequency: 2412 MHz; Duty Cycle: 1:4.2, Duty Cycle: 1:1

Medium: Head 1900, Medium: HSL2450; Medium Notes: Medium Temperature: 22.5 C, Medium Notes: t= 20.5 C Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.78 mho/m; ϵ_r = 37.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3117, Probe: EX3DV4 SN3573
- ConvF(4.9, 4.9, 4.9), ConvF(6.69, 6.69, 6.69); Calibrated: 2009-07-21, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 3, Phantom: SAM1; Type: Twin Phantom, Type: SAM; Serial: TP-1302, Serial: TP-1126
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Middle - BL-5CT Sanyo/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low - BL-4CT Panasonic/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.802 mW/g SAR(10 g) = 0.444 mW/g

Maximum value of SAR (measured) = 0.905 mW/g

Date/Time: 2010-06-18 11:26:45, Date/Time: 2011-04-19 11:50:06

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: WCDMA1900, Communication System: WLAN2450

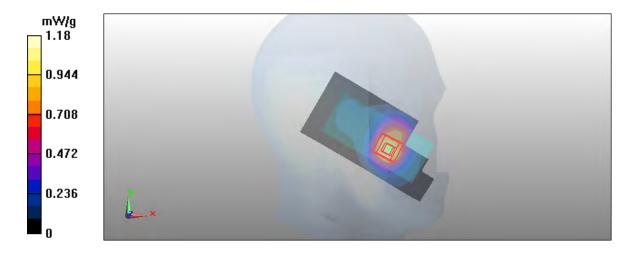
Frequency: 1880 MHz, Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: Head 1900, Medium: HSL2450; Medium Notes: Medium Temperature: 22.3 C, Medium Notes: t= 20.5 C Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³, Medium parameters used:

f = 2412 MHz; σ = 1.78 mho/m; ε_r = 37.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3117, Probe: EX3DV4 SN3573
- ConvF(4.9, 4.9, 4.9), ConvF(6.69, 6.69, 6.69); Calibrated: 2009-07-21, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 3, Phantom: SAM1; Type: Twin Phantom, Type: SAM; Serial: TP-1302, Serial: TP-1126
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek position - Middle - BL-4CT Sanyo/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Low - BL-4CT Panasonic/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 1.05 mW/gSAR(10 g) = 0.581 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

Date/Time: 2010-06-17 12:09:04, Date/Time: 2011-04-19 17:55:30

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: 2-slot GPRS850, Communication System: WLAN2450 b-mode

Frequency: 824.2 MHz, Frequency: 2442 MHz; Duty Cycle: 1:4.2, Duty Cycle: 1:1

Medium: Body 835, Medium: BSL2450; Medium Notes: Medium Temperature: 21.9 C, Medium Notes: t=20.8 C Medium parameters used (interpolated): f=824.2 MHz; $\sigma=0.964$ mho/m; $\epsilon_r=54$; $\rho=1000$ kg/m³, Medium

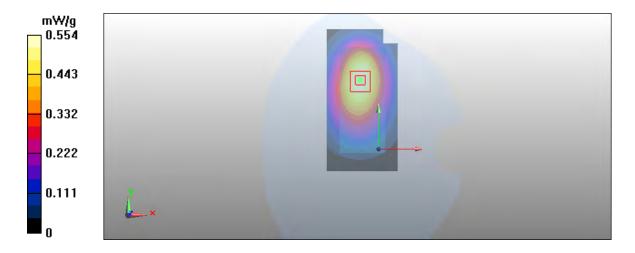
parameters used: f = 2442 MHz; σ = 1.98 mho/m; ϵ_r = 50.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3118, Probe: EX3DV4 SN3573
- ConvF(5.65, 5.65, 5.65), ConvF(6.8, 6.8, 6.8); Calibrated: 2009-09-22, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE3 Sn573, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 5, Phantom: SAM2; Type: Twin Phantom, Type: SAM; Serial: TP-1302, Serial: TP-1570
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - Low -No Accessory - Back Facing Phantom – BL-4CT Sanyo/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No accessory - Back Facing Phantom - BL-4CT Panasonic/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.522 mW/g SAR(10 g) = 0.359 mW/g

Maximum value of SAR (measured) = 0.554 mW/g

Date/Time: 2010-06-17 13:45:20, Date/Time: 2011-04-19 17:55:30

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: WCDMA850, Communication System: WLAN2450 b-mode

Frequency: 835 MHz, Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: Body 835, Medium: BSL2450; Medium Notes: Medium Temperature: 21.9 C, Medium Notes: t = 20.8 C Medium parameters used: f = 835 MHz; $\sigma = 0.975 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used:

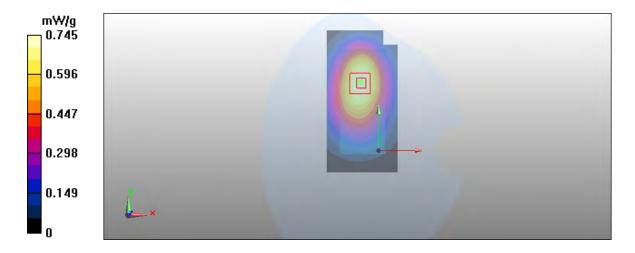
f = 2442 MHz; σ = 1.98 mho/m; ε_r = 50.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3118, Probe: EX3DV4 SN3573
- ConvF(5.65, 5.65, 5.65), ConvF(6.8, 6.8, 6.8); Calibrated: 2009-09-22, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE3 Sn573, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 5, Phantom: SAM2; Type: Twin Phantom, Type: SAM; Serial: TP-1302, Serial: TP-1570
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - Middle - No Accessory - Back Facing Phantom – BL-4CT Sanyo/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No accessory - Back Facing Phantom - BL-4CT Panasonic/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.702 mW/gSAR(10 g) = 0.485 mW/g

Maximum value of SAR (measured) = 0.745 mW/g

Date/Time: 2010-07-01 22:17:16, Date/Time: 2011-04-19 17:55:30

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: 2-slot GPRS1900, Communication System: WLAN2450 b-mode

Frequency: 1909.8 MHz, Frequency: 2442 MHz; Duty Cycle: 1:4.2, Duty Cycle: 1:1

Medium: Body 1900, Medium: BSL2450; Medium Notes: Medium Temperature: 22.5 C, Medium Notes: t= 20.8 C Medium parameters used: f = 1910 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³, Medium parameters used:

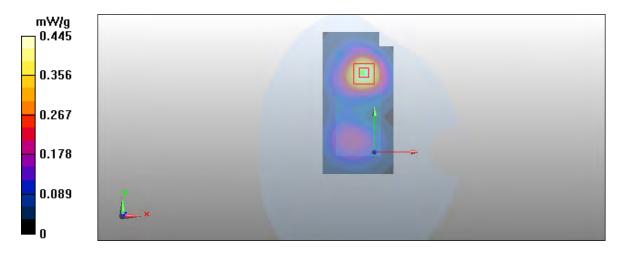
f = 2442 MHz; σ = 1.98 mho/m; ε_r = 50.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117, Probe: EX3DV4 SN3573
- ConvF(4.41, 4.41, 4.41), ConvF(6.8, 6.8, 6.8); Calibrated: 2009-07-21, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn682, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 2, Phantom: SAM2; Type: Twin Phantom, Type: SAM; Serial: TP-1037, Serial: TP-1570
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - Back Facing Phantom - BL-5CT Sanyo/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No accessory - Back Facing Phantom - BL-4CT Panasonic/Area Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.409 mW/g SAR(10 g) = 0.236 mW/g

Maximum value of SAR (measured) = 0.445 mW/g

Date/Time: 2010-06-18 15:50:48, Date/Time: 2011-04-19 17:55:30

Test Laboratory: TCC Nokia

Type: RM-640, Type: RM-776; Serial: 004402/13/036904/8, Serial: 004402/13/477598/4

Communication System: WCDMA1900, Communication System: WLAN2450 b-mode

Frequency: 1852.4 MHz, Frequency: 2442 MHz; Duty Cycle: 1:1

Medium: Body 1900, Medium: BSL2450; Medium Notes: Medium Temperature: 22.5 C, Medium Notes: t= 20.8 C Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.56 mho/m; ϵ_r = 51.2; ρ = 1000 kg/m³, Medium

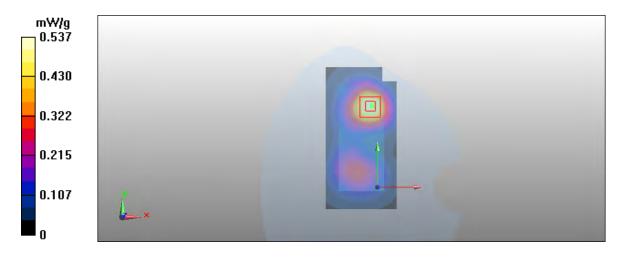
parameters used: f = 2442 MHz; σ = 1.98 mho/m; ϵ_r = 50.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3117, Probe: EX3DV4 SN3573
- ConvF(4.41, 4.41, 4.41), ConvF(6.8, 6.8, 6.8); Calibrated: 2009-07-21, Calibrated: 2011-02-17
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn682, Electronics: DAE4 Sn793; Calibrated: 2009-07-21, Calibrated: 2010-09-08
- Phantom: SAM 1, Phantom: SAM2; Type: Twin Phantom, Type: SAM; Serial: TP-1215, Serial: TP-1570
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - Low - No Accessory - Back Facing Phantom - BL-5CT Sanyo/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No accessory - Back Facing Phantom/ - BL-4CT PanasonicArea Scan (6x11x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.494 mW/g SAR(10 g) = 0.289 mW/g

Maximum value of SAR (measured) = 0.537 mW/g

APPENDIX C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA

Test Laboratory: TCC Nokia

Type: RM-640; Serial: 004402/13/036898/2, HW: 0210, SW: re5.07

C.1. WCDMA850 Test results

Average power

Ch / f (MHz)	P [dBm]
4133 / 826.6	24.21
4175 / 835.0	24.10
4232 / 846.4	24.15

C.2. HSUPA850 Test results

Average power

	P [dBm]								
Ch / f (MHz)	Subtest mode 1	Subtest mode 2	Subtest mode 3	Subtest mode 4	Subtest mode 5				
4133 / 826.6	20.18	19.35	20.97	20.50	22.07				
4175 / 835.0	20.03	19.16	21.04	19.20	21.76				
4232 / 846.4	20.08	19.21	20.84	20.37	21.95				

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. In addition, to ensure linearity of the PA output, a further 2dB power reduction for all SubTest modes is implemented in this band. As a result, the MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)							
Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mode 5							
3.5dB	4.0dB	3.0dB	4.0dB	2.0dB			

Test Laboratory: TCC Nokia

Type: RM-640; Serial: 004402/13/036898/2, HW: 0210, SW: re5.07

C.3. WCDMA1900 Test results

Average power

Ch / f (MHz)	P [dBm]
9263 / 1852.6	20.90
9400 / 1880.0	21.17
9537 / 1907.4	21.09

C.4. HSUPA1900Test results

Average power

	P [dBm]							
Ch / f (MHz)	Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mod							
9263 / 1852.6	17.40	17.66	18.76	17.67	19.61			
9400 / 1880.0	17.89	18.17	17.89	18.27	20.05			
9537 / 1907.4	17.69	17.92	18.73	17.99	19.80			

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. In addition, to ensure linearity of the PA output, a further 1dB power reduction for all Subtest modes is implemented. As a result, the MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)							
Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mode 5							
2.5dB 3.0dB 2.0dB 3.0dB 1.0dB							

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Salo TCC

Certificate No: EX3-3573_Feb11

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3573

Calibration procedure(s) QA CAL-01.v7, QA CAL-23.v4, QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date: February 17, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 22, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3573 Feb11

Page 1 of 11

EX3DV4-- SN:3573 February 17, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3573

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k≈2)
835	41.5	0.90	8.39	8.39	8.39	0.71	0.69	± 12.0 %
1750	40.1	1.37	7.66	7.66	7.66	0.79	0.65	± 12.0 %
1900	40.0	1.40	7.37	7.37	7.37	0.79	0.66	± 12.0 %
2450	39.2	1.80	6.69	6.69	6.69	0.74	0.63	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

February 17, 2011 EX3DV4-SN:3573

DASY/EASY - Parameters of Probe: EX3DV4- SN:3573

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)		
835	55.2	0.97	8.42	8.42	8.42	0.70	0.77	± 12.0 %		
1750	53.4	1.49	7.56	7.56	7.56	0.79	0.69	± 12.0 %		
1900	53.3	1.52	7.16	7.16	7.16	0.79	0.68	± 12.0 %		
2450	52.7	1.95	6.80	6.80	6.80	0.79	0.62	± 12.0 %		

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Salo TCC

Accreditation No.: SCS 108

C

S

Certificate No: D2450V2-749_Oct09

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 749

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: October 21, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	The
Approved by:	Katja Pokovic	Technical Manager	120118
			ps sites

Issued: October 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-749 Oct09

Page 1 of 9

DASY5 Validation Report for Head TSL

Date/Time: 21.10.2009 11:01:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:749

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

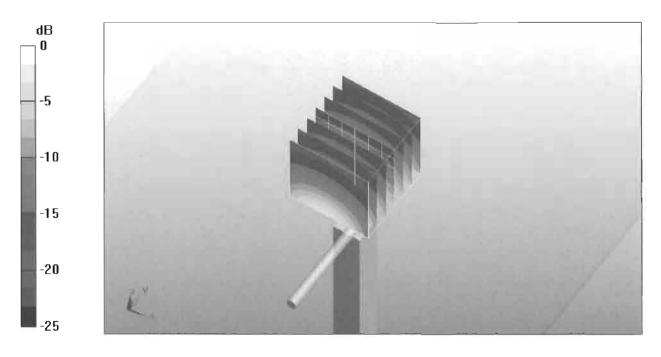
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.7 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.18 mW/g

Maximum value of SAR (measured) = 16.9 mW/g

0 dB = 16.9 mW/g

Certificate No: D2450V2-749_Oct09

DASY5 Validation Report for Body

Date/Time: 21.10.2009 12:07:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:749

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

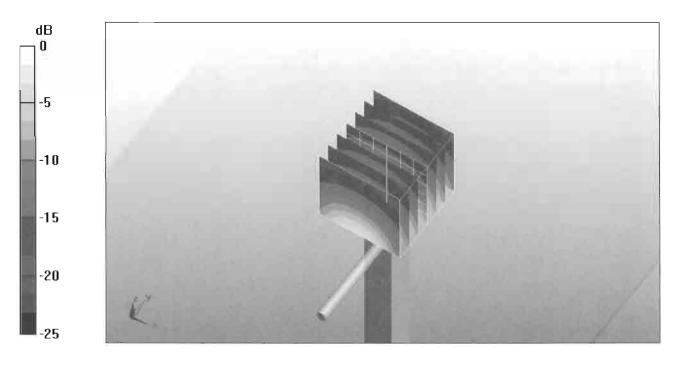
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.9 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 25.8 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.81 mW/g

Maximum value of SAR (measured) = 16.4 mW/g

0 dB = 16.4 mW/g

Certificate No: D2450V2-749_Oct09